第1章 金刚石钻头基本知识汇总

第1章 金刚石钻头基本知识汇总
第1章 金刚石钻头基本知识汇总

第一章金刚石钻头基本知识

第一节概述

1.1金刚石钻头的发展历史

金刚石钻头是不同于牙轮钻头的另一类钻井破岩工具,其使用可以追溯到19世纪60年代。最初人们以天然金刚石为切削元件制作打炮眼和挖掘隧道的工具,后来出现了用于石油钻井的钢体鱼尾式天然金刚石全面钻进钻头和取心钻头。早期的金刚石钻头是将天然金刚石冷镶在低碳钢上的。由于天然金刚石来源有限,价格昂贵,加之本身尺寸、性能方面的原因以及当时落后的制造工艺,大大限制了金刚石钻头在石油钻井工业中的应用。

随着粉末冶金技术的发展,出现了采用烧结碳化钨作为钻头体的胎体式金刚石钻头。这种技术的出现使金刚石钻头的制造水平大大提高。胎体式金刚石钻头具有耐冲蚀、耐磨损的特点,具有良好的使用性能,其制造工艺也不复杂,因此一经出现就迅速推广开来。

人造聚晶金刚石的研制成功,对金刚石钻头技术的发展起了巨大的推动作用。人造聚晶金刚石复合片钻头(PDC钻头)的出现一度被称为20世纪80年代钻井工业技术的一大突破,这种新技术对石油钻井业的发展产生了巨大的影响。现场使用证明,软到中等硬度地层钻井用PDC钻头具有机械钻速高、进尺多、寿命长、工作平稳、井下事故少、井身质量好等优点,并能与井下动力钻具配合用于高速钻井。合理使用金刚石钻头可以大大缩短建井周期,降低钻井成本,提高钻井经济效益。

1.2金刚石钻头的发展前景

经过近二十多年的发展,金刚石钻头已经成为继牙轮钻头之后的又一重要破岩工具。时至今日,PDC钻头在石油钻头市场所占的份额越来越大,几乎每年以30%的速度侵吞牙轮钻头市场。随着新的设计理论、设计方法和材料等技术的发展,PDC钻头的适用范围也在不断扩展,以前被认为不适用于PDC钻头的地层现在也广泛使用,比如我国中原油田的文留区块的沙二至沙三地层由于地质情况复杂、夹层多,可钻性差,以前一直被认为是PDC钻头的禁区,在这里钻的井除了取心之外用的都是牙轮钻头。可是从2000年开始,PDC钻头在这个区块的使用量逐渐增多,效果也很好,而2001年底我公司的一只8 1/2 BK542-4型PDC钻

头更在该区块的文-133井创下了1600米(东营组)入井,打到3390米(沙三上)完井,纯钻时间227.31小时,进尺1790米,平均机械钻速7.9米的好指标。现在,在该区块只要条件允许,几乎用的都是PDC钻头。

第二节金刚石钻头的结构简介

2.1金刚石钻头的破碎机理

金刚石钻头的破岩方式主要有四种,即:剪切、预破碎(开槽效应)、犁削及磨削。2.1.1 剪切

岩石破碎力学的研究表明,岩石的抗剪强度比其抗压强度要低得多,两者的比值在0.09~0.15左右。显然,采用剪切方式破碎岩石比用压碎方式破碎岩石要容易而且有效得多。PDC钻头的复合片正是利用了岩石的这一力学特性,采用高效的剪切方式来破碎岩石,从而达到快速钻井的目的。当PDC钻头工作时,复合片在钻压和扭矩的作用下克服地层应力切入地层并向前滑动,岩石在切削齿的作用下沿其剪切方向破碎并产生塑性流动,切削所产生的岩屑呈大块片状。这一切削过程与刀具切削金属材料非常相似。

2.1.2 预破碎(开槽效应)

预破碎(开槽效应)是采用特殊的“尖/圆”齿交替布置切削结构所具有的岩石破碎方式,主要用在以纯剪切方式不容易钻进的地层,如具有一定塑性的地层。预破碎过程是通过开槽切削来完成的,具有这种切削结构的钻头在钻进过程中,尖形齿因与地层接触面积小受力集中而先行切入地层,岩石在接触应力的作用下产生破碎裂纹,随着钻头的不断旋转,尖形齿在岩石中切出一条条较小的环状“卸荷槽”,使地层应力预先释放,而紧随其后的圆形切削齿则以剪切方式切削其强度已大大减弱的大块岩石,达到快速钻进的目的。这样大大提高了切削效率,降低了切削齿的磨损速度。

2.1.3犁削

天然金刚石钻头和TSP钻头在钻进塑性地层时,常常以犁削方式来破碎岩石。岩石在钻头钻进过程中,由于受到切削齿的作用,在其内部发生破碎并向表面传递。堆积在切削齿前面的破碎岩屑由于切削齿的移动被推向两边,最后由泥浆带出井底,这一切削过程相似于犁

地过程。

2.1.4磨削

天然金刚石钻头和TSP 钻头在钻进极硬的粗晶粒地层时,切削齿克服岩石的高抗压强度实现岩石的局部破碎。即其切削结构常常以磨削方式破碎岩石。由于硬地层岩石的高强度,使破碎的岩屑比较小,呈细粒状,因而钻头的机械钻速相应较低。

2.2金刚石钻头结构介绍

金刚石钻头属一体式钻头,整个钻头没有活动零部件,结构比较简单。主要由上体、钢

心、胎体、切削齿、喷嘴及密封件组成。见图1

钻头上体是经过热处理的钢制件,其上端车有API 标准连接螺纹,用以和其它井下钻具相连。上体下端与钻头体上的钢心通过焊接而构成一个整体。上体上部两个对称槽为钻头卸扣槽,用于和卸扣板相配合来装卸钻头。钢心是位于钻头中心的空心钢体,是钻头体的骨架,它的一端与碳化钨胎体烧结在一起,另一端则与上体焊接相连。胎体是碳化钨粉末经过烧结而形成的具有不同轮廓形状的钻头基体。胎体粘附在钢心上,构成坚韧的、抗冲击、耐磨损的钻头体(冠部)。切削齿可以采用天然金刚石、TSP 齿及PDC 齿。天然金刚石和TSP 齿通过烧结直接固结到钻头胎体上,PDC 钻头的切削齿则通过低温钎焊固定到钻头胎体上。钻头所采用的喷嘴为可换式硬质合金整体喷嘴,主要有标准喷嘴和内六方孔小喷嘴两种。

标准喷

图1

嘴的水孔出口截面为圆形,内六方小喷嘴水孔截面则为六边形,这种结构的水孔,既可作为泥浆流道,又可用于喷嘴安装。喷嘴中心水孔有各种不同的尺寸以满足不同的钻井需要。喷嘴与喷嘴座之间采用“O”形橡胶密封圈密封,以保证其使用安全可靠。

从设计和使用的角度,钻头又可分为上体和钻头体两大部分。钻头体包括钻头冠部轮廓、切削结构、水力结构、保径结构等。钻头轮廓指胎体表面形状,不同的钻头轮廓形状适应于不同的地层钻井。切削结构即由不同类型的金刚石齿以一定的布齿密度和布齿方式布置在钻头表面用以切削地层的工作部分。钻头水力结构是用以控制和分配钻井液,为钻头提供充分的冷却、清洗及排屑的部分。它包括水孔、主流道、副流道、排屑槽和集屑槽等。天然金刚石钻头和TSP钻头的水孔结构一般为鸦爪式中心水孔,PDC钻头的水孔则一般采用可换式喷嘴。钻头保径结构为钻头提供良好的扶正和保径作用,以保证钻头的正常钻进和较长的工作寿命。

2.3金刚石钻头分类

关于金刚石钻头的分类,按用途分,可分为全面钻进钻头和取心钻头;按钻头体材料及制造方式分,可分为钢体钻头和胎体钻头;按切削齿材料分,可分为PDC钻头、TSP钻头、天然金刚石钻头。

胎体金刚石钻头具有固齿牢靠、钻头体抗冲蚀能力强、耐磨性好、钻头寿命长、钻头结构设计灵活、产品制造周期短、非标尺寸钻头制造容易等优点,在金刚石钻头市场上占绝大多数,为目前各生产厂家广泛应用。

天然金刚石(ND)钻头以优质天然金刚石作为切削刃,以表镶方式将其直接烧结在抗冲蚀、耐磨性好的碳化钨胎体上。切削结构选用不同粒度金刚石,采用不同的布齿密度和布齿方式,以满足在中至坚硬地层钻井的需要。

TSP钻头切削元件采用了各种不同形状并具有自锐作用的热稳定聚晶金刚石(TSP)齿。与天然金刚石相比,这种TSP持具有良好的耐热性,可耐1200摄氏度的高温,抗破碎性及耐磨性俱佳。TSP钻头与天然金刚石钻头一样,其切削齿直接烧结在碳化钨胎体上。TSP钻头更适合于在带有研磨性的中等至硬地层快速钻井。

PDC钻头采用聚晶金刚石复合片(PDC片)作为切削刃,以钎焊方式将其固定到碳化钨胎体上的预留齿穴中。钻头所采用的PDC切削齿具有高强度、高耐磨性和抗冲击能力,且切

削刃口和刃面都具有良好的自锐性,在钻进过程中切削刃能始终保持锋利。钻头在软到中等硬度地层中以剪切方式破碎岩石,采用较小钻压即可获得较高的机械钻速,是一种高效钻井钻头。

第三节金刚石钻头的设计与制造

3.1金刚石钻头的设计理论

在常规的PDC钻头切削结构设计中,遵循的基本原理有如下几条:①、每个切削齿的切削体积相等,即等体积原则;②、每个切削齿的磨损速度相等,即等磨损原则;③、每个切削齿的切削功率相等,即等功率原则;④、每个切削齿的切削面积相等,即等面积原则。

最常用的设计理论有:力平衡理论和抗回旋理论。

3.1.1、力平衡PDC钻头

1)钻头的受力分析

PDC钻头在正常钻进时,同时受到钻压和旋转设备施加的扭矩的作用。在这两个力的作用下,每个切削齿都受到一个法向力Fn和一个切向力(周向力)Fc的作用。其中法向力Fn 由钻压产生,它是使切削齿穿透岩石所需的力;切向力Fc是在法向力将切削齿压入岩石后沿切口向前推进切削齿所需的力,即将岩屑从岩石上剥离下来所需的力。法向力Fn能分解成一个垂直分力Fv和一个径向分力Fr。切向力Fc能分解为一个径向分力和一个绕着钻头中心的力矩。作用在钻头上且位于垂直钻头旋转轴线的平面内的法向力和切向力能分解为一个作用于钻头中心上的力和一个力矩,它们均位于法向平面内。该力矩是旋转钻头所需的力矩,而该力则是侧向不平衡力。这个侧向不平衡力指向与钻头面相关的一个方向,在钻头旋转时,它趋向于把钻头推向井壁。

由于侧向不平衡力的大小、方向都不受控制,所以很难保证钻头的力学性能良好。由于力学性能差,将会直接导致钻头的运动学性能变差。由于其所受侧向不平衡力较大,当钻头在井底钻进时,钻头被推向井壁。这时,钻头上的保径齿以及部分外排齿在侧向不平衡力的推动下会吃入井壁,与井壁的岩层产生“啮合效应”。此时钻头不再平滑钻进,而开始产生侧向振动,PDC钻头上的切削齿会横向向后移动,并且比正常旋转的钻头上的切削齿运动快

得多,伴随这种运动的冲击载荷会引起PDC切削齿的破碎,而这种破碎反过来会导致加速磨损,并且切削齿破碎后产生的碎片会对其它完好的PDC切削齿产生冲击碰撞,从而导致大面积的切削齿损坏。

对于力平衡钻头来说,由于侧向不平衡力被控制在一个极小的范围之内,它对PDC钻头的影响就比普通PDC钻头要小得多。在经过调整之后,钻头上的各个力的大小及方向都发生了很大的变化。侧向不平衡力Fimb由原来的9.2%降至了1.4%(这一百分比是侧向不平衡力与钻压的比值)。径向力Fr与切向力Fc大小基本相等。整个钻头的受力情况处于一个良好的状态。

3.1.2抗回旋PDC钻头

通过对钻头的切削齿进行受力分析,运用调整齿位的办法,使得钻头的侧向合力指向较大面积的低摩阻保径垫,在钻头工作时该保径垫始终与井壁接触,最终使钻头的回旋程度降到最低,保证钻头工作平稳,延长钻头的使用寿命。

需要指出的是,力平衡技术、抗回旋技术只是PDC钻头设计制造技术的一个方面,要设计出性能优良的PDC钻头,光靠这一点是远远不够的。在发展这项技术的同时,还需要合理的水力分布、先进的PDC切削齿、优选钻头轮廓等许多方面技术的运用。

3.2金刚石钻头冠部轮廓设计与选择依据

研究及现场试验表明,钻头冠部形状对其使用性能具有较大影响。选择钻头冠部形状时应考虑所钻地层的岩性、钻头的稳定性、钻井的适应性、布齿空间以及钻头清洗和冷却等,因此只有在综合考虑多种因素的基础上才能确定理想的钻头冠部轮廓形状。

钻头冠部轮廓一般包括四个基本要素:内锥、鼻部、外侧、保径

钻头内锥是钻头中心部分内陷的区域,起导向和稳定作用。设计时,应根据不同的需要选择内锥角,如果需要具有较高机械钻速、较好的液流控制能力等,应设计成110°~160°的浅内锥;如果要求突出钻头的稳定性,提高井斜控制能力,则应设计成60°~100°的深内锥。对于造斜用的钻头(如侧钻钻头),其内锥角应更大。

鼻部是钻头在井下的最低点,钻进中最先切入地层,由于地层变化或操作失误而意外受

损的可能性较大。如果钻进的地层较硬,或存在硬夹层,钻头设计时一般选择较大半径的圆弧鼻部结构,为了提高钻头切入地层的能力,则应选择较小半径的鼻部。

外侧部分的轮廓线有直线和弧线两种,在设计中到硬地层的钻头时,一般选择直线轮廓的外侧面,其钻头轮廓鼻部和保径相结合的部位较尖,切入性好,切削效率高;弧线构成的外侧面轮廓,则常用于要求高转速或高耐磨性的地方。

保径段根据不同的需要可以选择不同的保径方式和保径长度,对于要求保径能力强的钻头,可以选择加长保径或双列保径。为了提高钻头井斜控制能力可以适当加长保径长度、增大保径垫面积。

3.3金刚石钻头的结构设计及切削元件的选择

金刚石钻头的一般设计步骤如下(以抛物线形轮廓为例):

3.3.1根据用户要求、油田地质情况等资料来确定钻头尺寸、型号。

3.3.2 根据钻头型号来设计钻头石墨模具。

模具内锥角C、鼻部半径R2、台肩半径R1、R1与模具水平面的夹角B2需根据地层以及钻头使用的实际情况确定,其它参数可参照PDC钻头设计手册确定。

3.3.3设定钻头设计参数。

钻头主要设计参数包括:

露齿高。根据切削齿大小和实际使用情况确定。

主切削齿直径及数量。主切削齿可选0.5″、0.75″、1″的PDC复合片。数量根据布齿密度来确定。

次切削齿以及第三切削齿的直径和数量。一般选用0.5″的PDC复合片。

保径齿的数量。

总齿数。

排屑槽数。

排屑槽深度。

喷嘴数量及大小。

各切削齿的后倾角、侧倾角。

3.3.4设计轮廓布齿图

将有关设计参数确定完成之后,可使用PDC钻头设计软件自动生成轮廓图。轮廓图做出之后,需根据加工工艺要求及设计方法对其进行调整。然后根据设计经验确定切削齿的面布置位置。对于力平衡PDC钻头一般采用刮刀式布齿,刮刀形式有直刮刀和曲刮刀等。切削齿在各刮刀上的具体布置方式有螺旋式及跳跃式等。

3.3.5受力分析

在布齿完成之后,需使用金刚石钻头受力分析软件评价切削布置的合理性。具体方法是根据实际情况设定钻头使用参数(转速、机械钻速等)和岩石参数(抗压强度等),设定好相关参数之后即可使用该软件进行计算分析。要求不平衡力的值控制在某一范围以内。如果达不到上述标准,则需根据整个钻头的受力情况对切削齿的布置位置进行调整,直到得到合理的结果为止。

受力分析完成之后,还需对钻头各切削齿的做功曲线及受力曲线进行评估。即要求这两条曲线在一定范围内平滑变化。

3.3.6根据布齿位置完成面图设计

在受力分析完成之后,根据新的布齿位置重新布置切削齿,然后确定喷嘴位置。此时要注意使整个钻头面都能得到有效清洗,同时还要注意喷嘴之间不能互相干涉(可参考相同尺寸其它钻头的喷嘴布置)。如果发现无法合理布置喷嘴位置,则以前的布齿方案将不得不推倒重来,再重复第四和第五步的工作。在切削齿和喷嘴布置好后,即可生成加工所需的数据文件。

3.3.7总装图设计

PDC钻头设计软件可自动生成一个总装图的底稿图,我们可在这幅底稿图上进行修改,以完成总装图的设计。总装图的设计可参照休斯的全面钻进钻头或克里斯坦森的取芯钻头设计规范进行。

3.3.8钢芯设计

钢芯是胎体式PDC钻头中的一个重要部件,它的设计合理与否直接影响到整个钻头的质量和使用寿命。对于深刮刀钻头,钢芯实际上包括两部分,即钢芯和刀片。钢芯置于钻头胎

体内,主要起连接钻头上体的作用,刀片搭焊在钢芯上,深入钻头刮刀内部,起加强钻头刮刀的作用。

3.3.9凸模设计

凸模是用来制作砂板用的工具,其设计可参考总装图完成。

3.3.10钻头保径段设计

PDC钻头的保径部分主要使用天然金刚石、TSP齿、TCI镶块等材斘。布置方式主要有拉槽式、平镶式等方式。力平衡钻头的保径通常为使用TCI镶块的平镶式保径结构。设计时可参照设计手册进行。

3.4金刚石钻头的保径结构设计

保径段根据不同的需要可选择不同的保径方式和保径长度。一般来说,保径结构有拉槽保径、平镶保径、天然金刚石保径、TSP齿保径、PDC齿保径、ND+TSP、ND+PDC的组合保径、低摩阻保径(TCI+ND、TCI+TSP、TCI+PDC保径结构)、带反划眼齿的保径结构、短保径、加长保径结构等。

由于剪切切削方式和较大的井壁接触面积,造成了金刚石钻头的扭矩较大的缺点。过大的扭矩极易损害钻井设备,尤其不利于井下动力钻具的使用,这些都要求金刚石钻头的扭矩必须控制在一个小范围内。因此近年来,出现了低扭矩保径结构,如Smith公司的2001年的专利6253863——“Side cutting gage pad improving stabilization and borehole integrity”,贝克·休斯公司2002年的专利6349780——“Drill bit with selectively-aggressive gage pads”,这些新的结构除了保持常规保径的保径能力外,大大降低了钻头的扭矩,同时还适应了定向钻井应用,从而进一步扩展了金刚石钻头的使用范围。

3.5金刚石钻头的水力结构设计

水力结构的设计包括喷嘴的选择与设计、排屑槽的结构与设计等。大部分的金刚石钻头喷嘴为现场可换式螺纹紧固喷嘴,设计时作为标准件直接使用。但在设计小尺寸钻头和对水力有特殊需要的钻头时也可以采用固定喷嘴。

喷嘴的设计包括:喷嘴数量的确定、倾斜角、偏移角、方位角的确定。这些参数的设计,要根据钻头尺寸、钻头轮廓形状、切削结构等综合考虑。为了保证钻头有足够的清洗冷却能

力,金刚石钻头的喷嘴一般都在三个以上。钻头尺寸越大,喷嘴数量则相应就越多。喷嘴出口距离井底的距离应小于喷嘴等速核的长度,通过对地层的直接水力冲击进一步提高钻头对岩石破碎效率。设置喷嘴倾斜角的目的是为了增加泥浆的井底漫流,提高泥浆的清洗井底和携屑能力。一般来讲,喷嘴倾斜角越大,漫流越大清洗和携屑效果就越好。但如果倾斜角太大,则会对井壁造成不良冲蚀。喷嘴偏移角的作用在于控制射流方向,使其有效的对钻头切削齿进行清洗和冷却,对提高机械钻速和钻头寿命有重大意义。喷嘴方位角也就是喷嘴在钻头冠部的圆周位置,其是否合理,决定了钻头的液流分布是否合理。

目前在金刚石钻头上广泛使用的排屑槽是横截面形状为扇形的“全放式”排屑槽,这种结构排屑面积大、不易产生泥包。在一些特殊布齿的钻头上还设置有集屑槽,它实际上是一些半圆形的小排屑槽,通常延伸到钻头表面,形成低压区,通过真空效应吸引泥浆和岩屑,改善钻头的清洗和冷却条件。

3.6金刚石钻头制造工艺流程简介

金刚石钻头采用碳化钨粉末烧结工艺制造,其工艺过程大致可分为石墨下料、模具车削、模具组装、装粉烧结、钢心加工、钎焊、组焊、车焊皮、磨削、整形、喷漆装箱等过程(见图10)。

3.6.1模具机械加工

石墨下料、模具车削、模具铣削属于模具的机加工工艺过程。石墨下料是根据所制造钻头的尺寸和型号,选择适当的石墨棒料,用锯床锯成所需大小的模具毛坯。模具车削是按设计图纸要求,使用车床将石墨模具毛坯的内表面加工成钻头轮廓形状的凹模。模具铣削是对加工成型的凹模进行再加工,包括铣齿穴、铣喷嘴孔。铣削加工既可以用普通三轴铣床也可以用数控加工中心完成。由于金刚石钻头的石墨模具是一次性的,而且加工复杂,工作量大,因而采用自动化程度高的数控设备加工就具有重要意义。使用数控加工可以大大加快制造速度,缩短制造周期,提高生产效率,降低生产成本,而且数控加工精度高,可以保证钻头制造质量及使用性能的优良和稳定。

3.6.2模具组装

模具组装工艺过程是将铣削完成后的模具进行组装和修整。包括切削结构组件的安装和修整。对于PDC钻头,要在齿穴中安装砂件和石墨替片,对于ND钻头和TSP钻头则在齿穴中分别装上ND齿和TSP齿。钻头水力结构的安装包括喷嘴替棒、排屑槽砂板等组装,在钻头模具的保径处还要装上ND、TSP齿、硬质合金保径齿等。

3.6.3装粉与烧结

模具组装完成后,进行装粉和烧结。首先将钢心放置在底模内并找正,然后装上碳化钨

粉末,再装入铜合金粘结剂和助熔剂等。装粉完毕后放到预热炉内预热,预热完成后再放入程控烧结炉内进行烧结。当炉温上升到规定温度时,粘结金属开始熔化并逐步渗透到碳化钨粉末中,将粉末粘结在一起而形成钻头体。烧结后的模具经过缓慢冷却后进行开模清理,并对烧结后的钻头体进行检验,查看其有无夹渣和裂纹。

3.6.4钎焊

对于ND钻头和TSP钻头,切削齿是直接烧结在钻头胎体之上的,因此无需钎焊。而PDC 钻头则需要在烧结好的钻头体上钎焊PDC齿。其方法是用低熔点银合金焊料将切削齿钎焊到钻头体预留的齿穴中。

3.6.5终加工过程

将焊接好切削齿的钻头体与已加工好的带有连接螺纹的上体焊接在一起,然后在外圆磨床上对钻头保径进行磨削,保证钻头外径符合尺寸公差及形位公差规范。最后对钻头进行修磨,去掉毛刺、杂质,在钻头体上打上规定的标记,喷漆并配上喷嘴后装箱入库。

3.7金刚石钻头主要原材料

3.7.1切削齿材料

金刚石钻头切削齿材料可分为人造金刚石和天然金刚石两大类,其中天然金刚石使用最早并一直沿用至今。人造金刚石使用最为广泛的聚晶金刚石复合片(PDC)和热稳定聚晶金刚石(TSP)两种。

3.7.1.1聚晶金刚石复合片(PDC)

聚晶金刚石复合片是在高温、高压装置中合成的。将金刚石微粉和触媒剂(钴或硅)以及碳化钨基片放入压机的压缸中,在5GPa以上的高压下加热至1500℃左右,经过5~10分钟,金刚石微粉在触媒剂的作用下粘结在一起而形成聚晶金刚石薄层,其厚度根据需要可以在0.5~2mm之间,作为切削岩石的工作层。与之牢固相连的碳化钨基体则对聚晶薄层起支撑作用,两者之间的有机结合使得PDC齿既具有金刚石的硬度和耐磨性,又具有碳化钨的结构强度和抗冲击能力。由于聚晶层内晶间取向不规则,不存在单晶金刚石所固有的解理面,因此PDC齿的抗磨性及强度较天然金刚石要高,且不易破碎。

PDC齿还具有良好的自锐特性。一方面,PDC齿的聚晶层内的金刚石微粒在切削过程中不断脱落(这是一个非常缓慢的过程),新颗粒不断露出,形成刃面的颗粒更新自锐。另一方面,由于碳化钨基体硬度低于金刚石层而最先磨损形成锋利的刃口,导致压力向金刚石层刃口偏移。金刚石层在压力集中作用下切入地层,同时不断出刃。这一过程就是压力偏移刃口自锐过程。

PDC齿的缺点是热稳定性差,在温度超过700℃时,金刚石层内的粘结金属将失效而导致切削齿损坏。因此PDC齿不能直接烧结到胎体上而只能采用低温钎焊方式将其固定到钻头体上。

随着对PDC齿的进一步研究,人们发现,金刚石层──碳化钨基片间结合界面的形式对PDC齿的性能有着至关重要的影响。在不改变加工原材料的情况下,选择合理的界面形式可以极大提高PDC齿的耐磨性和抗冲击性。因此,近年来出现了各种非平面界面的PDC齿。如爪式齿、环爪齿、涡轮齿等。采用非平面结构可以增强金刚石层和碳化钨基片的结合力,同时还能极大的减小界面的应力集中因此增强了PDC齿抗剥层、抗冲击、耐磨损的能力。

3.7.1.2热稳定聚晶金刚石齿(TSP)

热稳定聚晶金刚石齿的制造方式与PDC齿类似,所不同的是TSP齿没有碳化钨基片,并且在TSP齿制造过程中采用了特殊工艺,将触媒剂从齿中排除,因此在成品TSP齿的金刚石聚晶结构内没有游离钴元素。TSP齿具有比天然金刚石更优越的性能:由于没有解理面,故其抗冲击能力更强。TSP齿还有良好的热稳定性,其耐热温度可达1200℃,可以直接烧结的胎体上,并且在使用中具有良好的抗损坏能力。与PDC齿相比,TSP齿既具有同样良好的自锐性,又具有比PDC齿更高的耐磨性。

TSP齿可以根据钻头设计和制造的需要,加工成各种不同的形状和尺寸。常用的TSP齿有圆片齿、立方体齿、圆柱齿、三角齿等。

3.7.1.3天然金刚石

金刚石是碳的结晶体,属于等轴晶系,晶体结构为正四面体,碳原子之间以共价键相连,结构非常稳定。金刚石材料是世界上已知的最硬的材料,其莫氏硬度为10级,其研磨硬度

是刚玉(莫氏9级)的150倍,石英(莫氏7级)的1000倍。金刚石的抗压强度高达8.7×103MPa,约为刚玉的3.5倍,硬质合金的1.5倍、钢的9倍。金刚石还具有极高的耐磨性,是刚玉的90倍、硬质合金的40~200倍、钢材的2000~5000倍。金刚石还具有良好的化学稳定性,能耐酸碱。金刚石的缺点是性脆,抗冲击性能差,容易产生解理。其热稳定性也差,在空气中加热到300℃时表面开始氧化,加热至900℃时质量发生明显变化,加热至1000℃时则完全烧毁。金刚石齿的磨损在很大程度上表现为热烧损。

用于金刚石钻头的天然金刚石以尖角不规则形状的为最好。使用这种金刚石可以获得较高的机械钻速,相反,圆角的金刚石颗粒具有较高的耐磨性。目前在天然金刚石钻头上所选用的金刚石颗粒主要有立方体、八面体、优级西非金刚石、最优级西非金刚石和黑金刚石等。

(2020年整理)钻头方面的基础知识.doc

钻削与钻头 钻削 用各种钻头进行钻孔、扩孔或锪孔的切削加工。钻孔是用麻花钻、扁钻或中心孔钻等在实体材料上钻削通孔或盲孔。扩孔是用扩孔钻扩大工件上预制孔的孔径。锪孔是用锪孔钻在预制孔的一端加工沉孔、锥孔、局部平面或球面等,以便安装紧固件。钻削方式主要有两种:①工件不动,钻头作旋转运动和轴向进给,这种方式一般在钻床、镗床、加工中心或组合机床上应用;②工件旋转,钻头仅作轴向进给,这种方式一般在车床或深孔钻床上应用。麻花钻的钻孔孔径范围为0.05~100mm,采用扁钻可达125mm。对于孔径大于100mm的孔,一般先加工出孔径较小的预制孔(或预留铸造孔),而后再将孔径镗削到规定尺寸。 钻削时,钻削速度v是钻头外径的圆周速度(米/分); 进给量f是钻头(或工件)每转钻入孔中的轴向移动 距离(mm/r)。图2是麻花钻的钻削要素,由于麻花 钻有两个刀齿,故每齿进给量a f=f/2(mm/齿)。切削 深度a p有两种:钻孔时按钻头直径d的一半计算; 扩孔时按(d-d0)/2计算,其中d0为预制孔直径。每 个刀齿切下的切屑厚度a0=a f sin K r,单位为mm。式 中K r为钻头顶角的一半。使用高速钢麻花钻钻削钢 铁材料时,钻削速度常取16~40米/分,用硬质合 图2 麻花钻的钻削要素金钻头钻孔时速度可提高1倍。 钻削过程中,麻花钻头有两条主切削刃和一条横刃,俗称“一尖(钻心尖)三刃”,参与切削工作,它是在横刃严重受挤和排屑不利的半封闭状态下工作,所以加工的条件比车削或其他切削方法更为复杂和困难,加工精度较低,表面较粗糙。钻削钢铁材料的精度一般为IT13~10,表面粗糙度为R a20~1.25μm,扩孔精度可达IT10~9,表面粗糙度为R a10~0.63μm。钻削加工的质量和效率很大程度上决定于钻头切削刃的形状。在生产中往往用修磨的方法改变麻花钻头切削刃的形状和角度以减少切削阻力,提高钻削性能,中国的群钻就是采用这种方法创制出来的。 当钻孔的深度l与直径d之比大于6时,一般视为深孔钻削。钻削深孔的钻头细长,刚度差,钻削时钻头容易偏斜并与孔壁发生摩擦,同时对钻头的冷却和排屑也较困难。因此,当l/d大于20时需要采用专门设计的深孔钻,并输入一定流量和压力的切削液加以冷却和把切屑冲刷出来,才能达到较高的钻削质量和效率。

Φ48金刚石复合片钻头

Φ48金刚石复合片钻头 一、产品参数 Φ48金刚石复合片钻头 直径(mm)Φ48 钻压(Kg)300-700 转速(rpm)300-350 泵量(1╱min)120-160 生产工艺优质钢材锻压成型 主要用途金刚石钻头遍布全国煤田、石油钻探、地质勘 探、水利水电、铁路公路、隧道建设等行业关键词三翼金刚石钻头

二、产品特点 金刚石复合片(PDC)是在高温条件下,由人造金刚石与硬质合金一次性合成的特殊超硬材料,它不但具有金刚石硬度高、耐磨等优点,同时还具备了硬质合金抗冲击性强、出刃大等特点,用它做钻头的刀翼可大大提高钻头的工作效率,是钻进中硬岩层和坚硬岩层的理想钻头。本系列金刚石PDC钻头,托体采用优质钢材煅压成型,经过真空全自动热处理设备进行增加机械性能处理。 普通型采用国内优质复合片做刀翼,超强型采用美国GE公司生产的刀片,根据地质条件的不同选用相应的质量等级,可达到更高的产品性价比,达到节能高效的经济指标。 高强型金刚石钻头刀翼采用最新研制的球型金刚石刀片,特点 是钻进速度快,抗冲击能力强。当钻头钻进时,唇边用于正常均匀地

层岩石的刮削,突出部分可以抑制钻头钻进过程中遇到缝隙时瞬间大幅度进尺,大大降低了钻头的意外损坏,提高了应对复杂岩层的钻进水平。 本公司生产的金刚石钻头遍布全国煤田、石油钻探、地质勘探、水利水电、铁路公路、隧道建设等行业。两翼PDC锚杆钻头(半片标准型)适应岩层八级以下,在同等岩层条件下钻进寿命是普通合金钻头的10-30倍,效率至少提高60%以上,不需修磨,大大降低工人的劳动强度,节约工时。两翼PDC锚杆钻头(半片加强型)刀翼关键原材料由美国GE公司生产,其金刚石含量是普通钻头的1.5倍,耐磨性极好,效率显著提高,综合成本降低,适应12级以下中硬岩层。 三、其他产品参数 金刚石复合片(PDC)钻头钻进规程建议参数表: 行号规格mm 钻进规程参数 钻压(Kg)转速(rpm)泵量(1╱min) 1Ф28300—700300—350150—200 2Ф30300—700300—350150—200 3Φ32300—700300—350150—200 4Φ48300—700300—350120—160 5Φ56320—800250—350130—180 6Φ75480—1200200—300150—200 7Φ94640—1600150—250200—250 8Φ110880—2200120—200200—300 9Φ1521500—3000100—200500—850 10Φ1901800—4000100—200600—1200 11Φ2302200—4500100—200750—1400 12Φ2702400-5000100—2001000-1500

第1章 金刚石钻头基本知识

第一章金刚石钻头基本知识 第一节概述 1.1金刚石钻头的发展历史 金刚石钻头是不同于牙轮钻头的另一类钻井破岩工具,其使用可以追溯到19世纪60年代。最初人们以天然金刚石为切削元件制作打炮眼和挖掘隧道的工具,后来出现了用于石油钻井的钢体鱼尾式天然金刚石全面钻进钻头和取心钻头。早期的金刚石钻头是将天然金刚石冷镶在低碳钢上的。由于天然金刚石来源有限,价格昂贵,加之本身尺寸、性能方面的原因以及当时落后的制造工艺,大大限制了金刚石钻头在石油钻井工业中的应用。 随着粉末冶金技术的发展,出现了采用烧结碳化钨作为钻头体的胎体式金刚石钻头。这种技术的出现使金刚石钻头的制造水平大大提高。胎体式金刚石钻头具有耐冲蚀、耐磨损的特点,具有良好的使用性能,其制造工艺也不复杂,因此一经出现就迅速推广开来。 人造聚晶金刚石的研制成功,对金刚石钻头技术的发展起了巨大的推动作用。人造聚晶金刚石复合片钻头(PDC钻头)的出现一度被称为20世纪80年代钻井工业技术的一大突破,这种新技术对石油钻井业的发展产生了巨大的影响。现场使用证明,软到中等硬度地层钻井用PDC钻头具有机械钻速高、进尺多、寿命长、工作平稳、井下事故少、井身质量好等优点,并能与井下动力钻具配合用于高速钻井。合理使用金刚石钻头可以大大缩短建井周期,降低钻井成本,提高钻井经济效益。 1.2金刚石钻头的发展前景 经过近二十多年的发展,金刚石钻头已经成为继牙轮钻头之后的又一重要破岩工具。时至今日,PDC钻头在石油钻头市场所占的份额越来越大,几乎每年以30%的速度侵吞牙轮钻头市场。随着新的设计理论、设计方法和材料等技术的发展,PDC钻头的适用范围也在不断扩展,以前被认为不适用于PDC钻头的地层现在也广泛使用,比如我国中原油田的文留区块的沙二至沙三地层由于地质情况复杂、夹层多,可钻性差,以前一直被认为是PDC钻头的禁区,在这里钻的井除了取心之外用的都是牙轮钻头。可是从2000年开始,PDC钻头在这个区块的使用量逐渐增多,效果也很好,而2001年底我公司的一只8 1/2 BK542-4型PDC钻

钻头知识

钻头知识 钻头 钻头主要分为:刮刀钻头;牙轮钻头;金刚石钻头;硬质合金钻头;特种钻头等。衡量钻头的主要指标是:钻头进尺和机械钻速。钻机八大件 钻机八大件是指:井架、天车、游动滑车、大钩、水龙头、绞车、转盘、泥浆泵。 钻柱组成及其作用 钻柱通常的组成部分有:钻头、钻铤、钻杆、稳定器、专用接头及方钻杆。钻柱的基本作用是:(1)起下钻头;(2)施加钻压;(3)传递动力;(4)输送钻井液;(5)进行特殊作业:挤水泥、处理井下事故等。 钻井液的性能及作用 钻井液的性能主要有:(1)密度;(2)粘度;(3)屈服值;(4)静切力;(5)失水量;(6)泥饼厚度;(7)含砂量;(8)酸碱度;(9)固相、油水含量。钻井液是钻井的血液,其主作用是:1)携带、悬浮岩屑;2)冷却、润滑钻头和钻具;3)清洗、冲刷井底,利于钻井;4)利用钻井液液柱压力,防止井喷;5)保护井壁,防止井壁垮塌;6)为井下动力钻具传递动力。 常用的钻井液净化设备 常用的钻井液净化设备:(1)振动筛,作用是清除大于筛孔尺寸的砂粒;(2)旋流分离器,作用是清除小于振动筛筛孔尺寸的颗粒; (3)螺杆式离心分离机,作用是回收重晶石,分离粘土颗粒;(4)筛筒

式离心分离机,作用是回收重晶石。 钻井中钻井液的循环程序 钻井液罐经泵→地面管汇→立管→水龙带、水龙头→钻柱内→钻头→钻柱外环形空间→井口、泥浆(钻井液)槽→钻井液净化设备→钻井液罐。 钻开油气层过程中,钻井液对油气层的损害 主要有以下几种损害:(1)固相颗粒及泥饼堵塞油气通道;(2)滤失液使地层中粘土膨胀而堵塞地层孔隙;(3)钻井液滤液中离子与地层离子作用产生沉淀堵塞通道;(4)产生水锁效应,增加油气流动阻力。 预测和监测地层压力的方法 (1)钻井前,采用地震法;(2)钻井中,采用机械钻速法,d、dc 指数法,页岩密度法;(3)完井后,采用密度测井,声波时差测井,试油测试等方法。 钻井液静液压力和钻井中变化 静液压力,是由钻井液本身重量引起的压力。钻井中变化,岩屑的进入会增加液柱压力,油、气水侵会降低静液压力,井内钻井液液面下降会降低静液压力。防止钻井液静液压力变化的方法有:有效地净化钻井液;起钻及时灌满钻井液。 喷射钻井 喷射钻井是利用钻井液通过喷射式钻头喷嘴时,所产生的高速射流的水力作用,提高机械钻速的一种钻井方法。

金刚石钻头分类

词目:表镶金刚石钻头 英文:surface set diamond bit 释文:金刚石钻头的一种。钢质的圆筒状钻头体,上部车有丝扣,下部烧结有钻头胎体,金刚石的颗粒是包镶在钻头胎体的表面上。胎体的外径略大于钢体直径、内径略小于钢体内径,内外侧和底部都有可以过水的沟槽,在钻进时流过冲洗液带走岩粉和冷却钻头。表镶金刚石钻头都是包镶的天然金刚石,故价格昂贵,因而只用在一些特殊难钻进的硬地层。石油钻井用表镶金刚石钻头较多。 词目:孕镶金刚石钻头 英文:impregnated diamond bit 释文:金刚石钻头的一种。钻头胎体里均匀包镶着金刚石颗粒的钻头。钻进时胎体磨损,金刚石不断出露克取岩石,可以一直将胎体全部磨完,都有新出露的金刚石进行工作,类似于砂轮磨削金属材料。胎体有一定高度,外径略大于钻头体外径、内径也略小于钻头体内径,胎体的外侧面、内侧面和底面均有水槽,以便通过冲洗液排除岩粉和冷却钻头。大多数的孕镶金刚石钻头是使用的人造金刚石,称为人造孕镶金刚石钻头。人造金刚石比天然金刚石价格便宜很多,也能较广泛地用在硬地层中钻进。[ 词目:电镀金刚石钻头 英文:electro-plated diamond bit 释文:又称铸造金刚石钻头。中国独有的利用电镀原理而制成的金刚石钻头。金刚石的胎体是在电镀槽里被一层一层镀覆在钻头体上,电镀覆盖电解金属的同时,撒布金刚石颗,金刚石就被包裹在电镀金属层里。长时间的反复补砂和镀覆就形成了钻头的工作层。电镀时钻头钢体也采用塑料模具定型,使镀层沿钻头轴线方向增长,并保证胎体的内外径尺寸和小槽等。电镀金刚石钻头所用的金刚石也多是人造金刚石,钻头胎体的成分主要是镍,与普通孕镶金刚石钻头有相同的适用条件。 词目:钻头胎体 英文:matrix 释文:包镶金刚石和连接空白钻头体的钻头冠部合金或金属称胎体。它一般用难熔金属碳化钨粉末或铸造碳化钨为骨架材料;以易熔金属如Cu、cu-Ni、zn、Sn、Mn等为粘结剂,在模具内以高温条件下压结,温度一般为1000~1200℃。钻头的工作能力在很大程度上取决于胎体的性质,要有相当的强度、抗冲击韧性,特别是硬度与耐磨性要与所钻岩层性质相适应。孕镶金刚石钻头随钻进胎体要相应磨损,使金刚石不断裸露出来以破碎岩石,因此胎体硬度与耐磨性是孕镶钻头的一个重要指标。调节胎体骨架金属的成分、粒度,以及粘结金属的成分、比例和烧结工艺可改变胎体硬度和耐磨性,保证在各类岩层中都能取得最好的钻进效果。按胎体的硬度进行了分类分级,共分软、中硬、硬3类,6级,见表。坚硬致密的弱研磨性地层应选用软胎体,即洛氏硬度(HRC)在35以下;在强研磨性地层、裂隙地层则应选用硬胎体,即HRC 硬度在35~45之间。

钻头方面的基础知识

钻头方面的基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

钻削与钻头 钻削 用各种钻头进行钻孔、扩孔或锪孔的切削加工。钻孔是用麻花钻、扁钻或中心孔钻等在实体材料上钻削通孔或盲孔。扩孔是用扩孔钻扩大工件上预制孔的孔径。锪孔是用锪孔钻在预制孔的一端加工沉孔、锥孔、局部平面或球面等,以便安装紧固件。钻削方式主要有两种:①工件不动,钻头作旋转运动和轴向进给,这种方式一般在钻床、镗床、加工中心或组合机床上应用;②工件旋转,钻头仅作轴向进给,这种方式一般在车床或深孔钻床上应用。麻花钻的钻孔孔径范围为~100mm,采用扁钻可达125mm。对于孔径大于100mm的孔,一般先加工出孔径较小的预制孔(或预留铸造孔),而后再将孔径镗削到规定尺寸。 钻削时,钻削速度v是钻头外径的圆周速 度(米/分);进给量f是钻头(或工件)每转 钻入孔中的轴向移动距离(mm/r)。图2是 麻花钻的钻削要素,由于麻花钻有两个刀 齿,故每齿进给量a f=f/2(mm/齿)。切削深 度a p有两种:钻孔时按钻头直径d的一半 图2 麻花钻的钻削要素计算;扩孔时按(d-d0)/2计算,其中d0为预制孔直径。每个刀齿切下的切屑厚度a0=a f sin K r,单位为mm。式中K r为钻头顶角的一半。使用高速钢麻花钻钻削钢铁材料时,钻削速度常取16~40米/分,用硬质合金钻头 钻孔时速度可提高1倍。

钻削过程中,麻花钻头有两条主切削刃和一条横刃,俗称“一尖(钻心尖)三刃”,参与切削工作,它是在横刃严重受挤和排屑不利的半封闭状态下工作,所以加工的条件比车削或其他切削方法更为复杂和困难,加工精度较低,表面较粗糙。钻削钢铁材料的精度一般为IT13~10,表面粗糙度为R a 20~μm ,扩孔精度可达IT10~9,表面粗糙度为R a 10~μm 。钻削加工的质量和效率很大程度上决定于钻头切削刃的形状。在生产中往往用修磨的方法改变麻花钻头切削刃的形状和角度以减少切削阻力,提高 钻削性能,中国的群钻就是采用这种方法创制出来的。 当钻孔的深度l 与直径d 之比大于6时,一般视为深孔钻削。钻削深孔的钻头细长,刚度差,钻削时钻头容易偏斜并与孔壁发生摩擦,同时对钻头的冷却和排屑也较困难。因此,当l /d 大于20时需要采用专门设计的深孔钻,并输入一定流量和压力的切削液加以冷却和把切屑冲刷出 来,才能达到较高的钻削质量和效率。 钻头 用以 在实 体材 料上 钻削 出通 孔或 盲 孔, 并能 对已 有的 孔扩 孔的 刀 具。 常用的钻头主要有麻花钻、扁钻、中心钻、深孔钻和套料钻。扩孔钻和锪钻虽不能在实体材料上钻孔,但习惯上也将它们归入钻头一类。 锥柄麻花钻 直柄麻花钻 扁钻 中心钻 锪钻 扩孔钻 图3 各类钻头

如何在实际工作中正确选择孕镶金刚石钻头设计参数

如何在实际工作中正确选择孕镶金刚石钻头设计参数 孕镶金刚石钻头广泛应用于小口径岩石钻探的施工中,而采用合理的钻头设计参数对提高钻探效率发挥钻头最大功效至关重要。本文根据黑河象山电站帷幕灌浆工程岩石钻探实例,初步阐述如何正确选择孕镶金刚石钻头设计参数及其实际意义。 孕镶金刚石钻头适用于硬至坚硬、可钻性Ⅶ—Ⅻ级、完整均质至破碎、裂隙性的、具有研磨的岩层。钻头设计时应考虑的结构参数如下: 一、胎体 胎体高度H =10~12mm ,H 值愈大,则钻头稳定性愈好。 胎体工作层高一般为4mm 。 胎体厚度一般为8mm 。壁厚影响钻进效率和钻头寿命;壁厚小,钻进效率高,金刚石消耗量少;但不够耐磨,钻头寿命较短。 二、唇面形状 孕镶钻头的唇面形状要比表镶的多,它除了表镶钻头的那些以外,还可采用: 1.尖齿形,它又分同心圆尖齿形(见图3.13-5a )、阶梯尖齿形(见图3.13-5b )和交错式尖齿形(见图3.13-5c )。 2.带底喷式水眼(见图3.13-6) 若岩石软硬互层和破碎,为提高岩矿心采取率,则可选用阶梯形底喷式水眼钻头。 二、胎体性能 胎体是钻头极其重要的组成部分,其成分和性能比较复杂,但设计或选择时,目前仅根据岩石性质,确定相适应的胎体硬度和耐磨性。 选择原则是岩石硬、研磨性弱,则胎体偏软、耐磨性偏低;相反,岩石软、研磨性强,则胎体偏硬、耐磨性要高。具体选择时,可参考表3.13-4,表3.13-5。 表3.13-4 设计原则是:岩石愈硬、研磨性偏低,则粒度较细、品级较高。设计时可参考表3.13-6。 表3.13-6 四、金刚石浓度 根据岩石硬度和研磨性设计金刚石浓度,浓度保证胎体唇面上的金刚石数量有足够的切削能力和有较高的耐磨性。 (a ) (b ) (c ) 图3.13-5 尖齿形钻头 (a)—同心圆尖齿形;(b)—阶梯尖齿形;(c)—交错式尖齿形 图3.13-6 阶梯形底喷水眼钻头

金刚石钻头生产厂家大全

金刚石钻头生产厂家 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 中山市华超电子科技有限公司 中山市华超电子科技有限公司是一家专业加工生产销售橡套电缆(橡胶线)的民营企业。我厂已联合国内多家大型生产厂商共同合作加工生产橡胶线及各类特殊电缆,并形成长期战略合作伙伴关系。工厂先后荣获“广东省高新技术企业”、“广东省民营科技企业”等荣誉称号,并被评为“省级创新型企业”。工厂资金技术实力雄厚厂房占地面积2多万平方米,职工200多人,其中高、中级职称技术人员和管理人员占总人数的30%左右。经过多年的发展,现已成为拥有两间分公司、产值在同行业隐步领先。工厂积极推行先进的管理体系,先后通过了 IS09001、ISO14001等质量、环境体系认证,以及取得了德国VDE、美国UL、加拿大CSA、澳洲SAA、韩国KS、法国BV、NF、日本PSE、JQA、中国CCC、TLC、CCS、矿用产品安全标志等产品认证。 马鞍山市鸿航金属工业有限公司 马鞍山市鸿航金属工业有限公司地处“中国刃模具之乡”和“博望剪折机床及刃模具特色产业”的安徽马鞍山博望区,公司引进先进的硅溶胶精密铸造工艺,生产各种出口不锈钢、碳钢、低合金钢等精密铸件。公司以高质量、高标准、顾客满意度为办厂目标,拥有一批专业化铸造科研队伍,配备了精密铸造成套设备以及材质光谱分析仪、拉力试验机、硬度计、金相显微镜等检测试验设备。并采用欧美先进的公差和材质标准,始终坚持以顾客为中心,奉行“科学管理,开拓创新、诚信顾客”的质量方针,不断拓展精铸件的应用领域。公司承接来图来样加工,热忱欢迎国内外客商光临惠顾。 阜新市金力超硬工具有限公司 阜新市金力超硬工具有限公司,公司坐落于辽宁省阜新市高新技术开发区,是9000认证企业,具有专业的研发团队和雄厚的技术力量,专业从事金刚石工具、PDC复合片钻头的研发、生产、销售和服务。“金力钻头”:PDC金刚石复合片钻头、天然金刚石钻头和人造金刚石钻头,均已通过煤炭工具北京凿岩机具产品质

分析金刚石钻头的结构及特点

金刚石钻头的结构及特点 长沙清泉钻机有限公司为您详细解析分析金刚石钻头的结构及特点 1、总体结构 金刚石材料钻头属一体式钻头,整个钻头无活动部件,主要有钻头体,冠部,水力结构(包括水眼或喷嘴、水槽亦称流道,排屑槽),保径、切削刃(齿)五部分 金刚石钻头的冠部是钻头切削岩石的工作部分,其表面(工作面)镶装有金刚石材料切削齿,并布置有水力结构,其侧面为保径部分(镶装保径齿)它和钻头体相连,由碳化钨胎体或钢质材料制成。 钻头体是钢质材料体,上部是丝扣和钻柱相连接,其下部与冠部胎体连结在一起(钢质的冠部则与钻头体成为一个整体)。 金刚石材料钻头的水力结构分为两类。一类用于天然金刚石钻头和TSP钻头,这类钻头的钻井液从中心水孔流出,经钻头表面水槽分散到钻头工作面各处冷却、清洗、润滑切削齿,最后携带岩屑从侧面水槽及排屑槽流入环形空间。另一类用于PDC钻头,这类钻头的钻井液从水眼中流出,经过各种分流元件分散到钻头工作面各处冷却、清洗、润滑切削齿。PDC 钻头的水眼位置和数量根据钻头结构而定。 金刚石材料的保径部分在钻进时起到扶正钻头、保证井径不致缩小的作用,采用在钻头侧面镶装金刚石的方法达到保径目的。 2、金刚石材料钻头的切削齿材料 金刚石钻头切削齿材料分为天然金刚石和人造金刚石两大类。金刚石为碳的结晶体,晶体结构为正四面体,碳原子之间以共价键相连,结构非常稳定,典型的品形有立方体、八面体和十二面体等。 金刚石是人类目前所知材料中最硬、抗压强度最强、抗磨损能力最高的材料,因此它是作为钻头切削刃最理想的材料。 但是,金刚石作为钻头切削刃材料也存在较大的弱点。第一,它的脆性较大,遇到冲击载荷会引起破裂。第二,它的热稳定性较差,在高温下金刚石燃烧变为二氧化碳和一氧化碳(碳化),在空气中约在455~860℃之间,金刚石就要出现石墨化燃烧;在惰性或还原性气体中不会氧化,但在约1430℃时,金刚石晶体会突然爆裂而变成石墨。因此金刚石钻头的设计、制造和使用中须避免金刚石材料经受高的冲击载荷并保证金刚石切削齿的及时冷却。 3.金刚石工具的现状 金刚石工具广泛应用于地质勘探、石材、机械、汽车及国防工业等各个领域,机械加工用的磨具、地质钻头及石材锯切工具的制造工艺水平已有很大提高。产品已形成系列化、标准化,品种规格齐全,产品质量稳定,部分产品在国际市场上具有一定的竞争力。金刚石单晶绝大多数是用来制作各种金刚石工具,其种类很多。我国生产的金刚石锯切工具品种规格齐全,质量稳定。据统计,近几年来金刚石钻探工具基本上可满足市场需求;随着建筑业的发展和家用空调的普及,用于管线安装和空调整机安装及旧楼改造,施工用金刚石薄壁工程钻头需求量也在日益增加,用于石油、煤田勘探的PDC钻头的需求量也相应增加,我国所生产的金刚石复合片在质量上还不过关,有待于进一步研究改进,不断提高产品质量,改变目前PDC 钻头依赖进口的局面。

人造孕镶金刚石钻头的制作工艺

龙源期刊网 https://www.360docs.net/doc/677508531.html, 人造孕镶金刚石钻头的制作工艺 作者:郑宏俊刘守进杨深然汪美娜杜啸 来源:《中国科技纵横》2012年第02期 摘要:主要对煤矿和煤田勘探中常用的金刚石钻头的模具制作进行了分析,并简要介绍了金刚石钻头的热压工艺,以及在制作过程中应注意的问题。 关键词:金刚石钻头热压模具 人造孕镶金刚石钻头是经过特种工艺把金刚石微粉与特殊配方的粉末焊接在刚体上而制成的。它具有钻进效率高,使用寿命长等特点,它还具有很好的胎体耐磨性、抗冲蚀性及冲击性,胎体的线膨胀系数较高,胎体与缸体结合强度高,孕镶胎体金刚石分布均匀等优点。它的破岩作用是由金刚石颗粒完成的。在坚硬地层中,单粒金刚石在钻压作用下,使岩石处于极高的应力状态下(约4200~5700MPa,有资料认为可达6300MPa),使岩石发生岩性转变,由 脆性变为塑性。单粒金刚石吃入地层,在扭矩作用下切削破岩,切削深度基本上等于金刚石颗粒的吃入深度。 目前,金刚石钻头已被广泛应用在地质勘探中,也被应用在国内外的众多矿区中。岩芯钻机主要有机械式钻机(低转速)和液压式钻机(高转速),其中金刚石钻头被广泛应用在液压式钻机中,其取芯的形式主要是绳索取芯,它也是今后地质勘探中的主要取样形式,深受探矿和基础建设工作者的欢迎,展现出了更广阔的前景。 1、钻头的种类及规格 按胎体唇面的形状分为圆弧、平底、梯齿、尖齿、锯齿、阶梯、齿轮、底喷、侧喷、特制平底等种类钻头。每种钻头在不同的地质条件下都具有不同的作用,选用相应种类的钻头才会以最快的速度成孔。 按钻进的用途分为取芯钻头和不取芯钻头。其中取芯钻头的取芯形式又可分为单管、双管及绳索取芯三种。 2、钻头模具及刚体设计 2.1 钻头模具设计 金刚石钻头在高温烧结的过程中,模具的外形和尺寸直接决定了钻头胎体的外形和尺寸,因此,模具的材料必须具有耐高温、变形小、传热效果好并且是非金属材料。而高强石墨是最佳的材料,它还具有硬度高、容易被加工等特点。

钻头知识大全

一、钻头刃口修磨和强化对钻削加工的改善 钻头在进行孔加工过程中会有不同程度的磨损,对钻头的材质和磨损情况进行分析,在改善钻削加工时,对钻头刃口进行修磨和强化,可有效改善钻头在加工过程中的磨损情况,提高钻头的性能和使用寿命。vip汽车设计网 孔加工在金属切削加工中占有重要地位,一般约占机械加工量的1/3。其中钻孔约占22%~25%,其余孔加工约占11%~13%。由于孔加工条件苛刻的缘故,孔加工刀具的技术发展要比车、铣类刀具迟缓一些。近年来,随着中、小批量生产对生产效率、自动化程度以及加工中心性能要求的不断提升,刀具磨锋技术、多轴数控刀具刃磨设备的发展带动了孔加工刀具的发展,其中最典型的就是在机械生产中已应用多年、使用最为广泛的整体结构的钻头修磨技术逐渐成熟起来。通过对钻头刃口的修磨和强化改善钻削加工条件,要从钻头的结构特点和实际使用情况中寻求解决方法。vip汽车设计网 钻头的特点vip汽车设计网 1.钻头的材质分为高速钢和硬质合金,高速钢主要采用高速钢W系、Mo系材料;硬质合金采用钨钛类(YG)、钨钛钴类(YT)材料。比较有代表性的如表1中所列W18Gr4V、YG6和YT14。vip汽车设计网 vip汽车设计网 图1 钻头的基本结构 2.麻花钻的基本形状和结构并没有太大的改变(见图1)。vip汽车设计网 3.麻花钻切削刃的几何角度之间具有一定的特点和关联性。如图2所示,主偏角为Kr,刃倾角为λs,前角为λs,后角为αf,锋角为2φ(传统为118°)。vip汽车设计网 表1 高速钢和硬质合金材料的物理力学性能vip汽车设计网 vip汽车设计网 其中,钻头螺旋型结构具有如下特点:vip汽车设计网 (1)主偏角Kr在锋角2φ确定后也随之确定。vip汽车设计网 (2)由于钻头切削刃的刀尖(钻头直径处)为切削刃的最低点,从结构可知钻头切削刃的刃倾角λs为负。vip汽车设计网 (3)在钻头螺旋槽形状结构影响下,刃部前角λs由钻头外径的韧带处向钻心方向逐渐变小。vip汽车设计网 (4)切削刃的前角主偏角λs,随主偏角Kr的增大而随之增大。vip汽车设计网 图2 切削刃的几何角度 4.麻花钻的横刃也是切削刃的重要组成部分。如图2所示,横刃的前角γom、后角αf、斜角φ,也随着钻头切削刃的不同有着一定的变化。vip汽车设计网 钻头在加工过程中的磨损情况vip汽车设计网 1.钻头的磨损主要发生在切削刃部分(见图3)vip汽车设计网 图3 钻头在加工过程中的磨损vip汽车设计网 vip汽车设计网 2.钻头在实际加工中受力的分析,其切削力主要集中在钻头的切削刃部分,其中切削刃受到的转矩最大,横刃部分轴向力较为集中(见表2、图4)。 3.钻头在加工过程中产生的切削热的分布情况见图5。在加工中,钻头的钻心处由于切削

钻头知识

孔加工刀具一般可分为两大类:一类是从实体材料上加工出孔的刀具,常用的有麻花钻、中心钻和深孔钻等;另一类是对工件上已有孔进行再加工的刀具,常用的有扩孔钻、铰刀及镗刀等。例如,下图示标准高速钢麻花钻的结构。工作部分(刀体)的前端为切削部分,承担主要的切削工作,后端为导向部分,起引导钻头的作用,也是切削部分的后备部分。 孔加工刀具按其用途可分为两大类: 一类是钻头,它主要用于在实心材料上钻孔(有时也用于扩孔)。根据钻头构造及用途不同,又可分为麻花钻、扁钻、中心钻及深孔钻等; 另一类是对已有孔进行再加工的刀具,如扩孔钻、铰刀及镗刀等。 (一)麻花钻 麻花钻是一种形状复杂的孔加工刀具,它的应用较为广泛。常用来钻精度较低和表面较粗糙的孔。用高速钢钻头加工的孔精度可达IT11~IT13,表面粗糙度可达6.3~25;用硬质合金钻头加工时则分别可达IT10~IT11和3.2~12.5。 (二)中心钻 中心钻用于加工中心孔。有三种形式:中心钻、无护锥60°复合中心钻及带护锥60°复合中心钻。 中心钻在结构上与麻花钻类似。为节约刀具材料,复合中心钻常制成双端的。钻沟一般制成直的。复合中心钻工作部分由钻孔部分和锪孔部组成。钻孔部与麻花钻同样,有倒锥度及钻尖几何参数。锪孔部制成60°锥度,保护锥制成120°锥度。 复合中心钻工作部分的外圆须经斜向铲磨,才能保证锪孔部和锪孔部与钻孔部的过渡部分具有后角。(三)深孔钻 一般深径比(孔深与孔径比)为5~10的孔即为深孔。加工深径比较大的深孔可用深孔钻。深孔钻的结构有多种形式,常用的主要有外排屑深孔钻、内排屑深孔钻、喷吸钻等等。 (四)扩孔钻 扩孔钻用于已有孔的扩大,一般加工精度可达IT10~IT11,表面粗糙度可达3.2~12.5,通常作为孔的半精加工刀具。 扩孔钻的类型主要有两种,即整体锥柄扩孔钻和套式扩孔钻。 (五)锪钻 锪钻用于加工各种埋头螺钉沉头座、锥孔、凸台面等 定柄钻头的特点是能实现自动更换钻头。定位精度高,不需要使用钻套。大螺旋角,排屑速度快,适于高

金刚石复合片及金刚石钻头项目简介(立项备案申请)

金刚石复合片及金刚石钻头项目简介 一、项目概论 (一)项目名称 金刚石复合片及金刚石钻头项目 (二)项目建设单位 xxx公司 (三)法定代表人 史xx (四)公司简介 公司始终坚持“服务为先、品质为本、创新为魄、共赢为道”的经营理念,遵循“以客户需求为中心,坚持高端精品战略,提高最高的服务价值”的服务理念,奉行“唯才是用,唯德重用”的人才理念,致力于为客户量身定制出完美解决方案,满足高端市场高品质的需求。公司坚持诚信为本、铸就品牌,优质服务、赢得市场的经营理念,秉承以人为本,宾客至上服务理念,将一整套针对用户使用过程中完善的服务方案。顺应经济新常态,需要公司积极转变发展方式,实现内涵式增长。为此,公司要求各级单位通过创新驱动、结构优化、产业升级、提升产品和服务质量、提

高效率和效益等路径,努力实现“做实、做强、做大、做好、做长”的发 展理念。 展望未来,公司将立足先进制造业,加强国内外技术交流合作,不断 提升自主研发与生产工艺的核心技术能力,以客户服务、品质树品牌,以 品牌推市场;致力成为产业的领跑者及值得信赖的合作伙伴。公司经过多 年的不懈努力,产品销售网络遍布全国各省、市、自治区;完整的产品系 列和精益求精的品质使企业的市场占有率不断提高,除国内市场外,公司 还具有强大稳固的国外市场网络;项目承办单位一贯遵循“以质量求生存,以科技求发展,以管理求效率,以服务求信誉”的质量方针,努力生产高 质量的产品,以优质的服务奉献社会。 上一年度,xxx(集团)有限公司实现营业收入6017.85万元,同比增 长30.63%(1411.13万元)。其中,主营业业务金刚石复合片及金刚石钻 头生产及销售收入为4912.77万元,占营业总收入的81.64%。 根据初步统计测算,公司实现利润总额1297.72万元,较去年同期相 比增长307.06万元,增长率31.00%;实现净利润973.29万元,较去年同 期相比增长138.28万元,增长率16.56%。 (五)项目选址 xxx保税区 (六)项目用地规模

411-2011 PDC金刚石钻头使用技术规范

Q/SYCQZ 川庆钻探工程有限公司企业标准 Q/SYCQZ 411—2011 PDC金刚石钻头使用技术规范 2011-04-13发布2011-05-11实施

目次 前言................................................................................. II 1 范围 (1) 2 规范性引用文件 (1) 3 钻头分类及表示方法 (1) 4 使用条件 (1) 5 钻井技术要求 (1) 6 钻井操作要求 (2) 7 钻头起出判定 (2) 8 资料录取 (3) 附录A(资料性附录) PDC钻头使用记录卡片 (4)

前言 根据《中华人民共和国标准化法》和GB/T 1.1-2000《标准的结构和编写规则》。参照现有的Q/SYCQZ 001《钻井技术操作规程》技术要求、有关规定进行编制。 本标准由川庆钻探工程有限公司提出。 本标准由川庆钻探工程有限公司钻井专业标准化技术委员会归口。 本标准由川庆钻探工程有限公司川东钻探公司负责起草。 本标准起草人:刘竞、古光平、王华平、高含。

PDC金刚石钻头使用技术规范 1 范围 本标准规定了PDC金刚石钻头的使用条件、钻井技术、钻井操作、钻井安全要求、钻头起出时间确定及钻头使用资料录取等要求。 本标准适用于油、气井旋转钻井作业用PDC金刚石钻头(以下简称钻头)。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 Q/SYCQZ-001 钻井技术操作规程 3 钻头分类及表示方法 3.1 钻头的分类方法 钻头分类号由五到八个字符组成,第一个字符用英文字母表示厂家,第二个字符用英文字母表示钻头体的材料,M表示胎体,S表示钢体。第三至第五或第六个字符用阿拉伯数字分别表示钻头的布齿密度、聚晶金刚石复合片(以下简称PDC)的尺寸或切削齿的类别、钻头的冠部轮廓形状,第六到八用英文字母表示钻头特征。 3.2 钻头型号的表示方法 3.2.1 钻头型号由钻头直径代号、厂家命名型号和按本标准制定的钻头分类号三部分组成。 3.2.2 各钻头厂家产品说明书应标注命名代码意义。 4 使用条件 4.1 对井眼的要求: 4.1.1 井底清洁无金属落物。钻头入井前应对井底进行打捞清理,保持井底干净。 4.1.2 保证井眼畅通。 4.2 地面设备工作可靠。 4.3钻头达到金刚石钻头产品质量标准SY/T5127的要求。 5 钻井技术要求 5.1 钻头选型应与地层相适应。定向钻进尽可能使用短保径、井底覆盖率大的钻头。 5.2 钻具组合

钻具基础知识

钻具基础知识 一、钻柱的组成与功用 (一)钻柱的组成 钻柱(Drilling String)是钻头以上,水龙头以下部分的钢管柱的总称. 它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻铤(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。 (二)钻柱的功用 (1)提供钻井液流动通道; (2)给钻头提供钻压; (3)传递扭矩; (4)起下钻头; (5)计量井深; (6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况); (7)进行其它特殊作业(取芯、挤水泥、打捞等); (8)钻杆测试( Drill-Stem Testing),又称中途测试。 1. 钻杆 (1)作用:传递扭矩和输送钻井液,延长钻柱。 (2)结构:管体+接头 (3)规范: 壁厚:9 ~11mm,一般是9.19mm。 外径:根据各种钻杆情况而定,如常用的127,140等。 长度:一般在9.5m左右。 常用钻杆规范(内径、外径、壁厚、线密度等 (2)接头及螺纹 螺纹连接条件:尺寸相等,丝扣类型相同,公母螺纹相匹配。 钻杆接头特点:壁厚较大,外径较大,强度较高。 钻杆接头类型: 内平(IF)、贯眼(FH)、正规(REG);NC系列 ●内平式:主要用于外加厚钻杆。特点是钻杆通体内径相同,钻井 液流动阻力小;但外径较大,容易磨损。 ●贯眼式:主要用于内加厚钻杆。其特点是钻杆有两个内径,钻井 液流动阻力大于内平式,但其外径小于内平式。 ●正规式:主要用于内加厚钻杆及钻头、打捞工具。其特点是接头

内径<加厚处内径<管体内径,钻井液流动阻力大,但外径最小,强度较大。 这种类型接头均采用V型螺纹,但扣型、扣距、锥度及尺寸等都有很大的差别。 NC型系列接头 NC23,NC26,NC31,NC35,NC38,NC40,NC44,NC46,NC50,NC56,NC61,NC70,NC77等。 NC—National Coarse Thread,(美国)国家标准粗牙螺纹。 xx—表示基面丝扣节圆直径,用英寸表示的前两位数字乘以10。 如:NC26表示的节圆直径为2.668英寸。 NC螺纹也为V型螺纹, 表2-17所列的几种NC型接头与旧API标准接头有相同的节圆直径、锥度、螺距和螺纹长度,可以互换使用。 数字型接头与旧API接头的区别 2、钻铤 结构特点:管体两端直接车制丝扣,无专门接头;壁厚大(38-53毫米),重量大,刚度大。 主要作用: (1)给钻头施加钻压; (2)保证压缩应力条件下的必要强度; (3)减轻钻头的振动、摆动和跳动等,使钻头工作平稳; (4)控制井斜。 类型:光钻铤、螺旋钻铤、扁钻铤。 常用尺寸:6-1/4〃,7 〃,8 〃,9 〃。 3.方钻杆 类型:四方形、六方形 特点:壁厚较大,强度较高 主要作用:传递扭矩和承受钻柱的全部重量。 常用尺寸:89mm(3.5英寸),108mm (4.5英寸),133.4mm (5.5英寸)。 4.稳定器 类型:刚性稳定器、不转动橡胶套稳定器、滚轮稳定器。 作用: 1)防斜; 2)控制井眼轨迹。 二、钻柱的工作状态及受力分析 (一)钻柱的工作状态 1. 起下钻工况下 直井:直的拉伸、滑动。

空心钻头知识普及

钢轨钻孔机用空心钻头知识普及 一:空心钻头 又名多刃钢板钻、取芯钻头、开孔器。一般空心钻头削切深度:25mm,35mp50mm,75mm,100 等钻孔速度要比传统的麻花钻头快上8-10倍。 二:钻头结构 刃部采用的三枚组合刃结构、齿距的不等分割、特殊硬质合金刀刃等是创恒独特技术的结晶3枚组合刃由若干个外刃、中刃、内刃组成。 每个刀刃在切削过程中,只负担1/3左右的工作量,加上每个刀刃的内侧也均有切削刀。所以,可以使排屑非常顺畅。另外由于各刃分别负担一部分切削工作的特性,使得该孔钻极不容易产生崩刃现象。空心钻头可对50MM厚的钢板进行高精度,高速度穿孔也可打交叉重叠孔,刃部采用的三枚组合刃结构、齿距的不等分割、特殊硬质合金刀刃等是独特技术的结晶。空心钻头配合专门上取芯钻头的机器,具有效率快,成本底的特点,空心钻钻头刃部采用硬质合金制造,具有三层端齿几何,切削轻快,钢板钻头使用寿命长,双削平柄接口,适用于各钟磁力钻钻机。硬质合金钻头也适用于各类立式钻床、摇臂钻床、铣床、车床等。 三:空心钻头的材质 空心钻头材质可分为硬质合金钢,高速钢等,粉末冶金,钨钢钻类,一般市场上用的最多的是硬质合金,和高速钢的为常用型,硬质合金空心钻头其优点耐磨耐用,打较硬材质时不易崩掉,而高速钢是很锋利型的,钻孔比较快,但比较脆,打较硬材质时容易断。 四:空心钻头的分类

钻头目前除了市面传统的麻花钻以外,还有专门用于磁座钻的取芯钻头(又叫空心钻头),这种钻头采用铣刀的原理,具有效率高,精度好的效果。 一般客户都是选择空心钻头(取芯钻头),规格有:12-160mm不等。只有小尺寸的孔必须 要用麻花钻头打。 五:钻头柄型的分类 目前市场上的主要柄型分为通用柄,直角柄,泛音柄,螺纹柄 通用柄:一个平面三个孔,或只有三个孔的都是通用柄,又称日东柄,是日本日东磁力钻专用柄型,原本是没有平面的,只有三个孔,因在国内使用削了一个平面,所以现在也可 以和直角柄型钻头通用,又称通用柄。 直角柄(两点定位):又称百得柄,是德国百得磁力钻专用柄型,两个平面且成直角90度的都是直角柄,是目前市场是使用最广的柄型,德国百得,德国欧霸,德国澳宝等德国和 英国磁力钻(泛音除外)都是使用这种柄型 泛音柄:四个孔没有平面的就是泛音柄,是德国泛音磁力钻专用柄型,但直径比直角柄和通用柄()都小,是18mm且顶针都是用细顶针,主要用在德国泛音磁力钻机上,其他进口钻机都不能装上,国产钻机目前都使用直角柄型(两点定位)装钻头

金刚石复合片

金刚石复合片(polycrystalline diamondcompact PDC)作为一种新型复合材料,其发展历史仅有十几年,但其应用范围已发展到各行各业,广泛地应用于地质钻探、非铁金属及合金、硬质合金、石墨、塑料、橡胶、陶瓷和木材等材料的切削加工等领域。它的表层为金刚石粒度不同的粉末烧结而成的多晶金刚石,具有极高的硬度、耐磨性和较长的工作寿命;底层一般为钨钴类硬质合金,它具有较好的韧性,为表层聚晶金刚石提供良好的支撑,且容易通过钎焊焊接到各种工具上。目前国内外一般都采用超高压高温烧结的方法制造聚晶金刚石-硬质合金复合片。由于它的使用范围扩大,对其性能的要求提高,因而相应的性能检测方法也经过了一个快速的发展过程,在检测的准确性和有效性方面都趋于成熟。 1金刚石复合片的性能 金刚石复合片之所以应用如此广泛,主要是因为其具有其他材料无与伦比的优越的性能。 (1)高的硬度和耐磨性(磨耗比)。复合片的硬度高达10 000 HV左右,是目前世界上人造物质中最硬的材料,比硬质合金及工程陶瓷的硬度高得多。由于硬度极高,并且各向同性,因而具有极佳的耐磨性。一般通过磨耗比来反映复合片的耐磨性,在20世纪80~90年代中期,复合片磨耗比为4~6万(国外为8~12万); 20世纪90年代中期至现在,复合片的磨耗比为8~30万(国外10~50万)。 (2)热稳定性。复合片的热稳定性确定了其使用范围,复合片的热稳定性[2]即为耐热性,与其强度和磨耗比一样,是衡量PDC质量的重要性能指标之一。耐热稳定性是指在大气环境(有氧气存在)下加热到一定的温度,冷却以后聚晶层化学性能的稳定性(金刚石墨化的程度)、宏观力学性能的变化和对复合层界面结合牢固程度的影响。热稳定性的变化在750℃烧结以后,国内部分厂家产品表现为磨耗比上升5% ~20%,抗冲击韧性变化不大,部分厂家产品磨耗比下降,抗冲击性能下降,这与各个单位所采用的配方和工艺不同有关,国外复合片的磨耗比和抗冲击韧性烧结前后变化不大。 (3)抗冲击韧性。PDC作为切削工具,被广泛地应用于油气钻井作业中。在钻井过程中,由于轴向力和水平切削力的联合作用、钻具与孔壁的摩擦、钻杆柱的弯曲、孔底不平及残留岩粉、钻机振动等因素的影响,使得钻头上的PDC受到极大的冲击力。PDC抗冲击性能反映了复合片的韧性和粘结强度,是一综合性指标,也是决定其使用效果好坏的关键所在。在20世纪80~90年代中期,复合片的抗冲击韧性为100~200 J(国外为200~300 J); 20世纪90年代中期至现在,抗冲击韧性为200~400 J(国外大于400 J)。 2复合片的性能检测方法 2.1耐磨性 复合片的耐磨性一般是通过磨耗比这个指标来衡量的,但迄今为止国际上也没有制定统一的测试标准,几个主要的PDC生产国均有其自己的测试方法。美国的GE公司采用的方法是用PDC来车削一种结构均匀的花岗岩棒,切削速度为180 m/min,切深为1 mm,进给量为0. 28 mm/r。车削时用测力计测PDC的受力大小。车削一定数量的花岗岩后,观察PDC 的磨损量。磨损量是用投影显微镜测量被磨损部位的长宽尺寸,然后用计算机算出其体积,进行比较。英国De Beers公司的方法与GE公司类似。前苏联对PDC耐磨性的测定是用

金刚石复合片扩孔钻头的使用说明

金刚石复合片扩孔钻头的使用说明 别名Alias:(PDC)钻头 金刚石复合片(PDC)钻头系列——扩孔钻头 金刚石复合片(PDC)是在高温条件下,由人造金刚石与硬质合金一次性合成的特殊超硬材料,它不但具有金刚石硬度高、耐磨等优点,同时还具备了硬质合金抗冲击性强、出刃大等特点,用它做钻头的刀翼可大大提高钻头的工作效率,是钻进中硬岩层和坚硬岩层的理想钻头。 金刚石复合片(此钻头可与中心通缆钻杆配套使用) 扩孔钻头实例图: 强度区分: 金刚石复合片扩孔钻头的强度主要是由金刚石复合片的强度决定的,当前,金刚石复合片钻头在强度上主要分为普通型、加强型、高强型三种;金刚石复合片主要分为1304和1308两种,1304和1308指的是复合片的直径和厚度,我们采用的基本区分为:普通型、加强型和高强型;其中普通

型为1304平面复合片,加强型为1304球面复合片和1308平面复合片,高强型为1308球面复合片。 高强型金刚石钻头刀翼采用新研制的球型金刚石刀片,特点是钻进速度快,抗冲击能力强。当钻头钻进时,唇边用于正常均匀地层岩石的刮削,突出部分钻头钻进过程中遇到缝隙时瞬间大幅度进尺,大大降低了钻头的意外损坏,提高了应对复杂岩层的钻进水平。 适应岩层和钻进规程参数见下表: 适应岩层参数表: 金刚石复合片(PDC)钻头钻进规程建议参数表: 应用领域

当前,金刚石复合片扩孔钻头的应用领域比较广阔,我公司的金刚石钻头遍布全国煤田、石油钻探、地质勘探、水利水电、铁路公路、隧道建设等行业。 产品优势 金刚石复合片扩孔钻头,托体采用钢材煅压成型,经过真空全自动热处理设备进行增加机械性能处理。普通型采用国内复合片做刀翼,根据地质条件的不同选用相应的质量等级,可达到更高的产品性价比,达到节能的经济指标。 保养须知 1、正常作业时,严禁突然反转改变运行方向,以防止复合片钻头脱落。 2、在正常作业时,空压机主风路不能有漏气现象,要保证足够的风量与风压,以延长金刚石复合片钻头的使用时间。 3、新复合片钻头第一次使用时、要低速磨合半个小时,再逐步正常使用。 4、在地质恶劣的环境中运行,要降低轴压和转速,防止钻头断裂。

相关文档
最新文档