关于m-增生算子族公共零点的逼近方法及应用

目录

第一章前言1

1.1非线性算子理论简况 (1)

1.2本文工作概述 (2)

第二章关于Hilbert空间中m-增生算子族公共零点的逼近方法7

2.1引言和预备知识 (7)

2.2 主要结果 (11)

第三章关于B a n a c h空间两族非扩张映像公共零点的逼近方法26

3.1引言和预备知识 (26)

3.2 主要结果 (29)

参考文献42

上海师范大学硕士学位论文第一章前言

A-/T-T*g-----------?—

第一早前言

§1.1非线性算子理论简况

非线性科学作为一门研宄非线性现象共性的新兴交叉学科,逐步发展为以研宄非线性特征为基础的综合性学科.非线性科学几乎涉及了自然科学及社会科学的各个领域,因此,研宄非线性科学具有重要的理论意义与应用价值,并且对人类生存环境的利用具有重要的现实意义.

目前,非线性泛函分析作为研宄诸多非线性问题的基础理论和基本工具,也成为现代数学中一个既有深刻理论意义,又有广泛实际应用价值的学科分支,它以数学及自然科学领域中出现的非线性问题为背景,建立非线性问题的若干一般性理论.其中非线性算子的零点问题和变分不等方程是重要的非线性问题.它产生于数学与物理问题的非线性规划问题,已在物理、经济!工程!力学、现代科学等领域中得到广泛应用.变分不等式在20世纪60年代初就于数学物理中出现了,直至70年代,由Hilbert推广到了非空闭凸子集,进而得到了第一个变分不等式解的存在唯一性定理.随后变分不等式在最优控制问题中得到成功的应用,作为现代偏微分方程理论重要组成部分,变分不等式理论已经得到成熟而深入发展.

Brouwer和Banach在20世纪中叶,提出了著名的Brouwer不动点定理和Banach压缩映像原理,在此之后不动点理论成为研宄各类方程问题的重要工具.其中算子的零点问题亦可转化为不动点问题,本文在Hilbert空间和Banach空间分别研宄算子公共零点的问题,建立在不动点理论的基础上,同时强收敛唯一性则是充分利用了变分不等式的问题.零点理论的快速发展使其内容也日趋完善,并成为了非线性泛函分析理论中的重要组成部分.非线性算子公共零点问题与非线性变分包含和不动点理论有着密切联系.

增生算子作为非线性算子的重要分类,对它的研宄兴趣主要源于它与发展问题的固定联系,熟知的一些重要的物理问题可以通过初值问题建模

x (t) +Ax(t) = 0,x(0) =x0,(1.1.1)其中A是m-增生映像.若;x(t)不依赖于t,则上式(1.1.1)可化为

Au=0,(1.1.2)

1

嵌套函数与函数的零点问题

嵌套函数与函数的零点问题 1二已知函数f (x )=x +1,x ?0l o g 2x ,x >0{,则y =f (f (x ))+1的零点组成的集合为 .2二?变式?已知函数f (x )=x +1,x ?0l o g 2 x ,x >0{,则y =f (f (x ))-1的零点组成的集合为 .3二函数f (x )=x +1,x ?0,x 2-2x +1,x >0. { ,若关于x 的方程f 2(x )-a f (x )=0恰有5个不同的实数解,则a 的取值范围为 .4二定义域为R 的函数f (x )= |l g x |,x >0,-x 2-2 x ,x ?0.{,关于x 的函数y =2f 2(x )-3f (x )+1的零点个数为 .5二函数f (x )是定义在R 上偶函数,且当x ?0时,f (x )=x |x -2|,若关于x 的方程f 2(x )+a f (x )+b =0恰有1 0个不同的解,则a 的取值范围是 .6二已知函数f (x )=-x 2,x ?0,x 2+2x ,x <0.{ ,则不等式f f x ()()?3的解集是 .7二已知函数f (x )=l o g 2x ,x >0,2x ,x ?0. {,则满足不等式f (f (x ))>1的x 的取值范围是 .8二已知函数f (x )=x 2-2a x +a 2-1若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是 . 9二设函数f (x )是偶函数,当x ?0时,f (x )=x (3-x ),0?x ?3,-3x +1,x >3ì?í???,若函数y =f (x )-m 有四个不同的零点,则实数m 的取值范围是 .

拉普拉斯算子、prewitt算子、sobel算子对图像锐化处理

《数字图像处理作业》 图像的锐化处理 ---拉普拉斯算子、prewitt算子、sobel算子性能研究对比 完成日期:2012年10月6日

一、算法介绍 1.1图像锐化的概念 在图像增强过程中,通常利用各类图像平滑算法消除噪声,图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。一般来说,图像的能量主要集中在其低频部分,噪声所在的频段主要在高频段,同时图像边缘信息也主要集中在其高频部分。这将导致原始图像在平滑处理之后,图像边缘和图像轮廓模糊的情况出现。 为了减少这类不利效果的影响,就需要利用图像锐化技术,使图像的边缘变得清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变得清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变得清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。但要注意能够进行锐化处理的图像必须有较高的性噪比,否则锐化后图像性噪比反而更低,从而使得噪声增加的比信号还要多,因此一般是先去除或减轻噪声后再进行锐化处理。 考察正弦函数,它的微分。微分后频率不变,幅度上升2πa 倍。空间频率愈高,幅度增加就愈大。这表明微分是可以加强高频成分的,从而使图像轮廓变清晰。最常用的微分方法是梯度法和拉普拉斯算子。但本文主要探究几种边缘检测算子,Laplace、Prewitt、Sobel算子以下具体介绍。 图像边缘检测:边缘检测是检测图像局部显著变化的最基本运算,梯度是函数变化的一种度量。图像灰度值的显著变化可用梯度的离散逼近函数来检测,大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。边缘检测可分为两大类基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。 1.2拉普拉斯算子 拉式算子是一个刻画图像灰度的二阶商算子,它是点、线、边界提取算子,亦称为边界提取算子。通常图像和对他实施拉式算子后的结果组合后产生一个锐化图像。拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。扩散效应是成像过程中经常发生的现象。 拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义 (1) 为了更适合于数字图像处理,将拉式算子表示为离散形式: (2)

函数零点存在性定理

?函数零点存在性定理: 一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)0,但函数f(x)在区间(0,3)上有两个零点. (3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点. ?函数零点个数的判断方法: (1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点. 特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点 ②函数的零点是实数而不是数轴上的点. (2)代数法:求方程f(x)=0的实数根. 例题1: 若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论: (1)函数f(x)在区间(0,1)内有零点; (2)函数f(x)在区间(0,1)或(1,2)内有零点; (3)函数f(x)在区间[2,16)内无零点; (4)函数f(x)在区间(0,16)上单调递增或递减. 其中正确的有______(写出所有正确结论的序号).

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

HALCON算子函数Chapter 17:Tools

HALCON算子函數——Chapter 17 : Tools 17.1 2D-Transformations 1. affine_trans_pixel 功能:對像素坐標軸進行任意的仿射二維變換。 2. affine_trans_point_2d 功能:對點進行任意的最簡二維變換 3. bundle_adjust_mosaic 功能:對一幅圖像的嵌合體采取一系列調整。 4. hom_mat2d_compose 功能:將兩種相同類型二維變換矩陣相乘。 5. hom_mat2d_determinant 功能:計算一個同質的二維變換矩陣的行列式。 6. hom_mat2d_identity 功能:構建二維變換同樣的同質變換矩陣。 7. hom_mat2d_invert 功能:插入一個同質二維變換矩陣。 8. hom_mat2d_rotate 功能:為一個同質二維變換矩陣添加一個循環。 9. hom_mat2d_rotate_local

功能:為一個同質二維變換矩陣添加一個循環。 10. hom_mat2d_scale 功能:為一個同質二維變換矩陣添加一個縮放。 11. hom_mat2d_scale_local 功能:為一個同質二維變換矩陣添加一個縮放。 12. hom_mat2d_slant 功能:為一個同質二維變換矩陣添加一個斜面。 13. hom_mat2d_slant_local 功能:為一個同質二維變換矩陣添加一個斜面。 14. hom_mat2d_to_affine_par 功能:計算一個來自一個同質二維變換矩陣的仿射變換參數。 15. hom_mat2d_translate 功能:為一個同質二維變換矩陣添加一個旋轉。 16. hom_mat2d_translate_local 功能:為一個同質二維變換矩陣添加一個旋轉。 17. hom_mat2d_transpose 功能:將一個同質二維變換矩陣轉置。 18. hom_mat3d_project 功能:給一個二維投影變換矩陣投影一個仿射三維變換矩陣。

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

关于m-增生算子族公共零点的逼近方法及应用

目录 第一章前言1 1.1非线性算子理论简况 (1) 1.2本文工作概述 (2) 第二章关于Hilbert空间中m-增生算子族公共零点的逼近方法7 2.1引言和预备知识 (7) 2.2 主要结果 (11) 第三章关于B a n a c h空间两族非扩张映像公共零点的逼近方法26 3.1引言和预备知识 (26) 3.2 主要结果 (29) 参考文献42

上海师范大学硕士学位论文第一章前言 A-/T-T*g-----------?— 第一早前言 §1.1非线性算子理论简况 非线性科学作为一门研宄非线性现象共性的新兴交叉学科,逐步发展为以研宄非线性特征为基础的综合性学科.非线性科学几乎涉及了自然科学及社会科学的各个领域,因此,研宄非线性科学具有重要的理论意义与应用价值,并且对人类生存环境的利用具有重要的现实意义. 目前,非线性泛函分析作为研宄诸多非线性问题的基础理论和基本工具,也成为现代数学中一个既有深刻理论意义,又有广泛实际应用价值的学科分支,它以数学及自然科学领域中出现的非线性问题为背景,建立非线性问题的若干一般性理论.其中非线性算子的零点问题和变分不等方程是重要的非线性问题.它产生于数学与物理问题的非线性规划问题,已在物理、经济!工程!力学、现代科学等领域中得到广泛应用.变分不等式在20世纪60年代初就于数学物理中出现了,直至70年代,由Hilbert推广到了非空闭凸子集,进而得到了第一个变分不等式解的存在唯一性定理.随后变分不等式在最优控制问题中得到成功的应用,作为现代偏微分方程理论重要组成部分,变分不等式理论已经得到成熟而深入发展. Brouwer和Banach在20世纪中叶,提出了著名的Brouwer不动点定理和Banach压缩映像原理,在此之后不动点理论成为研宄各类方程问题的重要工具.其中算子的零点问题亦可转化为不动点问题,本文在Hilbert空间和Banach空间分别研宄算子公共零点的问题,建立在不动点理论的基础上,同时强收敛唯一性则是充分利用了变分不等式的问题.零点理论的快速发展使其内容也日趋完善,并成为了非线性泛函分析理论中的重要组成部分.非线性算子公共零点问题与非线性变分包含和不动点理论有着密切联系. 增生算子作为非线性算子的重要分类,对它的研宄兴趣主要源于它与发展问题的固定联系,熟知的一些重要的物理问题可以通过初值问题建模 x (t) +Ax(t) = 0,x(0) =x0,(1.1.1)其中A是m-增生映像.若;x(t)不依赖于t,则上式(1.1.1)可化为 Au=0,(1.1.2) 1

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

专题分段函数与函数零点答案

11. 已知函数f(x)=???x ,x ≥0,x 2,x <0, 则关于x 的不等式f(x 2)>f(3-2x)的解集是__________ 11. (-∞,-3)∪(1,3) 解析:x≤32 时原不等式化为x 2>3-2x ,解得x <-3或1<x≤32;x >32时原不等式化为x 2>(3-2x)2,解得32 <x <3.综上x <-3或1<x <3.本题考查分类讨论的思想,考查解不等式的能力.本题属于中等题. 11. 已知定义在实数集R 上的偶函数f(x),当x≥0时,f(x)=-x +2,则不等式f(x)-x 2≥0的解集为________. 11. [-1,1] 解析:∵ f(x)≥x 2,而f(x)示意图如下: 令x 2=-x +2,得x =1(x>0),从而由图象知,原不等式解集为[-1,1]. 本考查了函数的综合运用,以及数形结合数学思想.本题属于中等题. 13. 已知奇函数f(x)是R 上的单调函数,若函数y =f(x 2)+f(k -x)只有一个零点,则实数k 的值是__________. 13. 14 解析:不妨设f(x)=x ,则x 2+k -x =0只有一个解,从而1-4k =0,得k =14 . 12. 已知函数f(x)是定义在R 上的奇函数,且当x≤0时,f(x)=-x 2-3x ,则不等式f(x -1)>-x +4的解集是____________. 12. (4,+∞) 解析:由题意得f(x)=???-x 2-3x ,x ≤0,x 2-3x ,x>0, f(x -1)=? ??-(x -1)2-3(x -1),x -1≤0,(x -1)2-3(x -1),x -1>0, 即f(x -1)=? ??-x 2-x +2,x ≤1,x 2-5x +4,x>1, 所以不等式f(x -1)>-x +4可化为???-x 2-x +2>-x +4,x ≤1, 或???x 2-5x +4>-x +4,x>1, 解得x >4. 11. 已知f(x)=???x 2+x (x≥0),-x 2+x (x<0), 则不等式f(x 2-x +1)<12的解集是________. 11. (-1,2) 解析:由函数图象知f(x)为R 上的增函数且f (3)

非线性算子

非线性算子又称非线性映射,不满足线性条件的算子。泛函分析的研究对象主要是线性算子及其特殊情况线性泛函。但是,自然界和工程技术中出现的大量问题都是非线性的。数学物理中的一些线性方程其实都是在一定条件下的近似。为研究这些非线性问题,涉及到的算子(映射)将不能只局限于线性算子。人们从两种不同的途径研究非线性问题:①针对具体问题,考察具体非线性算子的特征,解释非线性现象。②从一般的算子概念出发,添加适当的分析、拓扑或代数性质导出一些一般性的结论。 代数、几何、拓扑中各种非线性映射是形形色色的,分析学中经常遇到的非线性算子则大抵由乘法、函数的复合以及各种线性算子组合而成。常见的非线性积分算子有:乌雷松算 子其中K(x,y,t)是 0≤x,y≤1,t∈R1上的连续函数;哈默 斯坦算子·,其中K是【0,1】×【0,1】上某p次可积函数,?(y,t)在【0,1】×R1上可测,对固定的y关于t连续。常见的微分算子有:KdV算子,极小曲面算子等。 许多非线性算子出现于非线性方程之中,从而有关非线性算子的理论就围绕着非线性方程的求解的研究而展开。设T是从B空间(巴拿赫空间)X到B空间Y的算子,设y∈Y,求解x∈X,满足: (1) 有时特别地考察y =θ(θ是Y中的零元)的情形,称解x为T的零点。显然,若T是一个满射,则(1)总有解,于是人们讨论在什么条件下T具有满射性.又若X=Y,方程(1)的求解问题有时化归寻求算子T1x = Tx+x-y的不动点 (2) 的问题。这样提问题有助于利用几何直观。 和线性方程的解集总是仿射集(线性子空间的平移)不同,方程(1)的解集构造很复杂,它可能对某些y是空集,而对另一些y则非空。其个数可能只有一个,可能有有穷多个,也可能有无穷多个;可能是孤立的,可能有聚点,也可能是连续统。 以X为定义域,取值为Y(映X入Y中)的子集的映射,称为集值映射。相应于(1)的求解问题写成下列从属关系: (3) 算子的微分学从分析上研究一般算子的途径是把数学分析中研究函数的微积分学推广到算子。设X、Y都是B空间,U是X中的一个开集,f:U→Y,称f在x0∈U连续,是指 相应于方向导数概念的是加托导数,简作G导数。称f在x0处G可微,是指对任意的h∈X,存在d f(x0,h)∈Y,使得

函数零点的题型总结

函数零点的题型总结 例题及解析 考点一函数零点存在性定理的应用 【例1】已知函数f(x)=(1 2 )x-13x,那么在下列区间中含有函数f(x)零点的是( ) (A)(0,1 3) (B)(1 3 ,1 2 ) (C)(1 2,2 3 ) (D)(2 3 ,1) 解析:f(0)=1>0,f(1 3)=(1 2 )13-(1 3 )13>0, F(1 2)=(1 2 )12-(1 2 )13<0,f(1 3 )f(1 2 )<0, 所以函数f(x)在区间(1 3,1 2 )内必有零点,选B. 【跟踪训练1】已知函数f(x)=2 x -log3x,在下列区间中包含f(x)零点的是( ) (A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4) 解析:由题意,函数f(x)=2 x -log3x为单调递减函数, 且f(2)= 2 2-log32=1-log32>0,f(3)= 2 3 -log33=-1 3 <0, 所以f(2)·f(3)<0, 所以函数f(x)=2 x -log3x在区间(2,3)上存在零点,故选C.

【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( ) (A)[0,1] (B)[-1,0] (C)[0,2] (D)[-1,1] 解析:f(1)=ln 2>0, 当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D; 当a=2时,f(1 2)=ln 3 2 -1 2 <0,所以f(x)在(1 2 ,1)上至少有一个零点,舍 去C.因此选A. 考点二函数零点的个数 考查角度1:由函数解析式确定零点个数 【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( ) (A)5 (B)4 (C)3 (D)2 (2)已知f(x)=2x x +x-2 x ,则y=f(x)的零点个数是( ) (A)4 (B)3 (C)2 (D)1 解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以 x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π 2 ,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B. 解析:(2)令2x x +x-2 x =0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由 图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.

高中数学-函数零点问题

函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(北京)设函数f (x )=????? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (天津)已知函数f (x )=? ??? ? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实 数a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

经典边缘检测算子对比

经典边缘检测算子比较 张丽 南京信息工程大学信息与计算科学系,南京210044 摘要:图像边缘检测技术是图像分割、目标识别、区域形态提取等图像分析领域中十分重要的基础。本文简要介绍各种经典图像边缘检测算子的基本原理,用Matlab仿真实验结果表明各种算子的特点及对噪声的敏感度,为学习和寻找更好的边缘检测方法提供参考价值。 关键字:图像处理;边缘检测;算子;比较 引言 图像的边缘时图像最基本的特征之一。所谓边缘(或边沿)是指周围像素灰度有阶跃性变化或“屋顶”变化的那些像素的集合。边缘广泛存在于物体与背景之间、物体与物体之间、基元与基元之间,因此它是图像分割依赖的重要特征。图像边缘对图像识别和计算机分析十分有用,边缘能勾划出目标物体,使观察者一目了然;边缘蕴含了丰富的内在信息(如方向、阶跃性质、形状等)。从本质上说,图像边缘是图像局部特性不连续性(灰度突变、颜色突变、纹理结构突变等)的反应,它标志着一个区域的终结和另一个区域的开始。 边缘检测技术是所有基于边界分割的图像分析方法的第一步,首先检测出图像局部特性的不连续性,再将它们连成边界,这些边界把图像分成不同的区域,检测出边缘的图像就可以进行特征提取和形状分析。为了得到较好的边缘效果,现在已经有了很多的边缘检测算法以及一些边缘检测算子的改进算法。但各算子有自己的优缺点和适用领域。本文着重对一些经典边缘检测算子进行理论分析、实际验证并对各自性能特点做出比较和评价,以便实际应用中更好地发挥其长处,为新方法的研究提供衡量尺度和改进依据。 一各种经典边缘检测算子原理简介 图像的边缘对人的视觉具有重要的意义,一般而言,当人们看一个有边缘的物体时,首先感觉到的便是边缘。灰度或结构等信息的突变处称为边缘。边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。需要指出的是,检测出的边缘并不等同于实际目标的真实边缘。由于图像数据时二维的,而实际物体是三维的,从三维到二维的投影必然会造成信息的丢失,再加上成像过程中的光照不均和噪声等因素的影响,使得有边缘的地

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

数字图像处理几种边缘检测算子的比较

数字图像处理 几种边缘检测算子的比较 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图 像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。 这些包括:深度上的不连续、表面方向不连续、物质属性变化和场景照明变化。边缘 检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测 大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结 构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一 类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值 来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图 像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过 零点。 人类视觉系统认识目标的过程分为两步:首先,把图像边缘与背景分离出来;然后,才能知觉到图像的细节,辨认出图像的轮廓。计算机视觉正是模仿人类视觉的这个过程。因此在检测物体边缘时,先对其轮廓点进行粗略检测,然后通过链接规则把原来 检测到的轮廓点连接起来,同时也检测和连接遗漏的边界点及去除虚假的边界点。图 像的边缘是图像的重要特征,是计算机视觉、模式识别等的基础,因此边缘检测是图 象处理中一个重要的环节。然而,边缘检测又是图象处理中的一个难题,由于实际景 物图像的边缘往往是各种类型的边缘及它们模糊化后结果的组合,且实际图像信号存 在着噪声。噪声和边缘都属于高频信号,很难用频带做取舍。 这就需要边缘检测来进行解决的问题了。边缘检测的基本方法有很多,一阶的有Roberts Cross算子,Prewitt算子,Sobel算子,Canny算子, Krisch算子,罗盘算子;而二阶的还有Marr-Hildreth,在梯度方向的二阶导数过零点。现在就来 简单介绍一下各种算子的算法

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌 握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和 所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用函数观点处理 问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). A.()2,1-- B.()1,0- C.()0,1 D.()1,2

解法一:代数解法 解:(1).因为()00e 0210f =+-=-<,()1 1e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C. 二、 基础知识回顾 1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 问题2:函数2 ()68f x x x =-+在区间[][][]1,3, 0,1, 1,5有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 解法二:几何解法 (1). ()e 2 x f x x =+- 可化为2x e x =-+.

图像处理之四种边缘检测算子比较

数字图像处理 第三次作业 SpadesQ, Sun Yat-sen University 2017/4/27 1.边缘检测 边缘一般是指图像在某一局部强度剧烈变化的区域。强度变化一般有两种情况: ●阶跃变化 ●屋顶变化 边缘检测的任务: 找到具有阶跃变化或者屋顶变化的像素点的集合。 边缘检测基本原理: 既然边缘是灰度变化最剧烈的位置,最直观的想法就是求微分。 对于第一种情况:一阶微分的峰值为边缘点,二阶微分的零点为边缘点。 对于第二种情况:一阶微分的零点为边缘点,二阶微分的峰值为边缘点。

2.matlab内置函数

分析:通过对Roberts,Sobel,Prewitt,Log和Canny进行MATLAB 仿真实验对比,结果表明,Sobel,Prewitt和Roberts算子的算法简单,但检测精度不高,Log和Canny算子的算法复杂,但检测精度较高。在应用中应根据实 际情况选择不同的算子。

3.四种算子对比分析 3.1 Sobel算子 Sobel算子在边缘检测算子扩大了其模版,在边缘检测的同时尽量削弱了噪声。其模版大小为3×3,其将方向差分运算与局部加权平均相结合来提取边缘。在求取图像梯度之前,先进行加权平均,然后进行微分,加强了对噪声的一致。Sobel 算子所对应的卷积模版为: 图像中的每个像素点和以上水平和垂直两个卷积算子做卷积运算后,再计算得到梯度幅值G ( x,y),然后选取适当的阈值τ,若G ( x,y)>τ,则(i ,j)为边缘点,否则,判断(i,j)为非边缘点。由此得到一个二值图像{ g (i,j)},即边缘图像。Sobel 算子在空间上比较容易实现,不但产生较好的边缘检测效果,同时,由于其引入了局部平均,使其受噪声的影响也较小。若使用较大的邻域,抗噪性会更好,但也增加了计算量,并且得到的边缘比较粗。在对精度要求不是很高的场合下,

高中数学常见题型解法归纳 函数的零点个数问题的求解方法

高中数学常见题型解法归纳 函数的零点个数问题的求解方法 【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有 0)()(

导数在函数零点中的应用

方程根的个数 图像法 1. 已知函数?(x )=2 -x e x (1)求?(x )的单调区间 增),3(+∞减)3,2()2,( -∞ (2)判断关于x 的方程e x =k(x-2)(k ∈R)的解的情况 2已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++= 利用单调性 1已知二次函数)(x f 的二次项系数为a ,且不等式)(x f >x 2的解集为(-1,3)。 (1)若方程a x f 7)(-=有两个相等的实数根,求)(x f 的解析式 34)(2++-=x x x f (2)若函数)()(x xf x g =在区间?? ? ??∞-3,a 内单调递减,求a 的取值范围 (]1,-∞- (3)当a =-1时,证明:方程12)(3 -=x x f 仅有一个实数根 2、已知a >0,l x n x ax x f ),1(112)(2+++-=是曲线)(x f y =在点))0(,0(f P 处的切线 (1)求l 的方程 1+-=x y (2)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值 2 1=a (3)证明:对任意的),(*N ∈=n n a 函数)(x f y =总有单调递减区间,并求出)(x f 的单调递减区 间的长度的取值范围(区间[]21,x x 的长度=12x x -) (] 2,1 分离参数求值域 1. 已知函数=)(x f log 4)()14(R x kx x ∈++是偶函数 (1)求k 的值 2 1-=k (2)若方程0)(=-m x f 有解,求m 的取值范围 m ≥ 21

函数零点问题(讲解)

函数零点问题 【教学目标】 知识与技能: 1. 理解函数零点的定义以及函数的零点与方程的根之间的联系,掌握用连续函数零点定理及函数图像判断函数零点所在的区间与方程的根所在的区间. 2. 结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间法. 3.能根据函数零点的情况求参数的取值范围. 【教学重点】 理解函数的零点与方程根的关系,形成用 函数观点处理问题的意识. 【教学难点】 根据函数零点所在区间求参数的取值范围 【教学方法】 发现、合作、讲解、演练相结合. 一、引例 (1).函数()e 2x f x x =+-的零点所在的一个区间是( ). < A.()2,1-- B.()1,0- C.()0,1 D.() 1,2 解法一:代数解法 解:(1).因为()0 0e 0210f =+-=-<,()11e 12e 10f =+-=->, 所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选 C. 二、 基础知识回顾

1.函数零点概念 对函数()y f x =,把使()0f x =的实数x 叫做函数()y f x =的零点. 2.零点存在性定理:如果函数()y f x =在区间[]a,b 上的图象是连续不断一条曲线,并且有()()0f a f b ?<,那么,函数()y f x =在区间()a,b 内有零点.即存在()c a,b ∈,使得()0f c =,这个c 也就是方程()0f x =的根. 有零点吗 引例除了用零点基本定理,还有其他方法可以确定函数零点所在的区间吗 · 解法二:几何解法 (1). ()e 2x f x x =+- 可化为2x e x =-+. 画出函数x y e =和 2y x =-+的图象,可观察得出C 正确. ) )0=有实数根

相关文档
最新文档