第十四章 无机材料的制备

第十四章 无机材料的制备
第十四章 无机材料的制备

第十四章无机材料的制备

传统无机非金属材料包括水泥、陶瓷、玻璃和耐火材料,将无机材料科学基础的基本理论和它们的制备工艺原理结合起来,从而加深对理论的理解,进一步培养科学的思维方法。

第一节水泥的制备

主要讲授硅酸盐水泥的生产方法、制备原理和工艺过程。

一.生产方法

水泥的生产方法可归纳为:两磨一烧。

硅酸盐水泥的生产分为三个阶段:石灰质原料、粘土质原料与少量校正原料经破碎后,按一定比例配合、磨细,并配合为成分合适、质量均匀的生料,称为生料的制备;生料在水泥窑内煅烧至部分熔融所得以硅酸盐为主要成分的硅酸盐水泥熟料,称为熟料煅烧;熟料加适量石膏,有时还加适量混合材料或外加剂共同磨细为水泥,称为水泥粉磨。

二.硅酸盐水泥熟料的煅烧

1.生料在煅烧过程中的物理与化学变化

1.干燥与脱水

干燥即物料中自由水的蒸发,而脱水则是粘土矿物分解放出结晶水。

粘土矿物—高岭土在500-600℃下失去结晶水,主要形成非晶质的偏高岭土,因此高岭土脱水后活性较高,其反应式为:

Al2O3.2SiO2.2H2O→Al2O3.2SiO2+2H2O

2.碳酸盐分解

生料中的碳酸钙在煅烧过程中发生分解放出二氧化碳,其反应式如下:

CaCO3→CaO+CO2 吸热反应

影响碳酸钙分解的因素:

a.温度:高,分解速度增加

b.窑系统的CO2分压:通风良好,CO2分压低,有利于分解

c.生料细度、悬浮分散程度

d.原料的种类和性质。

3.固相反应

在碳酸钙分解的同时,石灰质和粘土质组分间,通过质点的相互扩散,进行固相反应,过程如下:

~800℃:CaO.Al2O3、CaO.Fe2O3、与2CaO.SiO2(C2S)开始形成

800~900℃:开始形成12CaO.7Al2O3。

900~1100℃:2CaO.Al2O3.SiO2(C2AS)形成后又分解。开始形成3CaO.AlO3(C3A)和4CaO.Al2O3.Fe2O3(C4AF)。

1100~1200℃:大量形成C3A和C4AF,C2S含量达到最大值。

固相反应一般包含相界面上的反应和物质迁移两个过程。提高质点的迁移速率、颗粒粒度的控制(窄分布,避免少量大颗粒的存在);生料的混合均匀,可以增大各组分间接触,也有利于加速固相反应;矿化剂的引入可以加速固相反应。

4.液相和熟料的烧结

通常水泥熟料在出现液相以前,硅酸三钙不会大量生成。到达最低共熔温度(约1250℃)后,开始出现液相。液相主要由氧化铁、氧化铝、氧化钙所组成,还会有氧化镁、碱等其它组分。在高温液相作用下,水泥熟料逐渐烧结,并伴随着体积收缩。同时,硅酸二钙与游离氧化钙都逐步溶解于液相中,以钙离子扩散与硅酸根离子、硅酸二钙

反应,形成硅酸盐水泥的主要矿物硅酸三钙。反应式如下:

C2S+CaO→(液相)C3S

随着温度升高和时间的延长,液相量增加,液相粘度减少,氧化钙、硅酸二钙不断溶解、扩散,硅酸三钙晶核不断形成,并使小晶体逐渐发育长大,得到发育良好的阿利特晶体,完成熟料的烧结过程。

熟料烧结形成阿利特的过程,与液相形成温度、液相量、液相性质以及氧化钙、硅酸二钙溶解于液相的溶解速度、离子扩散速度等各种因素有关。

最低共熔温度:

组分的性质和数目都影响系统的最低共熔温度。

矿化剂与其他微量元素如氧化钒、氧化锌等将影响最低共熔温度。

液相量:

液相量不仅与组分的性质,而且与组分的含量、熟料烧结温度等有关。液相粘度:

液相粘度对硅酸三钙的形成影响较大。粘度小,液相中质点的扩散速度增加,有利于硅酸三钙的形成。液相的粘度和液相的组成、结构等有关。还与煅烧方法有关,快速升温煅烧的熟料液相粘度小于慢速升温的熟料。

液相的表面张力:

液相的表面张力愈小,愈易润湿熟料颗粒或固相物质,有利于固相反应与固液相反应,促进硅酸三钙的形成。

氧化钙溶解于熟料液相的速率:

与氧化钙的颗粒粒度有关。

5.熟料的冷却

熟料的冷却从烧结温度开始,同时进行液相的凝固与相变两个过

程。

平衡冷却、淬冷、独立析晶三个过程得到的矿物组成差别很大。煅烧良好和急冷的熟料保持细小并发育完整的阿利特晶体。

三.硅酸盐水泥熟料的组成

1.硅酸盐水泥熟料主要由氧化钙、氧化硅、氧化铝和氧化铁四种氧化物组成,通常在熟料中占95%左右。同时含有约5%的少量氧化物,如氧化镁、硫酐、氧化钛、氧化磷及碱等。

现代生产的硅酸盐水泥熟料,各主要氧化物含量的波动范围为:氧化钙62~67%;氧化硅20~40%;氧化铝4~7%;氧化铁2.5~6%。

2.硅酸盐水泥熟料中主要形成四种矿物:

硅酸三钙 3CaO.SiO2 简写为C3S;

硅酸二钙 2CaO.SiO2 简写为C2S;

铝酸三钙 3CaO.AlO3 简写为C3A;

铁相固溶体 4CaO.Al2O3.Fe2O3 简写为C4AF。

另外,还有少量的游离氧化钙(f-CaO)、方镁石(结晶氧化镁)、含碱矿物以及玻璃体等。

通常,熟料中硅酸三钙和硅酸二钙的含量占75%左右,合成硅酸盐矿物;铝酸三钙和铁铝酸四钙含量占22%左右。在煅烧过程中与氧化镁、碱等,在1250~1280℃开始,会逐渐熔融成液相以促进硅酸三钙的顺利形成,故称为熔剂矿物。

四.硅酸盐水泥生产的主要工艺过程

硅酸盐水泥生产的主要工艺过程为:生料制备(包括原料破碎、原料预均化、原料的配合、生料的粉磨和均化等);熟料的煅烧;水泥的粉磨与包装等。

水泥按照生料制备方法,有干法和湿法两种。将原料同时烘干与

粉磨或先烘干后粉磨成生料粉,而后喂入干法窑内煅烧成熟料,称为干法生产;将原料加水粉磨成生料浆后喂入湿法回转窑煅烧成熟料,称为湿法生产。

熟料的煅烧可以采用立窑和回转窑。回转窑分为干法窑、立波尔窑、湿法窑。

水泥熟料的粉磨,通常在钢球磨机中进行。近年采用辊压磨和新型高效选粉机。

第二节玻璃的制备

最广泛采用的玻璃成分以二氧化硅,氧化钙和氧化钠为主。迄今为止,超过95%的玻璃制品仍属于钠钙硅酸盐系统的范畴。

一.玻璃成分设计

一般来说,玻璃成分设计要考虑的主要方面为:

1.成分和性质与结构间的关系。主要是成分和性质间的关系,至于成分和结构间的关系还未能精密确定。

所设计的成分必须能形成玻璃,并在一般情况下(微晶玻璃除外)具有较小的析晶倾向,因而玻璃形成区域图和相图可以作为重要的依据。

2.必须符合熔制、成型等工艺要求。

以下就氧化物系统玻璃成分设计的基本原则进行初步的讨论首先,必须根据玻璃制品要求的物理-化学性质和工艺性能,选择适宜的氧化物系统,这样就确定了决定主要性质的氧化物,一般为三至四种,总量达90%。此外,还必须加入一些尽量不使玻璃的主要性质变差而同时能赋予玻璃其他必要性质的氧化物。

其次,为了使玻璃有较小的析晶倾向,或使玻璃熔制温度降低,

成分上就应当趋向于取多组分。相图和玻璃形成区域图可以作为确定成分的参考和依据。以三元相图为例,选取的成分要尽可能接近相图中的共熔点或相界线。

玻璃形成区是通过实验确定的表示玻璃形成范围的几何图形。玻璃形成范围与所用玻璃液数量、冷却速度和方法等一系列因素有关,因此带有动力学条件。为保证设计的玻璃具有较小的析晶倾向,一般在选取成分点时,应尽量移向形成区的中间部分。

最后,为了使设计的成分能付诸实践工艺,须加入一定量的促进熔制、调整料性等为目的的氧化物,用量不多但不可缺少。

二.玻璃原料

玻璃原料通常可分为主要原料和辅助原料。主要原料包括引入玻璃形成物,玻璃调整物和中间体成分的原料。辅助原料包括澄清剂、氧化剂与还原剂、着色剂和脱色剂等。

1.主要原料

引入SiO2的原料

硅砂;砂岩;石英岩。

引入Al2O3的原料

长石;高岭土;叶蜡石。

引入CaO的原料

石灰石;方解石;白垩;工业碳酸钙。

引入MgO的原料

白云石;白云质石灰石;菱镁矿。

引入Na20的原料

纯碱;芒硝。

引入K2O的原料

钾碱。

引入Li2O的原料

里辉石;里云母;碳酸里。

引入B2O3的原料

硼酸;硼砂;含硼矿物。

引入BaO的原料

碳酸钡;硫酸钡。

引入ZnO的原料

锌氧粉;菱锌矿。

引入PbO的原料

铅丹;密陀僧。

2.辅助原料

2.1澄清剂

氧化砷;氧化锑;硫酸盐;氟化物

2.2氧化剂和还原剂

2.3着色剂

2.4脱色剂

2.5乳着剂

三.配合料的制备

大部分原料必须经过破碎、粉碎、筛分、而后称量、混合制成配合料。配合料的粒化。

四.玻璃的熔制

将配合料经高温加热熔融成合乎成型要求的玻璃液的过程成为玻璃的熔制过程,它包括一系列的物理、化学、物理化学反应,常分为如下五个阶段:

1.硅酸盐形成阶段。各组分在加热过程中经过了一系列的物理和化学变化,结束了主要反应过程,大部分气态产物逸散,配合料变成了由硅酸盐和SiO2组成的烧结物。对普通的钠钙硅玻璃而言,这一阶段在800~900℃终结。

2.玻璃形成阶段。烧结物继续加热,开始熔融,原先形成的硅酸盐与SiO2相互扩散与溶解,烧结物变成了透明体,再没有未起反应的配合料颗粒。但此时玻璃液带有大量的气泡、条纹,化学成分不均匀。对普通的钠钙硅玻璃,此阶段在1200℃左右结束。

3.玻璃液的澄清阶段。继续加热时,玻璃液的粘度进一步降低,并放出玻璃液中的可见气泡,直到全部排除。对普通的钠钙硅玻璃,此阶段在1400~1500℃左右,粘度为100泊。

4.玻璃液的均化阶段。当玻璃液长时间的处于高温下,其化学组成逐渐趋于均一,玻璃液中的条纹由于扩散、溶解而消除。对普通的钠钙硅玻璃,此阶段在低于澄清温度结束。

5.玻璃液的冷却阶段。将已澄清和均化了的玻璃液降温,使玻璃液具有成型所需的粘度。

五.影响玻璃熔制过程中的因素

1.玻璃成分

2.配合料的物理状态

原料的选择;原料的颗粒组成:主要指石英的颗粒度和各种原料的颗粒比。

3.大窑的熔制制度

4.采用加速剂和澄清剂

加速剂不改变玻璃成分和性质,仅改变玻璃熔制的进程。同时降低了熔体的表面张力、粘度、增加玻璃液的透热性,所以对玻璃的澄

清和均化有影响。

5.采用高压和真空熔炼

6.辅助电熔

7.机械搅拌、鼓泡、浸没式燃烧

第三节陶瓷的制备

主要讲授坯料和釉料的基本工艺性能和特点

一.坯料的基本工艺性能要求

1.1塑性坯料

塑性坯料是供可塑法成型用的坯料,这种坯料呈泥质塑性状态,具有“弹性-塑性”流动性质。它是基于粘土的结合性与可塑性,在粘土的基础上,加入其他组分与水构成的。

塑性坯料的工艺性能要求:

a坯料的可塑性:塑性坯料的最主要特点是可塑性要好,有足够的操作性能。

b含水量:坯料的含水量应适宜,分布应均匀。具体的含水量视成型方法及粘土的可塑水量来定。

c干燥强度:坯料的干燥强度反映出结合性的好坏。影响干燥强度的主要因素是所用粘土的种类及结合性强弱。

d坯料的收缩率:坯料的收缩率包括干燥与烧成两种收缩,它对于坯体造型与尺寸的稳定性有重要作用。收缩率可通过瘠性物料用量来调节。

e坯料的细度:细度主要是通过研磨时间来控制。可以增加物料的总表面积,扩大颗粒之间的接触面,提高混合的均匀度;并能加快成瓷

过程中的固相反应速度,降低成瓷的温度,提高瓷的强度,改善瓷的透明度。

f空气含量:空气以分散的空气泡的状态存在于泥料中,或吸附在粒子的表面,也可以较大的气泡留在坯泥中。降低泥料的可塑性提高弹性,从而影响泥料的操作性能及强度。通过陈腐,真空练泥等工艺措施排除空气。

g坯料的玻化温度:指坯料开始明显收缩并开始出现液相,至坯体开始过烧膨胀之间的温度。可通过调节助熔剂的用量,以及熔融物料的类型选择,用烧结实验测定。

h坯釉结合:不同的坯料,施以相应的釉料。一般是调整釉料配方。1.2注浆坯料

注坯所用的泥浆是陶瓷原料在水中的一种悬浮体系,均靠电解质来产生解胶现象,从而可以降低泥浆的含水量并获得适当的流动性,在注浆后得到较为牢固的坯体。

对注浆泥浆提出下列要求:

a能保证泥浆在管道中无阻碍地输送至使用部位;

b含水量要尽量减少,以降低干燥收缩;

c泥浆要稳定,即不从泥浆中沉淀出任何组分;

d水分扩散到石膏模中的速度要大,即形成坯料层的过滤性能良好;e形成的坯体要有足够的强度。

二.坯料配方的制定

1.首先分析研究几个问题

1.1研究了解制品的性能要求,尤其它的特殊点,以便确定瓷坯的化学组成并决定特殊成分的引入。

1.2分析和测定原料的性能:化学成分、可塑性、结合性、烧结性、

烧后白度、收缩,以便泥料性能,决定原料的选用。

1.3现有生产设备和生产条件的分析,以便确定工艺条件、分析工艺因素,确定生产方法。

1.4现有经验和资料的分析、研究,以便总结经验,不断改进同类型产品质量。

2.选择初步料方

在考虑上述四个方面的基础上,选择初步料方

2.1首先选定化学组成,确定坯式,先按成分满足初步计算组分比例。定出基础料方。

2.2在三角坐标图中,参考现有料方,选定以三大原料为基础的基础组分,并与上者比较调配,初步确定配方。

2.3在初步配方的基础上,调整其他小分原料加入量。

2.4根据上述考虑,顾及各方面情况,按不同区域选定几个配方,以便实验比较。

3.试制

3.1按以上料方,首先确定工艺条件,烧成制度,进行小型工艺实验,制定合适的生产方案。

3.2瓷质鉴定和物性检验,选择优良试验,找出改进方向,进一步实验。

4.确定正式生产配方

在上述实验基础上,再经过反复多次试制,以其中稳定成熟者,作为生产配方,投入使用。

三.釉料

釉是附着于陶瓷坯体表面的连续玻璃质层。在特殊的配料中,釉则成

为玻璃与晶体的混合层,具有与玻璃相类似的物理与化学性质。1.釉的特点:

组成釉料的化学性质应与坯体的化学性质接近,但保留适当的差别。这样,釉与坯体在高温下得以相互作用而促成良好的结合。釉的组分,特别是碱性氧化物,可以渗入坯体,同时已经发现有晶体从坯体中长入釉中,使釉在组织上比玻璃复杂。

2.釉的物理化学性质

2.1釉的化学性质

釉与坯的相互作用生成了中间层,使中间层的化学组成和性质逐渐由坯体的组成过渡到釉料的组成,但无明显界限。

2.2釉的化学稳定性

釉的化学稳定词性,取决于硅氧四面体相互连接的程度,即连接程度越大,则化学稳定性越高。总之,就一般釉而言,碱金属氧化物的减少,可以提高釉的化学稳定性,但过分减少将导致釉料粘度与烧结温度的提高。

2.3釉的粘度与表面张力

化学组成对釉在熔融状态下的粘度、表面张力与润湿性有决定性的作用。

对釉料粘度影响最大的因素,是釉的组成与釉烧温度。构成釉料的硅氧四面体网络结构的完整或断裂程度,是决定粘度的最基本因素。

釉料表面张力的大小,决定于其化学组成和温度。釉料的表面张力与温度的关系呈负的温度系数。在化学组成中,碱金属氧化物对降低表面张力作用较强。碱金属离子的离子半径愈大,其降低效应愈显著。PbO、B2O3能显著降低表面张力。还原气氛对烧成釉料的表面

《材料合成与制备方法》教学大纲

《无机材料合成》实验教学大纲 课程名称:无机材料合成 课程编号:0 总学时:36 适用对象:材料化学本科专业 一、教学目的和任务: 《无机材料合成》是材料化学专业的一门必修课。本课程的任务是通过各种教学环节,使学生掌握单晶材料的制备、薄膜的制备、非晶态材料制备、复合材料的制备、功能陶瓷的合成与制备、结构陶瓷的制备、功能高分子的制备、催化材料制备、低维材料制备等,使学生获得先进材料合成与制备的基础知识,毕业后可适应化工材料的科学研究与技术开发工作。 二、教学基本要求: 在全部教学过程中,应始终坚持对学生进行实验室安全和爱护公物的教育;简单介绍有效数字和误差理论;介绍正确书写实验记录和实验报告的方法以及基本操作和常规仪器的使用方法。无机材料的制备方法、薄膜制备的溶胶-凝胶法、纳米晶的水热合成法、纳米管的气相沉积法的原理和基本操作方法,材料结构表征和性能测试的结果的正确分析,并在此基础上研究材料结构和性能的关系。培养学生的实际动手操作能力;深刻领会课本所学的理论知识,具有将理论知识应用于实践中的能力。 三、教学内容及要求 实验一无机材料合成(制备)方法与途径 实验仪器:计算机 实验内容:认识无机材料合成中的各种元素、化学反应;相关中外文摘、期刊的查阅方法。 实验要求:了解无机材料合成的基本方法、途径与制约条件 实验二晶体合成 实验仪器:磁力搅拌器、烧杯 实验内容:晶体的生长 实验要求:了解晶体的基本分类与应用;熟悉晶体生长的基本原理;重点掌握晶体合成的技术与方法。 实验三薄膜制备 实验仪器:压电驱动器、磁力搅拌器、烧杯 实验内容:薄膜材料的制备 实验要求:掌握薄膜材料的分类与应用;薄膜与基材的复合方法、途径以及制约条件; 实验四胶凝材料的制备

新型无机材料总结

新型无机材料总结 材料是人类生产活动和生活必需的物质基础,与人类文明和技术进步密切相关。随着科学技术的发展,材料的种类日新月异,各种新型材料层出不穷,在高新技术领域中占有重要的地位。材料科学是研究材料的成分、结构、加工和材料性能及应用之间相互关系的科学。本讲主要介绍几种新型的无机非金属材料。 一、耐磨耐高温材料 碳化硅、氮化硼及Ⅳ~Ⅵ副族元素和Ⅷ族元素与碳、氮、硼等形成的化合物具有硬度大、熔点高的情诠,是重要的耐磨耐高温材料。 (一)碳化硅(SiC) 碳化硅的晶体结构和金刚石相近,属于原子晶体,它的熔点高(2827℃),硬度近似于金刚石,故又称为金刚砂。将石英和过量焦炭的混合物在电炉中锻烧可制得碳化硅。 纯碳化硅是无色、耐热、稳定性好的高硬度化合物。工业上因含杂质而呈绿色或黑色。 工业上碳化硅常用作磨料和制造砂轮或磨石的摩擦表面。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 (二)氮化硼(BN) 氮化硼是白色、难溶、耐高温的物质。将B 2O 3 与NH 4 Cl共熔,或将单质硼在 NH 3 中燃烧均可制得BN。通常制得的氮化硼是石墨型结构,俗称为白色石墨。另一种是金刚石型,和石墨转变为金刚石的原理类似,石墨型氮化硼在高温(1800℃)、高压(800Mpa)下可转变为金刚型氮化硼。这种氮化硼中B-N键长(156pm)与金刚石在C-C键长(154pm)相似,密度也和金刚石相近,它的硬度和金刚石不相上下,而耐热性比金刚石好,是新型耐高温的超硬材料,用于制作钻头、磨具和切割工具。 (三)硬质合金 IV B 、V B 、VI B 族金属的碳化物、氮化物、硼化物等,由于硬度和熔点特别高, 统称为硬质合金。下面以碳化物为重点来说明硬质含金的结构、特征和应用。 IV B 、V B 、VI B 族金属与碳形成的金属型碳化物中,由于碳原子半径小,能填 充于金属品格的空隙中并保留金属原有的晶格形式,形成间充固溶体。在适当条件下,这类固溶体还能继续溶解它的组成元素,直到达到饱和为止。因此,它们

无机材料合成与制备复习纲要

材料合成与制备复习纲要 我们不是抄答案,我们只做知识的搬运工。 ——无机复习提纲编辑协会宣言试卷构成:填空:15 分 选择:7*2=14 分(共7 题,一题2 分) 名词解释:5*3=15 分(共5 题,一题3分) 问答题:8+12*4=56(第一题8 分,其余四道题每题12 分)注:划线知识点为李老师审阅后所加,疑为重点,望各位复习时多加注意第1 章:经典合成方法 1实验室常用的加热炉为:高温电阻炉 2电炉分为:电阻炉,感应炉,电弧炉,电子束炉 3电阻发热材料的最高工作温度:硅碳棒1400C、硅化钼棒1700C、钨丝1700C 真空、 5氧化物发热体:在氧化气氛中,氧化物发热体是最为理想的加热材料。 6影响固相反应的因素: (1)反应物化学组成与结构,反应物结构状态(2)反应物颗粒尺寸及分布影响。 7化学转移反应:把所需要的沉积物质作为反应源物质,用适当的气体介质与之反应,形成一种气态化合物,这种气态化合物通过载气输运到与源区温度不同的沉积区,再发生逆反应,使反应源物质重新沉积出来,这样的反应过程称为化学转移反应。 8化学转移反应条件源区温度为T2,沉积区温度为T1:如果反应是吸热反应,则 r H m为正,当T2>T1时,温度越高,平衡常数越大,即从左往右反应的平衡常数增大,反应容易进行,物质由热端向冷端转移,即源区温度应大于沉积区温度,物质由源区转移至沉积区。如果反应为放热反应,r H m为负,则应控制源区温度T2 小于沉积区温度T1,这样才能实现物质由源区向沉积区得转移。如果r H m近似为0, 则不能用改变温度的方法来进行化学转移。 9低温合成中,低温的控制主要有两种方法:①恒温冷浴②低温恒温器 10高压合成:就是利用外加的高压力,使物质产生多型相转变或发生不同物质间的化合,从而得到新相,新化合物或新材料。 种类:①静态高温高压合成方法②动态高温高压合成方法 第2 章:软化学合成方法 1软化学合成方法: 通过化学反应克服固相反应过程中的反应势垒,在温和的反应条件下和缓慢的反应进程中,以可控制的步骤逐步地进行化学反应,实现制备新材料的方法。2软化学法分类:溶胶——凝胶法,前驱物法,水热/ 非水溶剂热合成法,沉淀法,支撑接枝工艺法,微乳液法,微波辐射法,超声波法,淬火法,自组装技术,电化 3绿色化学:主要特点是“原子经济性” ,即在获取新物质的转换过程中充分利用原料中的每个原子,实现化学反应中废物的“零排放” 。因此,既可充分利用资源又不污染环境。 4软化学与绿色化学的关系:两者关系密切,但又有区别。软化学强调的是反应条件的温

无机硅酸盐耐高温材料的制备

实验名称:无机硅酸盐耐高温材料的制备为适应石油化工、冶金、化肥等工业的发展,研制耐高温涂料已成为一项重要课题。一般涂料在高温条件下会发生热降解和碳化作用,导致涂层破坏,不能起到保护作用。而耐高温涂料则具有相当的优势,其在高温条件下,涂层不龟裂、不起泡、不剥落,仍能保持一定的物理机械性能,使物件免受高温化学腐蚀、热氧化、延长使用寿命。耐高温涂料被广泛应用于烟囱、高温蒸汽管道、热交换器、高温炉、石油裂解设备等方面,乃至应用于航空、航天等领域。 耐高温涂料品种较多,目前国内多使用有机硅耐高温涂料、酚醛树脂、改性环氧涂料、聚氨酯等高分子化学材料,其耐热温度一般都低于600℃,并且易燃烧,成本较高。相对而言,无机耐高温涂料却具有耐热温度高、耐热性好、硬度高、寿命长、污染小、成本低等特点,但是涂层一般较脆,在未完全固化之前耐水性不好,对底材的处理要强求较高。一.实验目的 1.了解无机耐高温涂料的性能和应用。 2.掌握无机硅酸盐耐高温材料的方法和操作的注意事项。 3.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 本实验所制备的硅酸盐耐高温无机涂料是使用无机物硅酸钠、二氧化硅、二氧化钛等耐酸耐碱性好的氧化物,按一定比例混合均匀,涂于需要的底材上,在一定温度下烘烤后,可形成致密、均匀、耐高温、抗氧化、耐老化、耐酸耐碱性能较好的涂层。 它是以硅酸钠和二氧化钛为成膜物质,通过水分蒸发和分子间硅氧键的结合所形成的无机高分子聚合物来实现成膜,对光、热和放射性具有稳定性,同时二氧化钛具有很好的着色力、遮盖力以及化学稳定性,故该涂料有优良的耐热和耐老化性能以及良好的附着力。三.实验试剂及器材: 实验仪器:马弗炉;胶头滴管;烧杯(100mL);电子天平;铁片;研钵;玻璃棒;钢尺;小刀;测试专用胶带。 实验试剂:Na2SiO3·9H2O(A.R);SiO2(A.R);TiO2(A.R);蒸馏水;6mol/L的HCl溶液;40%的NaOH溶液。

无机材料科学基础___第二章晶体结构

第 2 章结晶结构 一、名词解释 1.晶体:晶体是内部质点在三维空间内周期性重复排列,具有格子构造的固体 2.空间点阵与晶胞: 空间点阵是几何点在三维空间内周期性的重复排列 晶胞:反应晶体周期性和对称性的最小单元 3.配位数与配位多面体: 化合物中中心原子周围的配位原子个数 成配位关系的原子或离子连线所构成的几何多面体 4.离子极化: 在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象5.同质多晶与类质同晶: 同一物质在不同的热力学条件下具有不同的晶体结构 化学成分相类似物质的在相同的热力学条件下具有相同的晶体结构 6.正尖晶石与反尖晶石: 正尖晶石是指2价阳离子全部填充于四面体空隙中,3价阳离子全部填充于八面体空隙中。 反尖晶石是指2价阳离子全部填充于八面体空隙中,3价阳离子一半填充于八面体空隙中,一半填充于四面体空隙。 二、填空与选择 1.晶体的基本性质有五种:对称性,异相性,均一性,自限性和稳定性(最小内能性)。 2.空间点阵是由 C 在空间作有规律的重复排列。( A 原子 B离子 C几何点 D分子)3.在等大球体的最紧密堆积中有面心立方密堆积和六方密堆积二种排列方式,前者的堆积方式是以(111)面进行堆积,后者的堆积方式是以(001)面进行堆积。 4.如晶体按立方紧密堆积,单位晶胞中原子的个数为 4 ,八面体空隙数为 4 ,四面体空隙数为 8 ;如按六方紧密堆积,单位晶胞中原子的个数为 6 ,八面体空隙数为 6 ,四面体空隙数为 12 ;如按体心立方近似密堆积,单位晶胞中原子的个数为 2 , 八面体空隙数为 12 ,四面体空隙数为 6 。 5.等径球体最紧密堆积的空隙有两种:四面体空隙和八面体空隙。一个球的周围有 8个四面体空隙、 6 个八面体空隙;n个等径球体做最紧密堆积时可形成 2n 个四面体空隙、 n 个八面体空隙。不等径球体进行堆积时,大球做最紧密堆积或近似密堆积,小球填充于空隙中。

无机材料的制备与应用研究发展

无机材料的制备与应用研究发展 摘要:本文主要介绍了无机材料的制备,主要有金属材料、陶瓷、高分子材料、晶体生长技术。这些材料的制备都与我们生活最密切相关。介绍每一种材料的性质、应用、前景。并将一些新的金属材料进行了综述。 关键词:金属材料;陶瓷;高分子材料;晶体生长技术;应用 引言 随着社会和经济的发展,无机材料在原有的基础上越来越重要,无机材料不再是传统的用法,各种新型的方法得到应用。例如,金属材料的制备、陶瓷工艺应用、高分子材料、晶体生长技术等。越来越多的材料使用新技术来研究,不只是无机材料这一方面。通常金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称[1]。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 近些年来,我国的陶瓷工业有很大发展,可从以下3方面说明:一是新技术与新工艺不断采用,例如高梯度磁场选矿及其它选矿技术的应用,使陶瓷生产使用的天然原料质量得到保证。二是对陶瓷材料的性能与本质有了更深入的了解,这主要是因为一些研究材料组分和结构技术与仪器的出现,使人们对陶瓷的认识进入了更高层次。三是新品种的开发[2]。由于科学技术的推动和需要,使得能充分利用陶瓷的物理与化学特性开发出许多高科技领域中应用的功能材料与结构材料。例如人造骨骼或器官的生物陶瓷,耐高温、高强度、高韧性的陶瓷部件等。 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只

有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料。 当今,在高新技术材料领域中,人工晶体作为一种特种功能材料,在材料学、光学、光电子、医疗生物领域有着广泛的作用。用于人工晶体生长的方法有多种,如:物理气相沉淀、水热法、低温溶液生长、籽晶提拉、坩埚下降等。其中水热法晶体生长可以使晶体在非受限的条件下充分生长,可以长出形态各异、结晶完好的晶体而受到广泛应用。水热法可用于生长各种大的人工晶体,制备超细、无团聚或少团聚、结晶完好的微晶。适合生长熔点较高,具有包晶反应或非同成分融化,而在常温下又不溶解各种溶剂或溶解后即分解,不能再结晶的晶体材料。与其他的合成方法相比,水热法合成的晶体具有纯度高、缺陷少,热应力小质量好等特点。近年来随着科学技术的不断发展,水热法合成技术得到广泛应用,该技术已成功地应用于人工水晶的合成、陶瓷粉末材料的制备和人工宝石的合成等领域。 1金属材料 1.1金属材料的性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下四个方面:⑴切削加工性能;⑵可锻性;⑶可铸性;金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性

2015无机材料合成与制备试卷A

中南林业科技大学课程考试试卷 课程名称:无机材料合成与制备;试卷编号:A 卷;考试时间:100分钟 一、是非题(1分×23=23分,选全对或全错,计零分) 1 生长驱动力在数值上等于生长单位体积的晶体所引起的吉布斯自由能的降低。( √ ) 2 微波有很强的穿透力,微波加热时能深入到样品内部,其燃烧波首先从样品的表面向内部传播,最终完成微波烧结。( × ) 3 提拉法中旋转籽晶的目的是获得更好的温度和浓度的均匀性。( √ ) 4 热电偶是接触式温度传感器,可直接与被测物质接触,不受环境介质如烟雾、尘埃、CO 2、水蒸气等影响,准确度较高。( √ ) 5 等离子体在CVD 中的作用是将反应气体激活成活性离子,提高低沉积温度;加速反应物表面的扩散作用,降低成膜速率。( × ) (提高) 6 降低到-150 ℃(123K)称为普通制冷或普冷,降低到-150 ℃至4.2K 之间称为深度冷冻或深冷,降低到4.2K 以下称为极冷。( √ ) 7 相比溅射成膜,蒸发法时,沉积原子的能量很低,一般不易形成形态3型的薄膜组织。( × )(T ) 8 在形态2和形态3型低温薄膜沉积组织的形成过程中,原子的扩散能力不足,因而这两类生长又称为低温抑制型生长。( × )(1和T ) 9 磁控溅射的缺点是靶材的利用率不高,一般低于40%。( √ ) 10 过冷度越大,越容易非均匀成核;凸面杂质形核效率最高,平面次之,凹面最差。( × ) 11直接凝固成型是依靠有机单体交联形成高聚物,温度诱导絮凝成型是依靠分散剂的分散特性。( × ) 12 不具挥发性FeO 和WO 3在HCl 存在时,生成FeCl 2 、WOCl 4、水蒸气,就可以通过相转移反应制得完美的钨酸铁晶体。( ) 13气体的低温分级冷凝就是气体混合物通过不同低温的冷阱而分离,气体通过冷阱后其蒸汽压小于13.33 Pa —冷凝彻底;大于13.33 Pa —认为不能冷凝,穿过了冷阱。 ( × ) 14 流动法比降温法有利于生长大尺寸单晶,蒸发法适合溶解度较大而温度系数很小的物质,凝胶法可在室温下生长一些难溶的或对热敏感而不便使用其他方法的晶体。( √ ) 15用单相共沉淀法制备出单一尺寸的球形氢氧化铝颗粒的关键是通过尿素,在水溶液中缓慢分解释放出OH-,使溶液中碱性均匀地、缓慢地上升,从而使氢氧化物沉淀在整个溶液中同时生成。( × ) 16 大块非晶合金的制备思路是非均匀形核的推迟和均匀形核的避免。( √ ) 17 非晶态材料衍射花样是由较宽的晕和弥散的环组成,没有表征结晶态的任何斑点和条纹,用电镜看不到 学院 专业班 年 姓名 学 装订线(答题不得超过此线)

无机化学:第七章 晶体结构

第七章 晶体结构 二、离子晶体 3、离子极化理论 离子极化的定义——当离子中的电子置于外加电场中,离子的原子核就会受到正电场的排斥和负电场的吸引;而离子中的电子则会受到正电场的吸引和负电场的排斥,原子核与电子发生相对位移,导致离子变形而产生诱导偶极。如图所示,此过程称为离子的极化。 离子极化的强弱取决于两个因素:①离子的极化力;②离子的变形性。 ( a ) 无电场作用 ( b ) 外加电场作用 阳离子、阴离子既有极化力,又有变形性。 通常阳离子半径小,电场强,“极化力”显著。 阴离子半径大,电子云易变形,“变形性”显著。 A 、离子的极化力『主动』 定义:某种离子使异号离子极化而发生变形的能力。 离子的极化力可以用“离子势(?)”或“有效离子势(*?)”来表示。 ?(或*?)→∞?离子极化力→∞。 定义式: =Z r ?(主要用于s 区,p 区) * *= Z r ?(主要用于d 区,ds 区) 式中Z 为离子电荷(绝对值), Z *为有效核电荷,r 为离子半径(pm ),常用 L.Pauling 半径。 离子的极化力与离子的电荷、半径以及离子的电子构型密切相关。 离子的电子构型 ①阴离子:ns 2np 6 8电子构型 ②阳离子价电子分布通式 离子电子构型 实例 1s 2 2(稀有气体型) Li +、Be 2+ ns 2np 6 8(稀有气体型) Na +、Mg 2+、Al 3+ ns 2np 6nd 1~9 9~17 Cr 3+、Mn 2+、Fe 2+ ns 2np 6nd 10 18 Ag +、Zn 2+、Hg 2+ (n-1)s 2(n-1)p 6(n-1)d 10ns 2 18+2 Sn 2+、Pb 2+、Bi 3+ a 、q →∞,0r →,电场强度→∞?离子极化力→∞; b 、离子电荷相同,半径相近时,离子的电子构型决定离子极化力的大小。(18+2)e ,18e ,2e >(9~17)e >8e ;『原因: d 电子云“发散”,对核电荷屏蔽不完全,使 Z *↑,对异号离子极

无机材料科学基础习题与解答完整版

第一章晶体几何基础 1-1 解释概念: 等同点:晶体结构中,在同一取向上几何环境和物质环境皆相同的点。 空间点阵:概括地表示晶体结构中等同点排列规律的几何图形。 结点:空间点阵中的点称为结点。 晶体:内部质点在三维空间呈周期性重复排列的固体。 对称:物体相同部分作有规律的重复。 对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合为对称型,也称点群。 晶类:将对称型相同的晶体归为一类,称为晶类。 晶体定向:为了用数字表示晶体中点、线、面的相对位置,在晶体中引入一个坐标系统的过程。 空间群:是指一个晶体结构中所有对称要素的集合。 布拉菲格子:是指法国学者A.布拉菲根据晶体结构的最高点群和平移群对称及空间格子的平行六面体原则,将所有晶体结构的空间点阵划分成14种类型的空间格子。 晶胞:能够反应晶体结构特征的最小单位。 晶胞参数:表示晶胞的形状和大小的6个参数(a、b、c、α 、β、γ ). 1-2 晶体结构的两个基本特征是什么?哪种几何图形可表示晶体的基本特征? 解答:⑴晶体结构的基本特征: ①晶体是内部质点在三维空间作周期性重复排列的固体。

②晶体的内部质点呈对称分布,即晶体具有对称性。 ⑵14种布拉菲格子的平行六面体单位格子可以表示晶体的基本特征。 1-3 晶体中有哪些对称要素,用国际符号表示。 解答:对称面—m,对称中心—1,n次对称轴—n,n次旋转反伸轴—n 螺旋轴—ns ,滑移面—a、b、c、d 1-5 一个四方晶系的晶面,其上的截距分别为3a、4a、6c,求该晶面的晶面指数。解答:在X、Y、Z轴上的截距系数:3、4、6。 截距系数的倒数比为:1/3:1/4:1/6=4:3:2 晶面指数为:(432) 补充:晶体的基本性质是什么?与其内部结构有什么关系? 解答:①自限性:晶体的多面体形态是其格子构造在外形上的反映。 ②均一性和异向性:均一性是由于内部质点周期性重复排列,晶体中的任何一部分在结构上是相同的。异向性是由于同一晶体中的不同方向上,质点排列一般是不同的,因而表现出不同的性质。 ③对称性:是由于晶体内部质点排列的对称。 ④最小内能和最大稳定性:在相同的热力学条件下,较之同种化学成分的气体、液体及非晶质体,晶体的内能最小。这是规则排列质点间的引力和斥力达到平衡的原因。 晶体的稳定性是指对于化学组成相同,但处于不同物态下的物体而言,晶体最为稳定。自然界的非晶质体自发向晶体转变,但晶体不可能自发地转变为其他物态。

仿生合成技术

90年代以来,出现了一种模仿生物矿化中无机物在有机物调制下形成过程的新合成方法———仿生合成。利用仿生合成技术制备的纳米微粒、薄膜、多孔材料等物质具有特殊的物理和化学性能,潜在着广阔的应用前景,这使得无机材料的仿生合成技术已成为材料化学研究的前沿和热点。 仿生合成技术简介 仿生合成技术(Biomimetic Synthesis)是一种崭新的无机材料合成技术。90年代中期,当科学家们注意到生物矿化进程中分子识别、分子自组装和复制构成了五彩缤纷的自然界,并开始有意识地利用这一自然原理来指导特殊材料的合成时,仿生合成的概念才被提出。仿生合成技术模仿了无机物在有机物调制下形成的机理,合成过程中先形成有机物的自组装体,使无机先驱物于自组装聚集体和溶液的相界面发生化学反应,在自组装体的模板作用下,形成无机P有机复合体,再将有机物模板去除后即可得到具有一定形状的有组织的无机材料。模板在仿生合成技术中起到举足轻重的地位,模板的千变万化,是制备结构、性能迥异的无机材料的前提。目前用作模板的物质主要是表面活性剂,因为它们在溶液中可以形成胶束、微乳、液晶和囊泡等自组装体,生物大分子和生物中的有机质也是被选择的模板,此外利用先进光电技术制造的模板也被用来合成特殊的无机材料。 仿生合成技术的出现与应用为制备具有各种特殊物理、化学性能的无机材料提供了广阔的前景。利用有机大分子作模板剂控制无机材料结构的仿生技术被视为近年来化学发展的新动态,通过调变聚合物

的大小和修饰胶体颗粒表面对无机材料形成初期实行“裁剪”,化学途径能够获得介观尺度的无机有机材料。近几年无机材料的仿生合成已成为材料化学的研究前沿和热点,尽管目前有关仿生合成的机理尚有待进一步证实和探索,但相信在不久的将来,通过仿生事成技术,更多的多功能无机材料将会诞生。 仿生合成材料的应用前景 仿生合成材料是具有特殊性能的新型材料,有着特殊的物理、化学性能和潜在的广阔应用前景。微米级仿生合成材料是极好的隔热隔声材料;具有纳米级精细孔结构的分子筛,可以根据粒子大小对细颗粒进行准确的分类,如筛选细菌与病毒;与催化剂相结合,这种材料可以实现反应与分离过程的有效耦合,如用于高渗透通量、高分离精度的纯净水生产装置;仿生合成的磷灰石材料是性能优异的新骨组织构造基架,有望用于骨移植的外科手术中;仿生合成制取的纳米材料在光电子等其它领域同样存在广阔的应用前景。为充分发挥仿生合成技术在无机材料制备中的应用潜力,仿生合成技术的应用研究为仿生合成技术进一步工业化、产业化提供了过渡桥梁。 仿生合成技术的研究前景 随着研究的深入,许多研究者突破了传统的仿生合成概念,对仿生合成技术提出了新的要求。传统方法基础上的改进、与其他技术的结合为仿生合成技术的发展注入了新的血液。KIM等人经过研究得出一种MIMIC(micromolding in capillaries) 新模板技术,制备了与模板图形相同的微观规则有序薄膜。TRAU M等人又在 KIM的基础上,

无机化学第四版第七章思考题与知识题目解析

第七章固体的结构与性质 思考题 1.常用的硫粉是硫的微晶,熔点为11 2.8℃,溶于CS2,CCl4等溶剂中,试判断它属于哪一类晶体?分子晶体 2.已知下列两类晶体的熔点: (1) 物质NaF NaCl NaBr NaI 熔点/℃993 801 747 661 (2) 物质SiF4SiCl4 SiBr4 SiI4 熔点/℃ -90.2 -70 5.4 120.5 为什么钠的卤化物的熔点比相应硅的卤化物的熔点高? 而且熔点递变趋势相反? 因为钠的卤化物为离子晶体,硅的卤化物为分子晶体,所以钠的卤化物的熔点比相应硅的卤化物的熔点高,离子晶体的熔点主要取决于晶格能,NaF、NaCl、NaBr、NaI随着阴离子半径的逐渐增大,晶格能减小,所以熔点降低。分子晶体的熔点主要取决于分子间力,随着SiF4、SiCl4、SiBr4、SiI4相对分子质量的增大,分子间力逐渐增大,所以熔点逐渐升高。 3.当气态离子Ca2+,Sr2+,F-分别形成CaF2,SrF2晶体时,何者放出的能量多?为什么?形成CaF2晶体时放出的

能量多。因为离子半径r(Ca2+)NaCl。所以NaF的熔点高于NaCl。 (2)BeO的熔点高于LiF;由于BeO中离子的电荷数是LiF 中离子电荷数的2倍。晶格能:BeO>LiF。所以BeO的熔点高于LiF。 (3)SiO2的熔点高于CO2;SiO2为原子晶体,而CO2为分子晶体。所以SiO2的熔点高于CO2。 (4)冰的熔点高于干冰(固态CO2);它们都属于分子晶体,但是冰分子中具有氢键。所以冰的熔点高于干冰。(5)石墨软而导电,而金刚石坚硬且不导电。石墨具有层状结构,每个碳原子采用SP2杂化,层与层之间作用力较弱,同层碳原子之间存在大π键,大π键中的电子可以沿着层面运动。所以石墨软而导电。而金刚石中的碳原子采用SP3杂化,属于采用σ键连接的原子晶体。所以金刚石坚硬且不导电。 5.下列说法是否正确? (1)稀有气体是由原子组成的,属原于晶体;×

第十四章 无机材料的制备

第十四章无机材料的制备 传统无机非金属材料包括水泥、陶瓷、玻璃和耐火材料,将无机材料科学基础的基本理论和它们的制备工艺原理结合起来,从而加深对理论的理解,进一步培养科学的思维方法。 第一节水泥的制备 主要讲授硅酸盐水泥的生产方法、制备原理和工艺过程。 一.生产方法 水泥的生产方法可归纳为:两磨一烧。 硅酸盐水泥的生产分为三个阶段:石灰质原料、粘土质原料与少量校正原料经破碎后,按一定比例配合、磨细,并配合为成分合适、质量均匀的生料,称为生料的制备;生料在水泥窑内煅烧至部分熔融所得以硅酸盐为主要成分的硅酸盐水泥熟料,称为熟料煅烧;熟料加适量石膏,有时还加适量混合材料或外加剂共同磨细为水泥,称为水泥粉磨。 二.硅酸盐水泥熟料的煅烧 1.生料在煅烧过程中的物理与化学变化 1.干燥与脱水 干燥即物料中自由水的蒸发,而脱水则是粘土矿物分解放出结晶水。 粘土矿物—高岭土在500-600℃下失去结晶水,主要形成非晶质的偏高岭土,因此高岭土脱水后活性较高,其反应式为: Al2O3.2SiO2.2H2O→Al2O3.2SiO2+2H2O 2.碳酸盐分解 生料中的碳酸钙在煅烧过程中发生分解放出二氧化碳,其反应式如下:

CaCO3→CaO+CO2 吸热反应 影响碳酸钙分解的因素: a.温度:高,分解速度增加 b.窑系统的CO2分压:通风良好,CO2分压低,有利于分解 c.生料细度、悬浮分散程度 d.原料的种类和性质。 3.固相反应 在碳酸钙分解的同时,石灰质和粘土质组分间,通过质点的相互扩散,进行固相反应,过程如下: ~800℃:CaO.Al2O3、CaO.Fe2O3、与2CaO.SiO2(C2S)开始形成800~900℃:开始形成12CaO.7Al2O3。 900~1100℃:2CaO.Al2O3.SiO2(C2AS)形成后又分解。开始形成3CaO.AlO3(C3A)和4CaO.Al2O3.Fe2O3(C4AF)。 1100~1200℃:大量形成C3A和C4AF,C2S含量达到最大值。 固相反应一般包含相界面上的反应和物质迁移两个过程。提高质点的迁移速率、颗粒粒度的控制(窄分布,避免少量大颗粒的存在);生料的混合均匀,可以增大各组分间接触,也有利于加速固相反应;矿化剂的引入可以加速固相反应。 4.液相和熟料的烧结 通常水泥熟料在出现液相以前,硅酸三钙不会大量生成。到达最低共熔温度(约1250℃)后,开始出现液相。液相主要由氧化铁、氧化铝、氧化钙所组成,还会有氧化镁、碱等其它组分。在高温液相作用下,水泥熟料逐渐烧结,并伴随着体积收缩。同时,硅酸二钙与游离氧化钙都逐步溶解于液相中,以钙离子扩散与硅酸根离子、硅酸二钙反应,形成硅酸盐水泥的主要矿物硅酸三钙。反应式如下:

无机合成制备技术

1.高温合成(怎么获得高温,电阻发热材料有哪些,测量高温仪器,使用电阻发热体注意事项?) ①高温获得的方法电阻炉是最常用的加热炉,优点是设备简单、温度控制精确 ②几种重要的电阻发热材料 a.石墨发热体:在真空下可以获得相当高的温度(2500℃),但吸附、和周围气体结合形成挥发性物质,使加热物质污染,石墨本身在使用中损耗。b.金属发热体:在真空和还原性气氛下,钽、钨、钼适用产生高温(1650~1700℃)。在惰性气氛下钨管的工作温度可达3200℃。c.氧化物发热体:氧化物发热体是最理想的加热材料,但存在发热体和通电导线连接问题。 ③使用电阻发热体注意事项根据不同的需要选择发热体、数目设计电阻炉;氧化物发热体的电阻温度系数是负的;若各发热体并联使用,其中的发热体电阻值不同,电阻稍低的发热体会产生更多热量,被烧毁。因此,每个发热体尽量分开使用。例如:高温箱式电阻炉、碳化硅电炉、碳管炉、钨管炉、感应炉、电弧炉④测温仪表的主要类型:接触式:膨胀式温度计:液体、固体;压力表式温度计:充液体、冲气体;热电阻式:铂热、铜热、半导体热敏;热电偶:铂铑-铂、镍铬-镍硅(镍铝)、镍铬-康铜;非接触式:光学高温计、辐射高温计、比色高温计 ⑤热电偶高温计优缺点及注意事项 热电偶高温计:①体积小、重量轻、结构简单、易装配维护、使用方便②热惰性很小、热感度良好③可与被测量物体直接接触,不受环境介质影响,误差可控制在预期范围内④测量范围较广2000℃左右⑤测量信号可远距离传送,能自动记录和集中管理⑥注意环境气氛⑦避免侵蚀、污染和电磁干扰⑧不能在较高温度环境中长时间工作 光学高温计:①利用受热体的单波辐射强度随温度升高而增加原理进行高温测量。 ②不须与被测物质接触,不影响被测物质的温度场③测量温度高,范围广,700~6000℃④精确度高,±10℃⑤使用简便、测量迅速 ⑥还原剂的选择:根据G-T图选择还原能力强的金属;容易处理;不能和生成的金属形成合金;可以制得高纯度金属;副产物容易和制备的金属分离;成本尽可能低 2.高温下的固相反应 固相反应的机制和特点:该反应从热力学角度讲完全可以进行,但实际上在1200℃下几乎不能进行,在1500℃下反应须数天才能完成。 影响该反应的主要因素①反应物固体表面积和反应物间接触面积②生成物相的成核速率③相界面间特别是通过生成物相层的离子扩散速率 固相反应合成的几个问题①反应物固体的表面积和接触面积②固体反应物的反应性③固相反应产物的性质 3.低温合成与分离 低温测量:低温热电偶、电阻温度计、蒸汽压温度计

新型无机材料

功能陶瓷研究进展与发展趋势 【摘要】功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。功能陶瓷材料种类繁多,用途广泛,主要包括铁电、压电、介电、热释电、半导体、电光和磁性等功能各异的新型陶瓷材料。它是电子信息、集成电路、移动通信、能源技术和国防军工等现代高新技术领域的重要基础材料。随着现代新技术的发展,功能陶瓷及其应用正向着高可靠、微型化、薄膜化、精细化、多功能、智能化、集成化、高性能、高功能和复合结构方向发展。 关键词:功能陶瓷材料;研究进展;趋势 利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料称为功能陶瓷。功能陶瓷种类繁多,用途各异。例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料。 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前己发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。近十年来,在人类社会对能源、计算机、信息、激光和空间等现代技术的迫切需求的牵引下,随着微电子技术、光电子技术、计算技术等高新技术的发展以及高纯超微粉体、厚膜和薄膜等制备工艺的进一步完善,功能陶瓷在新材料探索、现有材料潜在功能的开发和材料、器件一体化以及应用等方面都取得了突出的进展,成为材料科学和工程中最活跃的研究领域之一,也成为现代微电子技术、光电技术、计算技术、激光技术等许多高技术领域的重要基础材料。 当前功能陶瓷发展的趋势可以归纳为以下几个特点:复合化,多功能化,低维化,智能化和设计、材料、工艺一体化。单一材料的特性和功能往往难以满足新技术对材料综合性能的要求,材料复合化技术可以通过加和效应与藕合乘积效应开发出原材料并不存在的新的功能效应,或获得远高于单一材料的综合功能效应。最近提出的梯度功能材料也可看作一类特殊的复合材料。功能性与结构性结合的材料,或者具有多种良好功能性的材料,为提高产品的性能和可靠性,促使产品向薄、轻、小发展提供了基础。当材料的特征尺寸小到纳米级,由于量子效应和表面效应十分显著,可能产生独特的电、磁、光、热等物理和化学特性,功能陶瓷进入纳米技术领域是研究的热点之一,如铁电薄膜和超细粉体的制备等。智能材料是功能陶瓷发展的更高阶段,它是人类社会的需求和现代科学技术发展的必然结果。

无机材料合成与制备复习纲要

料合成与制 备复习纲要 我们不是抄答案,我们只做知识的搬运工。 ——无机复习提纲编辑协会宣言 试卷构成: 填空:15 分 选择:7*2=14 分(共7 题,一题2 分)名词解释:5*3=15 分(共5 题,一题3 分)问答题:8+12*4=56(第一题8 分,其余四道题每题12 分)注:划线知识点为李老师审阅后所加,疑为重点,望各位复习时多加注意第1 章:经典合成方法 1实验室常用的加热炉为:高温电阻炉 2电炉分为:电阻炉,感应炉,电弧炉,电子束炉 3电阻发热材料的最高工作温度:硅碳棒1400C、硅化钼棒1700 C、钨丝1700C 真空、 5氧化物发热体:在氧化气氛中,氧化物发热体是最为理想的加热材料。 6影响固相反应的因素: (1)反应物化学组成与结构,反应物结构状态物颗粒尺 2)反应寸及分布影响。 7化学转移反应:把所需要的沉积物质作为反应源物质,用适当的气体介质与之反应,形成一种气态化合物,这种气态化合物通过载气输运到与源区温度不同的沉积区,再发生逆反应,使反应源物质重新沉积出来,这样的反应过程称为化学转移反应。 8化学转移反应条件源区温度为T2,沉积区温度为T1 :如果反应是吸热反应, 则r H m为正,当T2> T1时,温度越高,平衡常数越大,即从左往右反应的平衡常数增大,反应容易进行,物质由热端向冷端转移,即源区温度应大于沉积区温度,物质由源区转移至沉积区。如果反应为放热反应,r H m为负,则应控制源 区温度T2小于沉积区温度T1,这样才能实现物质由源区向沉积区得转移。如果r H m近似为0,则不能用改变温度的方法来进行化学转移。 9低温合成中,低温的控制主要有两种方法:①恒温冷浴②低温恒温器 10高压合成:就是利用外加的高压力,使物质产生多型相转变或发生不同物质间的化合,从而得到新相,新化合物或新材料。 种类:①静态高温高压合成方法②动态高温高压合成方法第2章:软化学合成方法 1软化学合成方法: 通过化学反应克服固相反应过程中的反应势垒,在温和的反应条件下和缓慢的反应进程中,以可控制的步骤逐步地进行化学反应,实现制备新材料的方法。 2软化学法分类:溶胶——凝胶法,前驱物法,水热/ 非水溶剂热合成法,沉淀

简谈《无机材料制备技术》课程的问题及解决办法

简谈《无机材料制备技术》课程的问题及 解决办法 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 《无机材料制备技术》课程是材料科学与工程专业的一门十分重要的基础课程,其中课程的内容主要包括有玻璃、水泥、陶瓷等一些传统的无机非金属材料与一些新型的非金属材料,该课程所涉及的知识面广,知识点多,理论性强。由于学生没有太多的实践经验,对于无机材料的制备技术可能生疏难懂,不容易抓住学习的重点,这也将导致这门课的教学上出现问题。 1.《无机材料制备技术》改进的必要性 科学技术快速发展的要求 随着科学技术的不断发展,各类新型无机材料的制备技术不断涌现出来,并且传统材料的典型制备工艺要么被新的制备技术与新的设备所取代而淘汰,要么自身进行了改进,以满足现代技术发展的要求。在《无机材料制备技术》课程中,老师的教学通常是重视局部,轻视整体;重视特殊,轻视一般,这种教学模式不利于学生对新知识的理解,也不利于培养学生的

思维能力,将会影响学生以后进入社会工作。 市场对人才需求的改变 近些年来,我国经济发展迅速,产品更新换代的节奏也是越来越快,在新形势下,该课程的教学难以跟上时代步伐,培养出来的大学生知识陈旧,结构单一,无法适应当今社会的要求。 2.《无机材料制备技术》课程主要存在的问题 由于《无机材料制备技术》这门课的知识面广,涉及传统的无机非金属材料与一些新型的非金属材料的制备技术,并且还有各类新型无机材料的制备技术不断涌现出来,旧的制备技术被替换,这也就将导致这门课的教学上出现问题,其中主要的问题如下:第一,材料科学与工程专业的学生毕业后主要是从事材料的制备工艺方面的工作,而现在《无机材料制备技术》的教学无法跟上时代的步伐,课程教授的知识满足不了市场对人才的要求。 第二,《无机材料制备技术》课程的知识还是比较落后的,并且课程的知识点有相互重叠的地方。此外由于新产品,新材料的不断推陈出新,这么课程也无法完全涵盖新的制备技术。 第三,教师的教学方式不够新颖,并且教学脱离实际,不能与实践结合起来,使得学生对于该课程没

无机化学第三章

3-1 晶体 3-1-1 晶体的宏观特征 晶体有一定规则的几何外形。不论在何种条件下结晶,所得的晶体表面夹角(晶角)是一定的。晶体有一定的熔点。晶体在熔化时,在未熔化完之前,其体系温度不会上升。只有熔化后温度才上升。 3-1-2 晶体的微观特征 晶体有各向异性。有些晶体,因在各个方向上排列的差异而导致各向异性。各向异性只有在单晶中才能表现出来。晶体的这三大特性是由晶体内部结构决定的。晶体内部的质点以确定的位置在空间作有规则的排列,这些点本身有一定的几何形状,称结晶格子或晶格。每个质点在晶格中所占的位置称晶体的结点。每种晶体都可找出其具有代表性的最小重复单位,称为单元晶胞简称晶胞。晶胞在三维空间无限重复就产生晶体。故晶体的性质是由晶胞的大小、形状和质点的种类以及质点间的作用力所决定的。 3-2 晶胞 3-2-1 晶胞的基本特征 平移性 3-2-2 布拉维系 十四种不拉维格子 类型说明 单斜底心格子(N )单位平行六面体的三对面中有两对是矩形,另一对是非矩形。两对矩形平面都垂直于非矩形平面,而它们之间的夹角为β,但∠β≠90°。a0≠b0≠c0,α= γ=90°,β≠90° 正交原始格子(O )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 正交体心格子(P )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 正交底心格子(Q )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 正交面心格子(S )属于正交晶系,单位平行六面体为长、宽、高都不等的长方体,单位平行六面体参数为:a0≠b0≠c0α= β= γ=90 ° 立方体心格子( B )属于等轴晶系,单位平行六面体是一个立方体。单位平行六面体参数为:a0 = b0 = c0α= β= γ= 90 ° 立方面心格子(F) 属于等轴晶系,单位平行六面体是一个立方体。位平行六面体参数为:

无机材料合成与制备复习纲要

材料合成与制备复习纲要 我们不是抄答案,我们只做知识的搬运工。 ——无机复习提纲编辑协会宣言 试卷构成: 填空:15分 选择:7*2=14分(共7题,一题2分) 名词解释:5*3=15分(共5题,一题3分) 问答题:8+12*4=56(第一题8分,其余四道题每题12分) 注:划线知识点为李老师审阅后所加,疑为重点,望各位复习时多加注意 第1章:经典合成方法 1实验室常用的加热炉为:高温电阻炉 2电炉分为:电阻炉,感应炉,电弧炉,电子束炉 3电阻发热材料的最高工作温度:硅碳棒1400℃、 硅化钼棒1700℃、 钨丝1700℃真空、 5氧化物发热体:在氧化气氛中,氧化物发热体是最为理想的加热材料。 6影响固相反应的因素:(1)反应物化学组成与结构,反应物结构状态 (2)反应物颗粒尺寸及分布影响。 7化学转移反应:把所需要的沉积物质作为反应源物质,用适当的气体介质与之反应,形成一种气态化合物,这种气态化合物通过载气输运到与源区温度不同的沉积区,再发生逆反应,使反应源物质重新沉积出来,这样的反应过程称为化学转移反应。 8化学转移反应条件 源区温度为T2,沉积区温度为T1:如果反应是吸热反应,则θ m r H ?为正,当T2>T1时,温度越高,平衡常数越大,即从左往右反应的平衡常数增大,反应容易进行,物质由热端向冷端转移,即源区温度应大于沉积区温度,物质由源区转移至沉积区。如果反应为放热反应,θm r H ?为负,则应控制源区温度T2小于沉积区温度T1,这样才能实现物质由源区向沉积区得转移。如果θm r H ?近似为0,则不能用改变温度的方法来进行化学转移。 9低温合成中,低温的控制主要有两种方法:①恒温冷浴②低温恒温器 10高压合成:就是利用外加的高压力,使物质产生多型相转变或发生不同物质间的化合,从而得到新相,新化合物或新材料。 种类:①静态高温高压合成方法②动态高温高压合成方法 第2章:软化学合成方法 1软化学合成方法:通过化学反应克服固相反应过程中的反应势垒,在温和的反应条件下和缓慢的反应进程中,以可控制的步骤逐步地进行化学反应,实现制备新材料的方法。 2软化学法分类:溶胶——凝胶法,前驱物法,水热/非水溶剂热合成法,沉淀法,支撑接枝工艺法,微乳液法,微波辐射法,超声波法,淬火法,自组装技术,电化学法等等。

相关文档
最新文档