腐蚀分类word版

腐蚀分类word版
腐蚀分类word版

第一章腐蚀分类

§1.1 腐蚀形态

从腐蚀的外观形态看,金属腐蚀可分为全面腐蚀和局部腐蚀。

全面腐蚀也称均匀腐蚀,腐蚀反应在不同程度上分布在整个或大部分金属表面上,宏观上难以区分腐蚀电池的阴极和阳极。一般表面均匀覆盖着腐蚀产物膜,在不同程度上能使腐蚀减缓,如高温氧化和易钝化金属(如不锈钢、钛、铝等)在氧化环境中形成的钝化膜,都具有良好的保护性,甚至能使腐蚀过程几乎停止。全面腐蚀分布较均匀,危害较小。

局部腐蚀即非均匀腐蚀,腐蚀反应集中在局部表面上。局部腐蚀又可分为电偶腐蚀、小孔腐蚀、缝隙腐蚀、晶间腐蚀、选择性腐蚀、应力腐蚀破裂、磨损腐蚀、腐蚀疲劳和氢损伤等。

1、电偶腐蚀

当一种不太活泼的金属(阴极)和一种比较活泼的金属(阳极)在电解质溶液中接触时,因构成腐蚀原电池而引发电流,从而造成(主要是阳极金属)电偶腐蚀。电偶腐蚀也称双金属腐蚀或金属接触腐蚀。

电偶腐蚀首先取决于异种金属之间的电极电位差。这一电位指的是两种金属分别在电解质溶液(腐蚀介质)中的实际电位。通常在手册、资料中能找到的是各种金属、合金在特定的介质中按腐蚀电位高低排列的电位顺序表,称作电偶序。图1-1给出了金属在海水中的电偶序[1]。在其它条件不变的情况下,它们之间的电位差愈大,腐蚀初始驱动力愈大。

影响电偶腐蚀的因素还有自身极化性、介质导电性及阴、阳极面积比。

图1-1给出的仅仅是在海水中的自腐蚀电位,而在其他介质中或不同温度下,不仅电位值不同,甚至金属的电偶序也会变动,从而会发生电偶中极性颠倒的现象。电偶腐蚀取决于异种金属的实际电位,而实际电位却受极化的影响。阴、阳极面积值愈大,即大阴极小阳极组成的电偶,其阳极腐蚀电流密度愈大,腐蚀愈严重。在腐蚀电偶的阳极区有涂层时也会出现大阴极、小阳极的情况,结果造成极严重的局部腐蚀而迅速穿孔。

防止电偶腐蚀的方法有:⑴尽量避免使腐蚀电位相差悬殊的异种金属作导电接触;⑵避免形成大阴极、小阳极的不利面积比,对不同金属制造的设备使用涂料时,应该涂在电位较正的金属表面上,或两种金属都涂涂料,而绝不应只涂在电位较负的金属上;⑶当腐蚀电位相差悬殊的不同金属必须组装在一起时,应使不同金属之间绝缘,如附加绝缘垫片。

2、小孔腐蚀

也称点蚀,坑蚀或孔蚀。它发生在金属表面极为局部的区域内,造成洞穴或坑点并向内部扩展,甚至造成穿孔,是破坏性和隐患最大的腐蚀形态之一。孔蚀发生于易钝化的金属,由于表面覆盖保护性钝化膜,使得腐蚀轻微,但由于表面往往存在局部缺陷,当溶液中存在破坏钝化膜的活性离子(主要是卤素离子)与配位体时,容易造成钝化膜的局部破坏。此时,微小破口处暴露的金属成为阳极;周围钝化膜成为阴极,阳极电流高度集中使腐蚀迅速向内发展,形成蚀孔(如图1-2,a所示)。上述蚀孔形成需要一定的孕育时间,当蚀孔形成后,孔外被腐蚀产物阻塞,内外的对流和扩散受到阻滞,孔内形成独特的闭塞区(亦称闭塞阳极),

孔内的氧迅速耗尽,只剩下金属腐蚀的阳极反应,而阴极反应完全移到孔外进行。因此孔内很快积累了带正电的金属离子并发生水解,产生的H

+使pH降低(如图1-2,b所示)。为了保持电中性,带负电的Cl-从孔外迁入孔内,Cl-浓度增高,其配位作用使金属更不稳定(如图1-2,c所示)。孔内的H+和Cl-形成强腐蚀性的盐酸,这种强酸环境使蚀孔内壁处于活性状态,成为阳极,而孔外金属表面仍处于钝态成为阴极,构成由小阳极/大阴极组成的活化态—钝化态电池体系,致使蚀孔加速发展(如图1-2,d所示)。这种电池的电势(蚀孔内外表面的电位差)曾测得为100~120mV,它是孔蚀发展的推动力,以上过程具有自催化加速效应。

3、缝隙腐蚀

当金属表面上存在异物或结构上存在缝隙时,由于缝内溶液中有关物质迁移困难所引起缝隙内金属的腐蚀,总称为缝隙腐蚀。例如,金属铆接板、螺栓连接的接合部、螺纹接合部等情况下金属与金属间形成的缝隙,金属同非金属(包括塑料、橡胶、玻璃等)接触所形成的缝隙,以及砂粒、灰尘、脏物及附着生物等沉积在金属表面上所形成的缝隙等等。在一般电解质溶液中,以及几乎所有的腐蚀性介质中都可能引起金属缝隙腐蚀,其中以含Cl-溶液最容易引起该类腐蚀。

缝隙内原为缺氧区,处于闭塞状态。随着腐蚀反应的发生,缝内pH值下降,Cl-浓度增大。有时需要经过一段较长的孕育期,当缝内pH值下降到临界值后,才会与小孔腐蚀相似,也产生自催化性加速腐蚀。防止缝隙腐蚀的有效方法是消除缝隙。

4、晶间腐蚀

晶间腐蚀是在晶粒或晶体本身未受到明显侵蚀的情况下,发生在金属或合金晶界处的一种选择性腐蚀。晶间腐蚀会导致强度和延展性的剧降,因而造成金属结构的损坏,甚至引发事故。

晶间腐蚀的原因是在某些条件下晶界比较活泼,若晶界处存有杂质或合金偏析,如铝合金的铁偏析、黄铜的锌偏析、高铬不锈钢的碳化铬偏析等都容易引起晶间腐蚀。

以奥氏体不锈钢为例,含铬量须大于11%才具有良好的耐蚀性。当焊接时,焊缝两侧

2~3mm处可被加热到400~910℃,在这个温度下,晶界的铬和碳易化合形成Cr

3C

6

, Cr从固

溶体中沉淀出来,晶粒内部的Cr扩散到晶界很慢,晶界就成了贫铬区,在某些电解质溶液中就形成“碳化铬晶粒(阴极) --贫铬区(阳极) ”电池,使晶界贫铬区腐蚀。其防止方法有⑴“固液淬火”处理,将已产生贫铬区的钢加热到1100℃左右,使碳化铬溶解,水淬,迅速通过敏化温度区,使合金保持含Cr的均一态;⑵钢中加入少量更易生成碳化物的元素如钛或铌;⑶碳含量降低到0.03%以下,使晶界沉淀出来的铬量很少。

5、选择性腐蚀

由于合金组分在电化学性质上的差异或合金组织的不均匀性,造成其中某组分或相优先溶蚀,这种情况叫做选择性腐蚀。选择性腐蚀的结果,轻则使合金损失强度,重则造成穿孔,破损,酿成严重事故。例如,黄铜脱锌,铝铜脱铝等属于成分选择性腐蚀;灰口铸铁的“石墨化”属于组织选择性腐蚀。

成分选择性腐蚀指单相合金腐蚀时,固溶体中各成分不是按照合金成分的比例溶解,而是发生某种成分的优先溶解。常见的黄铜脱锌形式有三种,如图1-3所示:(a) 层状脱锌,腐蚀沿表面发展,但较均匀;(b) 带状脱锌,腐蚀沿表面发展,但不均匀,呈条带状;(c) 栓状脱锌,腐蚀在局部发生,向深处发展。脱锌可以在各种pH值的介质中发生。发生最多的是在海水中,特别是高温海水中。黄铜脱锌是使用海水作为冷却水时黄铜冷凝管的重要腐蚀问题。

组织选择性腐蚀指多相合金中某相优先溶蚀。如灰口铸铁的“石墨化”腐蚀。灰口铸铁在土壤中或水中腐蚀时,铸铁中的石墨为阴极,作为基体的铁素体组织为阳极,发生腐蚀。腐蚀结果只剩下网状石墨和铁锈。产生这种腐蚀后,金属外形虽未变,但强度锐减,极易破损。

6、磨损腐蚀

磨损腐蚀是金属受到液体中气泡或固体悬浮物的磨耗与腐蚀共同作用而产生的破坏,是机械作用与电化学作用协同的结果,它比单纯作用的破坏性大得多。

按照机械作用性质不同,又可分为⑴磨振腐蚀,⑵冲击腐蚀,⑶空泡腐蚀。

⑴摩振腐蚀,指加有负荷的两种材料之间相互接触的表面,因摩擦、滑动或振动而造成的腐蚀。主要发生在潮温大气中,如铁轨铆钉下面,马达上松动的螺栓处等。防护方法是将接触部件紧固,并在接触表面涂润滑油脂,若将表面磷化更为有效。

⑵冲击腐蚀指在湍流情况下,被液体中夹带的固体物质对金属结构突出部位的冲击作用所加剧的腐蚀过程。如泵的出口处和管路弯头部位常发生这种现象。防止方法是选用耐磨损较好的材料,如在海水中70Cu/30N i优于90Cu/10N i;也可以改进设计,改变环境,或用涂层和阴极保护等。

⑶空泡腐蚀指腐蚀性液体在高速流动时,由于汽泡的产生和破灭,对所接触的结构材料产生水锤作用其瞬时压力可达数千大气压,能将材料表面上的腐蚀产物保护膜和衬里破除,使之不断暴露新鲜表面)而造成的腐蚀损坏。如螺旋浆叶片、内燃机活塞套等易发生此类腐蚀。为防止空蚀可改进设计,以减小流路中流体动压差,也可选用耐空蚀的材料或精磨表面,因为光洁表面可减少形成空泡的机会。用弹性保护层(塑料或橡胶)、通气缓冲或阴极保护也有效果。

7、应力腐蚀破裂

应力腐蚀破裂是金属结构在内部残存应力和外部拉伸应力的持续作用下产生的严重腐蚀现象。它常常是在耐全面腐蚀的情况下发生的,没有形变先兆的突然断裂,容易造成严重事故。

裂缝形态有两种,沿晶界发展的晶间型 (如黄铜的“季裂”)和贯穿晶粒的穿晶型 (如不锈钢的碱脆)。

产生应力腐蚀破裂的条件是敏感的金属材料、特定的介质环境,超过临界值的拉伸应力和一定作用时间。如海水中的奥氏体不锈钢、硫化氢污染海水中的低合金钢、氨污染海水中的铜合金等都常有应力腐蚀现象。防止应力腐蚀破裂的措施有:⑴尽可能减小或消除一切应

力,

⑵改变介质的腐蚀性;⑶选用耐应力腐蚀破裂的金属材料;⑷采用阴极保护。

8、腐蚀疲劳

腐蚀疲劳指在介质的腐蚀作用和交变循环应力作用下金属材料疲劳强度降低而过早破损的现象。例如海水中高铬钢的疲劳强度只有正常性能的30-40%。其他振动部件如泵轴和杆,螺旋桨轴,油气井管,吊索等都容易发生腐蚀疲劳。

腐蚀疲劳最易发生在能产生孔蚀的环境中,无疑蚀孔起了应力集中的作用。周期应力使保护膜反复局部破裂,裂口处裸露金属遭受不断腐蚀。与应力腐蚀破裂不同的是,腐蚀疲劳对环境没有选择性。氧含量、温度、pH值和溶液成分都影响腐蚀疲劳,阴极极化可以减缓腐蚀疲劳,而阳极极化将促进腐蚀疲劳。

防止方法:改进设计或进行热处理以消除和减小内应力,表面喷丸处理产生压应力可抵消部分张力,也可使用镀层、缓蚀剂和阴极保护。

9、氢损伤

由于化学或电化学反应(包括腐蚀反应)所产生的原子态氢扩散到金属内部引起的各种破坏,包括氢鼓泡,氢脆和氢腐蚀三种形态。氢鼓泡是由于原子态氢扩散到金属内部,并在金属内部的微孔中形成分子氢。由于氢分子扩散困难,就会在微孔中累积而产生巨大的内压,使金属鼓泡,甚至破裂。氢脆是由于原子氢进入金属内部后,使金属晶格产生高度变形,因而降低了金属的韧性和延性,导致金属脆化。氢腐蚀则是由于氢原子进入金属内部后与金属中的组分或元素反应,例如氢渗入碳钢并与钢中的碳反应生成甲烷,使钢的韧性下降,而钢中碳的脱除,又导致强度的下降。

按照腐蚀反应的机理来划分,金属腐蚀可分为化学腐蚀和电化学腐蚀。化学腐蚀是指金属和非电解质直接发生纯化学作用而引起的金属损耗,如金属的高温氧化和有机物腐蚀。电化学腐蚀是指金属和电解质发生电化学反应而引起的金属损耗。在电化学腐蚀过程中,同时存在着两个相对独立的反应过程--阳极反应和阴极反应,并有电流产生。例如海水、土壤和潮湿空气中的腐蚀情况。

电化学腐蚀是最普遍的腐蚀现象,海洋腐蚀基本上属于电化学腐蚀。除单纯电化学作用外,实际上还常伴随机械作用和生物作用,从而使腐蚀过程复杂化。与机械作用协同的有应力腐蚀破裂、腐蚀疲劳、磨损腐蚀等,前面已述。与生物作用协同的有微生物腐蚀和生物污损腐蚀。

微生物腐蚀常发生在天然水体和土壤中,微生物的代谢活动会直接或间接地影响腐蚀过程,使金属受到破坏。代谢作用的后果是:⑴产生腐蚀环境;⑵在金属表面上造成电解质溶液成份或性质差异;⑶降低表面膜的耐蚀性;⑷影响阳极或阴极的反应速度。微生物分为嗜氧性和厌氧性两类。嗜氧性微生物在含氧环境中适宜生长,如硫氧化细菌、铁细菌等;厌氧性微生物则是在缺氧环境中适宜繁殖,如硫酸盐还原菌(SRB)。

嗜氧菌引起的腐蚀,常常是由于它们产生的代谢产物具有腐蚀性,通常这类代谢产物是酸,包括无机酸和有机酸。如氧化铁杆菌常与硫杆菌共生,它可以把二价铁氧化成三价铁,

其反应为4Fe(OH)

2+ 2H

2

O + O

2

= 4Fe(OH)

3

↓,它依靠这个反应获得生长代谢所需能量。以

这种方式形成的三价铁氧化能力很强,可以使硫化物氧化成硫酸,故有很强的腐蚀性。

SRB作用的反应机理可简单描述为[2]:

4Fe - 8e → 4Fe2+(阳极反应) 8H

2

O →8H+ + 8OH-

8H++ 8e→ 8H (阴极保护)

SO

42- + 8H →S2- + 4H

2

O (细菌引起的阴极去极化)

Fe2+ + S2- → FeS (腐蚀产物) 3Fe2+ + 6OH- → 3Fe(OH)

2

(腐蚀产物)

总反应为4Fe + SO

42-+4H

2

O → FeS + 3Fe(OH)

2

+2OH-

图1-4为SRB腐蚀机理示意图。

防除微生物腐蚀的措施有以下几种:⑴使用抑、杀菌剂或抑菌防污涂料,⑵改变介质环境条件;⑶选用耐细菌腐蚀的材料;⑷施加阴极保护技术。

海生物污损腐蚀指海生物附着在金属表面上影响氧扩散,造成细菌栖息,改变环境条件,破坏表面膜和涂层,从而产生局部腐蚀和污损,如船底、海水管的污损。此类腐蚀的防护将在以后章节中专题论述。

§1.2 腐蚀环境

按照腐蚀环境分类,可分为大气腐蚀、水腐蚀、土壤腐蚀及化学介质腐蚀。

一、大气腐蚀

在腐蚀学科中,常把大气分为工业、海洋和农村大气三类。其中以海洋大气腐蚀最为严重,工业大气次之,农村大气最轻。日常生活中,常可看到海边城市自行车圈锈蚀比内陆严重得多。文献中介绍钢在海岸的腐蚀比在沙漠中大400~500倍;离海岸24m的钢试样比离240m的腐蚀快12倍;工业大气比沙漠区的腐蚀可能大50至100倍[3]。

工业大气的腐蚀性超过农村大气,其主要原因是空气污染严重,含有大量的腐蚀性气体,

如SO

2、CO

2

和NO

x

等。

海洋大气因其含有盐分及海水的蒸发使其腐蚀性较工业和农村大气都严重。

大气腐蚀几乎也是一种电化学过程。对于大气的腐蚀性,不能只看某些腐蚀性气体的含量和降水量大小,如沈阳大气污染中SO

2

最大浓度达1.38mg/m3,降水量高达953mg/m2,五年

合计相对湿度RH≥70%的日数为619天;上海大气中SO

2

最大浓度为0.19mg/m3,五年合计相对温度RH≥70的日数为1162天,且气温比沈阳高。实验结果表明,腐蚀以上海最为严重,广州次之,沈阳更次之。因为上海的相对湿度最高,其平均气温比沈阳高,而腐蚀介质又比广州高[4]。可见,大气腐蚀是一个综合作用的结果。

影响大气腐蚀的主要因素是湿度、工业污染和盐分含量。

⑴湿度:

大气腐蚀环境中,湿度对腐蚀性的影响有着决定性的作用。空气中相对湿度的大小,决定了大气中金属腐蚀的速度。通常存在着临界相对湿度,即金属腐蚀速率突然上升时的相对湿度。研究结果表明,当RH>65%时,物体表面上附着0.001~0.01

μm厚的水膜,如水膜中溶解有酸、碱、盐,则会加速大气腐蚀。空气中相对湿度愈高,金属表面上的水膜愈厚,它与腐蚀速度的关系见图1-5[4]。一般因降水造成干湿交替的情况下腐蚀性最强。

水膜中溶解的腐蚀性物质除氧外,还有硫的氧化物SO

x (主要是SO

2

) 、CO

2

和氯化物,在

城市大气中SO

2

向水中的溶解速度可达100mg/(m2·d) ,在工业大气中可达200mg/(m2·d),

农村大气在10~30mg/(m2·d)之间。大气中CO

2

的浓度为0.03%~0.05%(V/V),水膜中的氯化物约在10-5M(体积摩尔数)数量级。另外在海洋大气中,氯化物沉积速度一般在0.3~300mg/(m2·d)Cl-。

⑵工业污染

工业大气中的工业废气污染程度决定了它的腐蚀性,工业废气中含有大量的SO

x 、 NO

x

CO

2、CO、Cl

2

、H

2

S、NH

3

等,这些气体在大气中形成了酸雨,危害很大。

⑶盐分

在海洋大气中,离海越近,氯化物含量越高,其腐蚀性越严重。氯化物能加速点蚀、应

力腐蚀、晶间腐蚀和缝隙腐蚀等局部腐蚀。

防止大气腐蚀的措施有:

⑴研制和选用耐蚀材料。大气腐蚀过程往往受到阳极控制,利用合金化手段促使金属材料发生钝化或生成保护性的腐蚀产物,能有效地提高金属材料在大气中的耐蚀性。

⑵使用涂层和金属镀层保护。对长期暴露在空气中的钢铁材料,经常使用油漆和镀层保护。在油漆中加入钝化剂,有良好的防蚀效果。锌、铬、锡等金属镀层也被普遍采用。

⑶使用气相缓蚀剂和临时性保护层。此法主要用于保护贮藏和运输过程中的金属制品。

⑷降低大气湿度。湿度是影响大气腐蚀的主要因素,只要把大气的湿度保持在临界湿度以下,就可以减缓金属的大气腐蚀。该法常用于库存金属制品的防蚀。

防止大气腐蚀的措施还有许多,如合理设计构件,防止缝隙中存水及除尘等。其中尤须重视的问题是减少大气污染,这不仅有利于环境保护和提高人们生活质量,而且对于延长金属材料在大气中的使用寿命也是非常重要的。

二、水腐蚀

水腐蚀指自然界中存在的水(如海水、江河水、雨水、地下水等等)对金属构件和设备产生的腐蚀作用。这些水大部分为近中性介质,其腐蚀过程的去极化剂为溶解氧,在某些受污染的水质中,还会发生氢去极化过程。其腐蚀反应为:

阳极反应 M - ne → M n+

阴极反应 O

2+ H

2

O + 4e → 4OH-(氧去极化)

2H+ + 2e → H

2

(氢去极化)

在水介质中,除了发生一般的电化学腐蚀外,某些条件下(如厌氧环境)也会发生微生物腐蚀。

海水是自然界中水量最大腐蚀性较强的天然电解质溶液。近年来,世界各国对海洋开发事业极为重视,在沿海地区的工矿企业还常直接使用海水作为工业水源,所以,研究和解决

金属的海水腐蚀问题具有重大现实意义。

金属腐蚀机理及分类

1.1 金属的腐蚀机理 1.1.1 金属腐蚀的定义 金属及其制品在生产和使用过程中,在周围环境因素的作用下,发生破坏变质,改变了原有的化学、物理、机械等特性,称为金属腐蚀。 根据金属腐蚀过程,可以把腐蚀分为化学腐蚀和电化学腐蚀两大类。 1.1.2 化学腐蚀 化学腐蚀是金属与环境介质直接发生化学反应而产生的损伤。 特点:○1在腐蚀过程中没有电流产生,○2腐蚀产物直接产生并覆盖在发生腐蚀的地方。○3化学腐蚀往往在高湿的气体介质中发生。 钢铁在高温气体环境中很容易被腐蚀,如果同时有盐类或含硫物质存在,则会加速高温氧化,这称为热腐蚀。 1.1.3 电化学腐蚀 航空器上所发生的腐蚀大多数属于电化学腐蚀。 一、原电池 凡能将化学能转变为电能的装置称作原电池。 电化学腐蚀的最显著的特征是电化学腐蚀过程中有自由电子流动,产生电流。 二、电化学腐蚀与腐蚀电池 电化学腐蚀就是在金属上产生若干原电池(实际上是短路原电池,即称腐蚀电池),金属成为阳极,遭到溶解而发生腐蚀。 形成原电池的条件:1、两种金属(或两个区域)之间存在电位差;2、两种金属之间有导电通路;3、有腐蚀环境或腐蚀溶液。 铝合金的电化学腐蚀: 含有铜的铝合金构件处在潮湿的大气中,在其表面形成一层电解质溶液薄膜。这就构成了腐蚀电池。该腐蚀电池的阳极为电位较低的基体铝(-1.66V),阴极为电位较高的添加元素铜(+0.337V)。 电子由铝流向铜,铝遭到溶解。 根据组成腐蚀电池的大小,可以把腐蚀电池分为宏电池及微电池两类。 造成金属表面电位不同,形成微电池的原因很多,常见的有: (1)金属表面化学组成不均,夹杂有杂质。 (2)金属表面组织不均。 (3)金属表面生成氧化膜不均匀。 (4)金属表面物理状态不均匀。金属在机械加工过程中,受到拉、压、剪切作用,或由于热处理不均匀,造成不同部位表面的内应力和变形不同。通常,变形大,内应力高的地方为阳极,易受到腐蚀。 常见金属及其合金的电位: 一、Mg及其合金,铝合金5052、5056、5036、6061、6063、5356 二、Zn、Cd、除以上6种以外的铝合金 三、除不锈钢之外的碳钢、合金钢、Fe、Pb、Sn 四、Cu、Cr、Ni、Ag、Au、Pt、Ti、钴、铑、不锈钢 同一组中,电位基本一致,基本不发生电化学腐蚀;不同组中,第一组电位最低,为阳极,被腐蚀。

金属腐蚀的分类

金属腐蚀的分类:按照反应的特性,金属腐蚀可分为1,化学腐蚀2,生物腐蚀3,电化学腐蚀。化学腐蚀是指氧化剂和金属表面接触,发生化学反应导致的腐蚀。生物腐蚀是指由各种微生物的生命活动引起的腐蚀。电化学腐蚀是指发生电化学反应导致的腐蚀。电化学腐蚀是最普遍和最严重的腐蚀,因此研究电化学腐蚀具有重要的意义! 电化学腐蚀的机理:金属材料与电解质溶液接触,通过电极反应产生的腐蚀。电化学腐蚀反应是一种氧化还原反应。在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物(或金属难溶盐);介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。在阴极反应过程中,获得电子而被还原的物质习惯上称为去极化剂。 在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显着差别,进行两种反应的表面位置不断地随机变动。如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池。直接造成金属材料破坏的是阳极反应,故常采用外接电源或用导线将被保护金属与另一块电极电位较低的金属相联接,以使腐蚀发生在电位较低的金属上。 当金属被放置在水溶液中或潮湿的大气中,金属表面会形成一种微电池,也称腐蚀电池(其电极习惯上称阴、阳极,不叫正、负极)。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,一般只起传递电子的作用。腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中CO2,SO2,NO2等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得 腐蚀不断进行。 (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 阳极(Fe):Fe=Fe2++2e- Fe2++2H2O=Fe(OH)2+2H+ 阴极(杂质):2H++2e-=H2 电池反应:Fe+2H2O=Fe(OH)2+H2↑ 由于有氢气放出,所以称之为析氢腐蚀。

金属的腐蚀和防护(教案)

第二节金属的腐蚀和防护(第1课时) 榆中七中孙志彪 【教学目标】:1、了解金属腐蚀的危害,认识金属腐蚀造成的经济影响.2、应用原电池原理,了解金属电化腐蚀的原因,能解释金属发生电化学腐蚀的原因3.了解一些选择防铁锈方法时应考虑的因素,通过实验探究防止金属腐蚀的措施, 【教学重点】:金属电化腐蚀【教学难点】:金属电化腐蚀;钢铁腐蚀【教学方法】:启发式、讨论式、实验法【教具】:实验投影仪教学过程:【引言】在日常生活中,金属腐蚀的现象随处可见。现在,请各小组代表把课前搜索的信息给全班同学展示一下。三个小组代表分别发言【学生演讲】(二分钟)介绍金属腐蚀造成的影响。【设问、过渡】钢铁为什么会生锈?我们怎么样利用化学知识来减小金属腐蚀?让我们一起来学习有关金属腐蚀的知识。以铁生锈为例来简单说明:【板书】金属的腐蚀与防护【小结】金属腐蚀就是游离态的金属单质被氧化成化合态的金属氧化物或其他化合物的过程,可表示为:【板书】金属腐蚀的实质:M → M n++ ne- 金属腐蚀的分类:化学腐蚀与电化学腐蚀【提问】举例说明什么是化学腐蚀和电化学腐蚀? 【学生回答】铁和氯气直接反应而腐蚀;钢管被原油中的含硫化合物腐蚀均为化学腐蚀。钢铁在潮湿的空气中生锈是电化学腐蚀。【过渡】钢铁在潮湿的空气里所发生的腐蚀,就是电化学腐蚀的最普通的例子。在一般情况下,金属腐蚀大多是电化学腐蚀。【提问】电化学腐蚀是怎样形成的?它具有哪些特征?让我们通过实验来研究学习有关电化学腐蚀的知识。【过渡】上学期我们已学习了有关原电池的知识,现在我们从金属腐蚀的角度来分析铜--锌原电池实验的原理。【课件演示】铜-锌原电池实验做如下实验:锌片投入稀硫酸中——腐蚀的种类及特点;用铜丝接触锌片——腐蚀的种类及特点。【投影、复习】原电池反应:Zn(-):Zn→ Zn2+ +2e- (氧化反应) Cu(+):2H++ 2e-

腐蚀的基本类型

腐蚀的基本类型 论文导读:而引起的变质和破坏统称为腐蚀。材料腐蚀的现象和机理比较复杂。腐蚀控制技术涉及面广。腐蚀控制,免费论文,腐蚀的基本类型。关键词:腐蚀,材料腐蚀,腐蚀控制 一般而言,金属、混凝土、木材等材料受周围环境介质的影响而发生的化学、电化学和物理等反应,而引起的变质和破坏统称为腐蚀,其中也包括上述因素与机械因素、生物因素等的共同作用。金属腐蚀的主要对象,其中尤以钢铁的腐蚀最为常见,危害、损害性极大。 一、腐蚀的概念及分类 (一)腐蚀的概念 腐蚀是材料与其环境间的物理化学作用引起材料本身性质的变化,如铁的生锈是金属腐蚀的普遍形式,又如氢氧化钠破坏肌肉和植物纤维。材料的腐蚀是包括材料本身和环境介质两者在内的一个具有反应作用的体系,腐蚀反应的场所,首先是材料和腐蚀性介质之间相界面处。材料包括金属和非金属材料,如碳钢及其合金、有色金属、塑料、混凝土和木材等,在一个腐蚀系统中,对材料行为起决定性作用的是化学成分、组织结构和表面形态。材料的周围环境介质包括与其接触的气体、液体和固体以及周围环境条件,如温度、压力、速度、光照、辐射、生物条件等。这个作用包括化学的、电化学的、机械的、生物的以及物理的作用。 采用科学的方法防止或者控制腐蚀的危害作用的工程,称为腐蚀工程。(二)材料腐蚀的分类及特征

材料腐蚀的现象和机理比较复杂,材料腐蚀的分类方法也有许多,根据不同的起因、机理和破坏形式而有各种方法。以下介绍几种常用的分类方法。 1.按腐蚀机理分类 通常材料腐蚀按照腐蚀机理可以分为金属化学腐蚀、金属电化学腐蚀、结晶腐蚀、物理化学复合腐蚀。 (1)化学腐蚀:是指金属表面与非电解质直接发生纯化学反应而引起的破坏、其特点是在反应过程中没有电流产生。如铝在四氯化碳、三氯甲烷或乙醇中的腐蚀,镁或钛在甲醇中的腐蚀、物理化学复合腐蚀。 (2)电化学腐蚀:是指金属表面与离子导电的介质发生化学反应而产生的破坏。在反应过程中有电流产生,腐蚀金属表面上存在着阴极和阳极。阳极的反应是金属原失去电子而成为离子状态转移到介质中,成为阳极氧化反应。阴极反应是介质中的去极化剂吸收来自阳极的电子,成为阴极还原过程。这两个反应是相互独立而又同时进行的,称之为一对共轭反应。有阴阳极组成了短路电流,腐蚀过程中有电流产生。如金属在潮湿大气、海水、土壤及酸、碱、盐溶液中的腐蚀均属这一类。电化学腐蚀比较普遍,对金属结构的危害比较严重。 (3)结晶腐蚀:是指因酸、碱、盐等腐蚀介质侵入到建筑物或材料内部生成结晶盐,由于结晶盐的体积膨胀作用使建筑物或材料内部产生应力而引起的破坏现象。结晶腐蚀是工业厂房、非金属设备常见的腐蚀类型。

材料腐蚀的分类

材料腐蚀的分类 材料腐蚀类别与相应机理 金属和它所处的环境介质之间发生化学、电化学或物理作用,引起金属的变质和破坏,称为金属腐蚀。腐蚀现象是十分普遍的。从热力学的观点出发,除了极少数贵金属Au、Pt 等外,一般材料发生腐蚀都是一个自发过程。金属很少是由于单纯机械因素(如拉、压、冲击、疲劳、断裂和磨损等)或其他物理因素(如热能、光能等)引起破坏的,绝大多数金属的破坏都与其周围环境的腐蚀因素有关。 1.1金属的高温氧化腐蚀 1.1.1高温氧化腐蚀概念 在大多数条件下,使用金属相对于其周围的气态都是热不稳定的。根据气体成分和反应条件不同,将反应生成氧化物、硫化物、碳化物和氮化物等,或者生成这些反应产物的混合物。在室温或较低温干燥的空气中,这种不稳定性对许多金属来说没有太多的影响。因为反应速度很低。但是随着温度的上升,反应速度急剧增加。这种在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温腐蚀。 从广义上看,金属的氧化应包括硫化、卤化、氮化、碳化,液态金属腐蚀,混合气体氧化,水蒸气加速氧化,热腐蚀等高温氧化现象;从狭义上看,金属的高温氧化仅仅指金属(合金)与环境中的氧在高温条件下形成氧化物的过程。 1.1.2高温氧化腐蚀机理 研究金属高温氧化时,首先应讨论在给定条件下,金属与氧相互作用能否自发地进行或者能发生氧化反应的条件是什么,这些问题可通过热力学基本定律做出判断。 金属氧化时的化学反应可以表示成: Me (s)+O 2(g)→MeO 2(g) 对该式来说: 可知,只要知道温度T 时的标准自由能变化值,即可得到该温度下的金属氧化物分解压,然后将其与给定条件下的环境氧分压比较就可判断金属氧化反应式的反应方向。 在一个干净的金属表面上,金属氧化反应的最初步骤是气体在金属表面上吸附。随着反应的进行,氧溶解在金属中,进而在金属表面形成氧化物薄膜或独立的氧化物核。在这

高中化学选修四 金属的腐蚀与防护

第三单元金属的腐蚀与防护 [学习目标定位] 1.认识金属腐蚀的危害,并能解释金属发生电化学腐蚀的原因,能正确书写析氢腐蚀和吸氧腐蚀的电极反应式和总反应式。2.熟知金属腐蚀的防护方法。 一金属的电化学腐蚀 1.金属腐蚀 (1)概念:金属或合金与周围环境中的物质发生化学反应而腐蚀损耗的现象。 (2)根据与金属接触的气体或液体物质不同,金属腐蚀可分为两类: ①化学腐蚀:金属与其他物质直接接触发生氧化还原反应而引起的腐蚀。腐蚀的速率随温度升高而加快。 ②电化学腐蚀:不纯的金属或合金发生原电池反应,使较活泼的金属失去电子被氧化而引起的腐蚀。 (3)用铝制饭盒盛放醋酸,一段时间后,饭盒被腐蚀,该种腐蚀属于化学腐蚀,反应的化学方程式为2Al+6CH3COOH===2(CH3COO)3Al+3H2↑;若用铝饭盒盛放食盐(含水时),一段时间后,饭盒被腐蚀,这种腐蚀属于电化学腐蚀,反应原理是(写电极反应式和总反应式)负极:Al-3e-===Al3+,正极:O2+2H2O+4e-===4OH-,总反应:4Al+3O2+6H2O===4Al(OH)3。2.钢铁的电化学腐蚀 根据钢铁表面水溶液薄膜的酸碱性不同,钢铁的电化学腐蚀分为析氢腐蚀和吸氧腐蚀,如图所示: (1)钢铁的析氢腐蚀:当钢铁表面的电解质溶液酸性较强时,腐蚀过程中有H2放出。Fe是负极,C是正极。发生的电极反应式及总反应式为 负极:Fe-2e-===Fe2+; 正极:2H++2e-===H2↑; 总反应:Fe+2H+===Fe2++H2↑。 (2)钢铁的吸氧腐蚀:当钢铁表面的电解质溶液呈中性或呈弱酸性并溶有O2时,将会发生吸氧腐蚀。电极反应式及总反应式为 负极:2Fe-4e-===2Fe2+; 正极:2H2O+O2+4e-===4OH-;

管道腐蚀

[日期:2010-08-16] 来源:中国路桥防水网作者:admin 由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。 一、腐蚀 腐蚀是指材料在环境的作用下引起的破坏或变质。这里所说的材料包括金属材料和非金属材料。 金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。有时还伴随有机械、物理和生物作用。 非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。 这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。 二、腐蚀分类 腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。 (1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。 1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。 2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。 (2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。可以通过肉眼、放大镜或显微镜等进行观察分析。根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。 1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。如碳钢在强酸、强碱中发生的腐蚀一般都是全面腐蚀。由于这种腐蚀可以根据各种材料和腐蚀介质的性质,测算出其腐蚀速度,这样就可以在设计时留出一定的腐蚀裕量。所以,全面腐蚀的危害一般是比较小的。

金属的腐蚀与防护 教学设计教案

第3节化学能转化为电能——电池 第3课时金属的腐蚀与防护 【学习目标】 1、能够运用原电池原理解释金属发生电化学腐蚀的原因。 2、学会利用原电池原理和电解原理设计防护的方法。 3、认识金属腐蚀的危害和防护的必要性。 【预习】 三、金属的腐蚀与防护 1、金属电化学腐蚀的原理 (1)金属腐蚀。 金属腐蚀常见的类型:。 (2)电化学腐蚀 ①概念:当两种金属(或合金)且又同时暴露在里或与接触时,由于形成原电池而发生的腐蚀就是电化学腐蚀。 电化学腐蚀过程中由于电解质溶液的不同,又可分为和两种。 ②吸氧腐蚀 见课本27页图1-3-13:表示的是一块铆有铁铆钉的铜板暴露在潮湿空气中的腐蚀情况,其中为负极,为正极,铜板表面凝结有一层水膜,空气中CO2及沿海地区空气中的NaCl等物质溶解在水膜中形成电解质溶液,从而构成原电池。 电极反应为:负极:正极: 然后OH-与Fe2+结合为Fe(OH)2,故该原电池的总反应为: Fe(OH)2与潮湿空气反应生成Fe(OH)3:方程式为: 生成的Fe(OH)3分解,从而生成铁锈(Fe2O3·nH2O),该过程主要消耗O2,称为吸氧腐蚀。③析氢腐蚀 同样是上述腐蚀,若空气中SO2含量较高,处于酸雨的环境下,使水膜酸度较高,即电解质溶液为酸性溶液,正极反应就变为: 总反应为:。该过程为析氢腐蚀。 无论是析氢腐蚀,还是吸氧腐蚀,都使金属成为原电池的负极,金属电子变为金属阳离子而被腐蚀,且金属越越易发生电化学腐蚀。 【例1】下列关于铁器的使用注意事项不正确的是() A、避免长期接触潮湿空气 B、避免与酸性物质接触 C、不能接触干燥的空气 D、不能盛放硫酸铜溶液 【例2】下列现象中,不是由于原电池反应造成的是( ) A、含杂质的锌与盐酸反应比纯锌与盐酸反应速率快。 B、金属在潮湿的空气中易腐蚀。 C、纯铁和盐酸反应,如滴入几滴硫酸铜溶液,则可加快反应速率。 D、化工厂中的铁锅炉易腐蚀而损坏。 2、金属的防护 金属的腐蚀主要是电化学腐蚀,只要破坏了原电池的构成要素就可减少电化学腐蚀的发生,常见有以下几种金属防护方法: (1)让金属制品处于的环境。该方法破坏了电解质溶液的存在,金属不易被腐蚀。 (2)在金属表面加一层。常见的方法是刷一层、、、 、等保护层,效果较好的方法还有在金属表面镀上一层金属防护层。

腐蚀环境种类

环境种类 大气腐蚀环境 1.农村大气农村大气是最洁净的大气,空气中不含强烈的化学污染,主要含有有机物和无机物尘埃等。影响腐蚀的因素主要是相对湿度、温度和温差. 2.城市大气城市大气的主要污染物主要是城市居民生活所造成的大气污染,如汽车尾气、锅炉排放的SO2等。实际上,很多大城市往往也是工业城市,或者是海滨城市,所以大气环境污染的相当复杂。 3.工业生产区大气工业生产区所排放的污染物含有大量的SO2、H2S等含硫化合物,所以工业大气环境最大的特征是含有硫化物。他们易溶于水,形成的水膜成为强腐蚀介质,加速金属的腐蚀。随着大气相对湿度和温差的变化,这种腐蚀作用更强。很多石化企业和钢铁企业往往非常大,可以形成一个中等城市规模,大气质量相当差,对工业设备和居民生活造成的污染极其严重。 4.海洋大气其特点是空气湿度大,含盐分多。暴露在海洋大气中的金属表面有细小盐粒子的沉降。海盐粒子吸收空气中的水分后很容易在金属表面形成液膜,引起腐蚀。在季节或昼夜变化气温达到露点是尤为明显。同时尘埃、微生物在金属表面的沉积,会增强环境的腐蚀性。所以海洋大气对金属结构的腐蚀性比内陆大气,包括乡村大气和城市大气要严重的多.海洋的风浪条件、离海面的高度等都会影响到海洋大气腐蚀性。风浪大时,大气中的水分含盐量高,腐蚀性增加。据研究,离海平面7~8m处的腐蚀最强,在此之上越高腐蚀性越弱。雨量的大小也会影响腐蚀,频繁的降雨会冲刷掉金属表面的沉积物,腐蚀会减轻。相对湿度升高会使海洋大气腐蚀加剧。一般热带腐蚀性最强,温带次之,两级最弱。中国最典型的处于海洋腐蚀环境中的是杭州湾跨海大桥,地处亚热带海洋性季风气候。 5.处于海滨的工业大气环境,属于海洋性工业大气,这种大气中既含有化学腐蚀污染的有害物质,又含有海洋环境的海盐粒子。2种腐蚀介质的相互作用对混凝土的危害更大。 淡水腐蚀环境 混凝土碳化模型 国内外学者提出了许多混凝土碳化深度预测模型,这些模型大致可分为两类:一类是基于试验数据或实际结构的碳化深度实测值,采用数学统计或神经网络等方法拟合得到的经验模型;另一类为基于碳化反应过程的定量分析建立的理论模型。 灰色理论 它是一门研究信息部分清楚、部分不清楚并带有不确定性现象的应用数学学科。传统的系统理论,大部研究那些信息比较充分的系统。对一些信息比较贫乏的系统.利用黑箱的方法,也取得了较为成功的经验。但是,对一些内部信息部分确知、部分信息不确知的系统,却研究得很不充分。这一空白区便成为灰色系统理论的诞生地。在客观世界中,大量存在的不是白色系统(信息完全明确)也不是黑色系统(信息完全不明确),而是灰色系统。因此灰色系统理论以这种大量存在的灰色系统为研究而获得进一步发展。 基本观点 (1)灰色系统理论认为,系统是否会出现信息不完全的情况、取决于认识的层次、信息的层次和决策的层次,低层次系统的不确定量是相当的高层次系统的确定量,要充分利用已知的信息去揭示系统的规律。灰色系统理论在相对高层次上处理问题,其视野较为宽广; (2)应从事物的内部,从系统内部结构和参数去研究系统。灰色系统的内涵更为明确具体;

腐蚀的分类及特点

[分享] 腐蚀的分类及特点 特点, 腐蚀, 分类 - 腐蚀的分类及特点腐蚀的分类及特点 1 点蚀 点蚀又称坑蚀和小孔腐蚀。点蚀有大有小,一般情况下,点蚀的深度要比其直径大的多。点蚀经唱法生在表面有钝化膜或保护膜的金属上。 由于金属材料中存在缺陷、杂质和溶质等的不均一性,当介质中含有某些活性阴离子(如Cl-)时,这些活性阴离子首先被吸附在金属表面某些点上,从而使金属表面钝化膜发生破坏。一旦这层钝化膜被破坏又缺乏自钝化能力时,金属表面就发生腐蚀。这是因为在金属表面缺陷处易漏出机体金属,使其呈活化状态,而钝化膜处仍为钝态,这样就形成了活性—钝性腐蚀电池,由于阳极面积比阴极面积小得多,阳极电流密度很大,所以腐蚀往深处发展,金属表面很快就被腐蚀成小孔,这种现象被称为点蚀。 在石油、化工的腐蚀失效类型统计中,点蚀约占20%~25%。流动不畅的含活性阴离子的介质中容易形成活性阴离子的积聚和浓缩的条件,促使点蚀的生成。粗糙的表面比光滑的表面更容易发生点蚀。 PH值降低、温度升高都会增加点蚀的倾向。氧化性金属离子(如Fe3+、Cu2+、Hg2+等)能促进点蚀的产生。但某些含氧阴离子(如氢氧化物、铬酸盐、硝酸盐和硫酸盐等)能防止点蚀。 点蚀虽然失重不大,但由于阳极面积很小,所以腐蚀速率很快,严重时可造成设备穿孔,使大量的油、水、气泄漏,有时甚至造成火灾、爆炸等严重事故,危险性很大。点蚀会使晶间腐蚀、应力腐蚀和腐蚀疲劳等加剧,在很多情况下点蚀是这些类型腐蚀的起源。 2 缝隙腐蚀 在电解液中,金属与金属或金属与非金属表面之间构成狭窄的缝隙,缝隙内有关物质的移动受到了阻滞,形成浓差电池,从而产生局部腐蚀,这种腐蚀被称为缝隙腐蚀。缝隙腐蚀常发生在设备中法兰的连接处,垫圈、衬板、缠绕与金属重叠处,它可以在不同的金属和不同的腐蚀介质中出现,从而给生产设备的正常运行造成严重障碍,甚至发生破坏事故。对钛及钛合金来说,缝隙腐蚀是最应关注的腐蚀现象。介质中,氧气浓度增加,缝隙腐蚀量增加;PH值减小,阳极溶解速度增加,缝隙腐蚀量也增加;活性阴离子的浓度增加,缝隙腐蚀敏感性升高。但是,某些含氧阴离子的增加会减小缝隙腐蚀量。 3 应力腐蚀 材料在特定的腐蚀介质中和在静拉伸应力(包括外加载荷、热应力、冷加工、热加工、焊接等所引起的残余应力,以及裂缝锈蚀产物的楔入应力等)下,所出现的低于强度极限的脆性开裂现象,称为应力腐蚀开裂。 应力腐蚀开裂是先在金属的腐蚀敏感部位形成微小凹坑,产生细长的裂缝,且裂缝扩展很快,能在短时间内发生严重的破坏。应力腐蚀开裂在石油、化工腐蚀失效类型中所占比例最高,可达50%。 应力腐蚀的产生有两个基本条件:一是材料对介质具有一定的应力腐蚀开裂敏感性;二是存在足够高的拉应力。导致应力腐蚀开裂的应力可以来自工作应力,也可以来自制造过程中产生的残余应力。据统计,在应力腐蚀开裂事故中,由残余应力所引起的占80%以上,而由工作应力引起的则不足20%。 应力腐蚀过程一般可分为三个阶段。第一阶段为孕育期,在这一阶段内,因腐蚀过程局部化

材料腐蚀的种类、危害和解决办法

材料腐蚀的种类、危害及解决办法 腐蚀是指材料受周围环境的 作用,发生有害的化学变化、电化学变化或物理变化而失去其 固有性能的过程。通常环境介质对材料有各种不同的作用,其 中有多种作用可导致材料遭受破坏,但只有满足以下两个条件,才称为腐蚀作用:①材料受介质作用的部分发生状态变化,转变成新相。②在材料遭受破坏过程中,整个腐蚀体系的自由能降低。 材料腐蚀发生在材料表面。按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。均匀腐蚀指材料表面各处腐蚀破坏深度差别很小,没有特别严重的部位,也没有特别轻微的部分。局部腐蚀是材料表面的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等。 金属材料以及由它们制成的结构物,在自然环境中或者在工况条件下,由于和其所处环境介质发生化学或者电化学作用而引起的变质和破坏,这种现象称为腐蚀,其中也包括上述因素和力学因素或者生物因素的共同作用。某些物理作用例如金属材料在某些液态金属中的物理溶解现象也可以归入金属腐蚀范畴。一般而言,生锈专指钢铁和铁基合金而言,它们在氧和水的作用下形成了主要由含水氧化铁组成的腐蚀产物铁锈。有色金属及其合金可以发生腐蚀但并不生锈,而是形成和铁锈相似的腐蚀产物,如铜和铜合金表面的铜绿,偶尔也被人称作铜锈。由于金属和合金遭受腐蚀后又回复到了矿石的化合物状态,所以金属腐蚀也可以说是冶炼过程的逆过程。上述定义不仅适用于金属材料,也可以广义地适用于塑料、陶瓷、混凝土和木材等非金属材料。例如,涂料和橡胶由于阳光或者化学物质的作用引起变质,炼钢炉衬的熔化以及一种金属被另一种金属熔融液态金属腐蚀,这些过程的结果都属于材料腐蚀,这是一种广义的定义。金属及其合金至今康 昆 勇

钢结构腐蚀的危害防护及其探测技术

基于腐蚀对钢结构造成的危害极其严重,分析了钢结构腐蚀的原因,针对其原因提出了钢结构防腐蚀的处理措施,以确保钢结构建筑在使用中不因腐蚀损坏而引起质量问题。 地下金属管及建筑物中的钢筋发生腐蚀不仅导致重大经济损失,而且还可引发环境污染,并孕育安全事故隐患。为此,必须要对金属物体发生腐蚀的区段实施防腐工程。为做到准确施工,必须在施工前查明腐蚀区段的分布,并确定其位置。物探中的许多方法,如电化学方法、电阻率法和电磁法等均可在不破坏介质的情况下,快速探测出金属物体的腐蚀区段,为防腐工程提供腐蚀定位资料。此外,还介绍了由上述物探方法演变而成的金属腐蚀探测技术及其在国外的应用实例。 关键词:钢结构;腐蚀;处理措施;钢材;氧化膜;金属腐蚀;金属管;自然电场;极化阻抗;电阻率

1前言 (3) 2钢结构腐蚀的危害与防护 (4) 2.1钢结构的腐蚀与危害 (4) 2.1.1水引起涂膜的起泡脱落 (4) 2.2漆膜中溶剂引起的起泡脱落 (4) 2.2.1腐蚀的危害性 (5) 2.3钢结构的防腐蚀处理措施 (6) 2.3.1降低水剥离的方法 (6) 2.3.2降低溶剂起泡的方法 (6) 2.3.3加强设计选择和施工质量的控制 (7) 3金属腐蚀探测技术 (8) 3.1自然电场法 (8) 3.1.1金属管复试探测 (8) 3.1.2钢筋腐蚀探测 (9) 3.2极化阻抗探测技术 (9) 3.3充电法探测技术 (10) 3.3.1电位差测量 (11) 3.3.2磁场测量 (12) 3.4电阻探测技术 (13) 4金属腐蚀探测技术的应用 (14) 4.1探测石油管道腐蚀 (14) 4.2探测金属管涂层模拟破损试验 (14) 4.3充电法电位测量探测煤气管道涂层破损 (15) 4.4码头桥钢筋腐蚀探测 (16) 4.5极化抗阻法的应用试验 (16) 5结论 (18)

腐蚀性化学品分类说明

腐蚀性化学品分类说明 作者:上海西脉科司实业有限公司 腐蚀品定义 本类化学品系指能灼伤人体组织并对金属等物品造成损坏的固体或液体。与皮肤接触在4h内出现可见坏死现象,或温度在55℃时,对20号钢的表面均匀年腐蚀率超过6.25mm/年的固体或液体。其主要品类是酸类和碱类 腐蚀品特性 (一)强烈的腐蚀性 1.对人体有腐蚀作用,造成化学灼伤。腐蚀品使人体细胞受到破坏所形成的化学灼伤,与火烧伤、烫伤不同。化学灼伤在开始时往往不太痛,待发觉时,部分组织已经灼伤坏死,所以较难治愈。 2.对金属有腐蚀作用。腐蚀品中的酸和碱甚至盐类都能引起金属不同程度的腐蚀。使其遭受腐蚀损坏。能腐蚀玻璃。 3.对有机物质有腐蚀作用。能和布匹、木材、纸张、皮革等发生化学反应。 4.对建筑物有腐蚀作用。如酸性腐蚀品能腐蚀库房的水泥地面,而氢氟酸腐蚀品之所以具有强烈的腐蚀性,其基本原因主要是由于这类物品具有或酸性、或碱性、或氧化性、或吸水性等所致。 例如:盐酸、稀硫酸等强酸能和钢铁反应,从而使钢铁制品遭受腐蚀。 2HCI+Fe=FeCl2+H2 ↑ H2S04+Fe=FeS04+H2 ↑ 氢氧化钠等强碱能和油脂起皂化反应,因而能灼伤动植物机体。 (C17H35coo)3C3Hs+3NaOH=3C17H35COONa+C3H5(OH)3 硬脂酸甘油酯氢氧化钠硬脂酸钠甘油 生石灰(氧化钙)具有很强的吸水性,能和水发生反应,生成强碱并产生大量的热,能灼伤皮肤。

CaO+H20=Ca(OH)2+热量 (二)毒性 多数腐蚀品有不同程度的毒性,有的还是剧毒品,如氢氟酸、溴素、五溴化磷等。 (三)易燃性 部分有机腐蚀品遇明火易燃烧,如冰醋酸、醋酸酐、苯酚等。 (四)氧化性 部分无机酸性腐蚀品,如浓硝酸、浓硫酸、高氯酸等具有氧化性能,遇有机化合物如食糖、稻草、木屑、松节油等易因氧化发热而引起燃烧。高氯酸浓度超过72%时遇热极易爆炸,属爆炸品;高氯酸浓度低于72%时属无机酸性腐蚀品,但遇还原剂、受热等也会发生爆炸 腐蚀品分项 腐蚀品分为酸性腐蚀品、碱性腐蚀品、其他腐蚀品三项。 (一)酸性腐蚀品 酸性腐蚀品危险性较大,它能使动物皮肤受腐蚀,它也腐蚀金属。其中强酸可使皮肤立即出现坏死现象。这类物品主要包括各种强酸和遇水能生成强酸的物质,常见的有硝酸、硫酸、盐酸、五氯化磷、二氯化硫、磷酸、甲酸、氯乙酰氯、冰醋酸、氯磺酸、溴素等。 举例: (1)硝酸 分子式:HNO3 理化性质:五色透明发烟液体,工业品常呈黄色或红棕色。能与水以任何比例相混合。有硝化作用,能在有机化合物中引入硝基而生成硝基化合物。密度1.41(68%)、1.5(无水),沸点

电化学腐蚀的种类和金属

电化学腐蚀的种类和金属 金属是以稳定状态的氧化物、硫化物、碳酸盐等物质存在于大自然的矿石之中,经开采、冶炼得到较纯金属。金属不是十分稳定的,它与大自然中的水、氧接触,会使其表面发生氧化还原反应,生成多种金属氧化物或氢氧化物。氧、水与金属反应生成的这些金属氧化物有固态的、液态的和气态的,其物理化学性质对金属都是有害的,因为它们存在与金属表面可以加快金属的腐蚀过程。即使给金属提供各种较好的存放条件,若不采取防腐措施,也是无济于事的。金属在干燥条件中或理想环境中,只能降低或减缓腐蚀的进程。因此,必须认真研究金属腐蚀的机理,了解金属遭受腐蚀过程、腐蚀的种类及表现形式,以便有针对性地采取有效的防腐措施。 金属腐蚀的种类很多,依据腐蚀过程中表现的不同特点,可分化学腐蚀、电化学腐蚀两大类。其腐蚀分类的含义如下: 化学腐蚀顾名思义,化学腐蚀就是金属表面在各种化学介质作用下所受到的腐蚀,称为化学腐蚀。化学腐蚀又分为在气体中腐蚀和在下导电溶液中的腐蚀。气体腐蚀是指干燥气体同金属相接触,使金属表面生成化合物,例如氧化物、氯化物、硫化物等。又如钢材在扎制、焊接、热处理过程中,因高温氧化而生成氧化皮。有时在常温下,放置一段时间后的电镀件表面光泽发暗等也属此类腐蚀。金属在不导电溶液中的腐蚀是指金属在诸如石油、乙醇等有机液体中受到腐蚀(是硫化物作用的结果)。 电化学腐蚀电化学腐蚀是金属与周围的电解质溶液相接触时,由于电流作用而产生的腐蚀。电化学腐蚀是很普遍的,为人们所常见,其腐蚀原理与原电池一样。电化学腐蚀的表面形式很多,又可分为:空气腐蚀、导电介质中的腐蚀和其它条件下的腐蚀。空气腐蚀,是金属在潮湿的空气中的腐蚀。导电介质中的腐蚀,是金属在受到雨水浇淋,或在各种酸、碱、盐类的水溶液中的腐蚀。其它条件下的腐蚀,是指地下铺设的金属管道、构件等,长期受到潮湿土壤中的多种腐蚀介质的侵蚀而遭到的腐蚀破坏。 我国作为世界上钢铁产量最多的国家(2005年全国生产钢材37117.02万吨),每年被腐蚀的铁占到我国钢铁年产量的十分之一,因为金属腐蚀而造成的损失占到国内生产总值的2%~4%;约合人民币:3000亿元( 2005年我国国内生产总值将达15万亿元)。 根据各国调查结果,一般说来,金属腐蚀所造成的经济损失大致为该国国民生产总值的4%左右。 另据国外统计,金属腐蚀的年损失远远超过水灾、火灾、风灾和地震(平均值)损失的总和,在这里还不包括由于腐蚀导致的停工、减产和爆炸等造成的间接损失。

腐蚀机理

混凝土盐渍土腐蚀机理及影响因素 [摘要]通过对盐渍土地区混凝土腐蚀的机理分析, 指出了西部盐渍区富含的硫酸盐是造成混凝土物耐久性差的主要原因; 并详细阐述了国内外关于混凝土硫酸盐侵蚀影响因素的现状研究。 [关键词]盐渍土耐久性硫酸盐侵蚀 盐渍土就是指含盐分较高的土壤, 一般超过3% 的盐含量就可归结到盐渍 土的范围。我国西部地区盐渍土分布广泛, 新疆、青海、西藏、甘肃、宁夏以及内蒙古等地均有大面积的盐渍区。我国正在实施西部大开发战略, 因此大量基础设施就要建于盐渍土之上。以往的资料和调查表明, 一些道路、桥梁、建筑物、地下管道乃至电线杆等, 仅使用几年就遭受严重的腐蚀破坏, 不得不进行工程修复, 造成巨大经济损失。因此, 研究抗腐蚀混凝土在盐渍地区的耐久性问题, 具有非常重要的现实意义和深远的社会影响。 1、盐渍土对混凝土结构的腐蚀机理 盐渍土含盐量及含盐种类有很大差别, 其腐蚀性也有差异。氯盐主要腐蚀混凝土中的钢筋从而引起结构破坏; 硫酸盐主要是通过物理、化学作用破坏水泥水化产物, 使混凝土分化、脱落和丧失强度。1. 1 硫酸盐的化学腐蚀机理实际上硫酸盐侵蚀是一个比较复杂的过程。硫酸盐侵蚀引起的危害性包括混凝土的整体开裂和膨胀以及水泥浆体的软化和分解。不同的Ca、N a、K、M g 和Fe 的阳离子会产生不同的侵蚀机理和破坏原因, 如硫酸钠和硫酸镁的侵蚀机理就截然不同。1) 硫酸钠侵蚀首先是N a2SO 4 和水泥水化产物Ca (OH) 2 的反应, 生成的石膏(CaSO4·2H2O ) , 再与单硫型硫铝酸钙和含铝的胶体反应生成次生的钙矾石, 由于钙矾石具有膨胀性, 所以钙矾石膨胀破坏的特点是混凝土试件表面出现少数较粗大的裂缝。当侵蚀溶液中SO 2-4 浓度大于1000mg?L 时, 水泥石的毛细孔若为饱和石灰溶液所填充, 不仅有钙矾石生成, 而且在水泥石内部还会有二水石膏结晶析出。从氢氧化钙转变为石膏, 体积增大为原来的两倍, 使混凝土因内应力过大而导致膨胀破坏。石膏膨胀破坏的特点是试件没有粗大裂纹但遍体溃散。B iczok 认为: 侵蚀溶液浓度改变, 反应机理也发生变化。以N a2SO 4 侵蚀为例, 低SO 2-4 浓度(< 1000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 而在高浓度下(> 8000mg?L SO 2-4 ) , 主要产物是石膏; 在中等程度浓度下(1000mg? L~8000mg?L SO 2-4 ) , 钙矾石和石膏同时生成。在M gSO4 侵蚀情况下, 在低SO 2-4 浓度(< 4000mg?L SO 2-4 ) , 反应产物主要是钙矾石; 在中等程度浓度下(4000mg? L~7500mg?L SO 2-4 ) , 钙矾石和石膏同时生成; 而在高浓度下(> 7500mg?L SO 2-4 ) , 镁离子腐蚀占主导地位。2) 硫酸镁与水化水泥产物的反应方程式如下:Ca (OH) 2+ M gSO4+ 2H2O→CaSO4·2H2O + M g (OH) 2 (3)硫酸镁侵蚀首先发生上式的反应, 然而上式生成的M g(OH) 2 与N aOH 不同, 它的溶解度很低(0. 01g?L , 而Ca (OH ) 2是1. 37g?L ) , 饱和溶液的PH 值是10. 5 (Ca (OH) 2 是12. 4,N aOH是13. 5) , 在此PH 值下钙矾石和C- S- H 均不稳定, 低的PH 值环境将产生以下结果: (1) 次生钙矾石不能生

金属的腐蚀与防腐.doc

金属的腐蚀与防腐 第28讲金属的腐蚀与防腐考点1 了解金属腐蚀的概念和分类金属的腐蚀:金属单质失去电子成为金属阳离子的过程化学腐蚀电化腐蚀含义直接与具有腐蚀性的化学物质接触发生氧化还原反应而消耗的过程。与接触发生原电池反应而消耗的过程。发生的条件金属纯金属或合金不纯金属或合金氧化剂非电解质为主(如 o2、cl2、c2h5oh) 电解质溶液中的溶质电子得失金属直接将电子转移给有氧化性的物质活泼金属将电子间接转移给氧化性较强的物质电流现象无电流产生有微电流产生腐蚀现象金属单质较活泼的金属相互关系 化学腐蚀与电化腐蚀往往同时存在,以电化腐蚀为主特别提醒:化学腐蚀和电化腐蚀的本质区别是有无电流,即是否能形成原电池 [例1] (XX 广东省珠海一中等三校第二次联考)下列有关金属腐蚀的说法正确的是 a.金属腐蚀指不纯金属接触到的电解质溶液进行化学反应而损耗的过程 b.电化腐蚀指在外加电流的作用下不纯金属发生化学反应而损耗的过程 c.钢铁腐蚀最普遍的是吸氧腐蚀,负极吸收氧气最终转化为铁锈 d.金属的 电化腐蚀和化学腐蚀本质相同,但电化腐蚀伴有电流产生[解析] a项中不是金属腐蚀的条件,而是电化腐蚀的条件,b项中在外加电流的作用下不是发生原电池腐蚀,即不是电化腐蚀,c项中钢铁腐蚀最普遍的是吸氧腐蚀,但负极是金属单质失去电子成为金属阳离子(氧化反应),d项中金属的电化腐蚀和化学腐蚀本质相同,其主要区别是电化腐蚀伴有电流产生。【答案】d。 [规律总结]判断金属的腐蚀是化学腐蚀还是电化腐蚀:(1)

首先看金属:如金属是纯金属,也不与其它金属接触,则发生的腐蚀可能为;若金属不纯或与其它金属接触,则发生的腐蚀为。 (2)其次看接触的物质:如接触的物质是干燥的物质、非电解质、气体单质等,金属发生的腐蚀为化学腐蚀;如接触的物质是电解质溶液,则发生的腐蚀可能为电化腐蚀。考点2 掌握钢铁的吸氧腐蚀和析氢腐蚀的原理1.钢铁的吸氧腐蚀和析氢腐蚀的比较吸氧腐蚀析氢腐蚀电解液的性质中性或弱酸性酸性较强负极反应式 fe-2e-=fe2+ fe-2e-=fe2+正极反应式相互关系自然现象中吸氧腐蚀和析氢腐蚀通常是同时存在的,为吸氧腐蚀为主特别提醒:吸氧腐蚀有发生条件是金属不纯和覆盖的水膜成中性或很弱酸性2.金属腐蚀的一般规律(1)在同一电解质溶液中,引起的腐蚀> 引起的腐蚀>化学腐蚀>有防腐措施的腐蚀。3

点蚀腐蚀机理

点蚀的理论模型 M M e +→+ 22244O H O e OH -++→ 点蚀研究方法: 1) 电化学方法 2) 氯化铁试验法: 试验溶液为10%FeCl ·6H2O 溶液,其中稍许加入1/20NHCl 溶液以进行酸化,根据试样的孔蚀数量、大小、深度或是重量的改变来评定。 2 应力腐蚀测试方法 1) 四点弯曲法: δ=12Ety/(3L 2-4A 2) L :外侧支点间的距离; A :内外支点间的距离。 2) C 形环法 Δ=d 0-d 外径=δπD 2/4EtZ ; 3) WOL 试样 3/2(3.46 2.38)I Pa H K BH a =+ Δ应力加载前后的外径变化,δ应力值,t 厚度,D 平均直径,Z 修正项,E 弹性系数。 环境脆化机理主要包括活性通道腐蚀机理(APC )和氢脆开裂(HE )。不足处是没有与裂纹内溶液化学性质的研究结合起来。 不锈钢的开裂主要理论有: 1) 吸附理论 B 原子吸附于裂纹尖端,造成A-A0之间的结合力下降和破坏。这个理论能很好的解释SC C 对环境物质的依赖关系以及很好的解释缓蚀剂的作用。 2) 电化学理论 应力腐蚀开裂是一种因金属表面阳极溶解而产生的现象,应力有加速阳极溶解的作用。 3) 膜破裂理论 应力作用导致膜破裂形成新鲜表面,促进阳极溶解。 4) 隧道腐蚀理论 腐蚀从(111)面上生成的蚀孔底部和缝隙部分开始发展,与此同时,在应力的作用下产生塑性破裂,左右隧道相互连接,在应力作用下产生塑性破裂,左右隧道相互连接,最后造成断裂。 5) 腐蚀产物楔入理论 裂纹内产生的腐蚀产物的楔入作用造成裂纹的扩展。 6) 氢脆理论 奥氏体主要是阳极溶解,但是马氏体容易形成氢脆。在裂纹尖端有与阳极反应相应的阴极反应,所生成的氢进入钢中。

不锈钢的耐腐蚀性及其种类

不锈钢的耐腐蚀性及其种类 1.腐蚀的种类和定义: 在众多的工业用途中,不锈钢都能提供今人满意的耐蚀性能。根据使用的经验来看,除[wiki]机械[/wiki]失效外,不锈钢的腐蚀主要表现在:不锈钢的一种严重的腐蚀形式是局部腐蚀(亦即应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀)。这些局部腐蚀所导致的失效事例几乎占失效事例的一半以上。事实上,很多失效事故是可以通过合理的选材而予以避免的。 应力腐蚀开裂(SCC):是指承受应力的合金在腐蚀性[wiki]环境[/wiki]中由于烈纹的扩展而互生失效的一种通用术语。应力腐蚀开裂具有脆性断口形貌,但它也可能发生于韧性高的材料中。发生应力腐蚀开裂的必要条件是要有拉应力(不论是残余应力还是外加应力,或者两者兼而有之)和特定的腐蚀介质存在。型纹的形成和扩展大致与拉应力方向垂直。这个导致应力腐蚀开裂的应力值,要比没有腐蚀介质存在时材料断裂所需要的应力值小得多。在微观上,穿过晶粒的裂纹称为穿晶裂纹,而沿晶界扩图的裂纹称为沿晶裂纹,当应力腐蚀开裂扩展至其一深度时(此处,承受载荷的材料断面上的应力达到它在空气中的断裂应力),则材料就按正常的裂纹(在韧性材料中,通常是通过显微缺陷的聚合)而断开。因此,由于应力腐蚀开裂而失效的零件的断面,将包含有应力腐蚀开裂的特征区域以及与已微缺陷的聚合相联系的“韧窝”区域。 点腐蚀:是一种导致腐蚀的局部腐蚀形式。 晶间腐蚀:晶粒间界是结晶学取向不同的晶粒间紊乱错合的界城,因而,它们是钢中各种溶质元素偏析或金属化合物(如碳化物和δ相)沉淀析出的有利区城。因此,在某些腐蚀介质中,晶粒间界可能先行被腐蚀乃是不足为奇的。这种类型的腐蚀被称为晶间腐蚀,大多数的金属和合金在特定的腐蚀介质中都可能呈现晶间腐蚀。 缝隙腐蚀:是局部腐蚀的一种形式,它可能发全于溶液停滞的缝隙之中或屏蔽的表面内。这样的缝隙可以在金属与金属或金属与非金属的接合处形成,例如,在与铆钉、螺栓、垫片、阀座、松动的表面沉积物以及海生物相接烛之处形成。 全面腐蚀:是用来描述在整个合金表面上以比较均勺的方式所发生的腐蚀现象的术语。当发生全面腐蚀时,村料由于腐蚀而逐渐变薄,甚至材料腐蚀失效。不锈钢在强酸和强碱中可能呈现全面腐蚀。全面腐蚀所引起的失效问题并不怎么令人担心,因为,这种腐蚀通常可以通过简单的浸泡试验或查阅腐蚀方面的文献资料而预测它。 2.各种不锈钢的耐腐蚀性能 304 是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的[wiki]设备[/wiki]和机件。 301 不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。 302 不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。 302B 是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。 303和303Se 是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度

相关文档
最新文档