液晶高分子材料的类型

液晶高分子材料的类型
液晶高分子材料的类型

液晶高分子材料的类型,结构特点,主要应用领域及其发展

趋势

摘要:对液晶高分子材料的类型,结构特点进行重点介绍,并对其的应用领域与发展趋势进行介绍与展望。

关键词:液晶高分子材料,高分子材料,新型高分子液晶材料,

引言:液晶高分子材料是近十儿年迅速兴起的一类新型高分子材料,它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶白增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。正是由于其优异的性能和广阔的应用前景,使得液晶高分子材料成为当前高分子科学中颇有吸引力的一个研究领域。

我国液晶高分子研究始于20世纪70年代初,1987年在上海召开的第一届全国高分子液晶学术会议标志着我国高分子液晶的研究上了一个新的台阶。此后,全国高分子液晶态学术会议每两年召开一次,共召开了8次。1994年在北京召开IUPAL国际液晶高分子会议,20世纪80年代周其凤等提出了新的甲壳型液晶高分子的概念并从化学合成和物理性质等角度给出了明确的结论,得到了国内学者的关注。而北京大学在该研究一直处于领先地位,已成功合成了上百个具有不同化学结构的甲壳型液晶高分子,并从不同的视角对其结构和性质开展了研究。

1.1液晶的发现

液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。液晶的发现可以追溯到1888年,奥地利植物学家F.Reinitzer发现,把胆甾醇苯酸脂(Ch01.esteryl Benzoate,简称CB)晶体加热到145.5℃会熔融成为混浊的液体,145.5℃就是该物质的熔点,继续加热到178.5 ℃,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。

O.Lehnmnn经过系统地研究指出,在一定的温度范围内,有些物质的机械性能与各向同性液体相似;但是它们的光学性质却和晶体相似,是各向异性的。因此,这些介于液体和晶体之间的相被称为液晶相。

1.2液晶高分子的发展

1937年Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性,这是人们第一次发现生物高分子的液晶特性。其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力财力进行高分子液晶发面的研究,取得了极大成就:1959年推出芳香酰胺液晶,但分子量较低;1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex;1972年研制出强度优于玻璃纤维的超高强、高模量的Kevlar纤维,并付诸实用;此后,高分子液晶的研究则从溶致型转向为热致型,在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。

从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600吨,平均年增长23.1%;其次是通讯业,需求量约1540吨,增长21.1%;工业界及运输业总需求量不到1700吨,平均年增长率约为11%,主要用于接插件、开关、继电器、模塑印刷电路板、光缆结构件、复合材料、机械手、泵/阀门组件、功能件等,极大地推动了液晶高分子技术及其它高新技术的发展。

2.液晶高分子材料的分类及其特性

目前,液晶高分子分类方法有三种。从液晶基元在分子中所处的位置可分为主链型和侧链型两类。从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分又有近晶型、向列型、胆甾型三种不同的结构类型。

2.1.1近晶型结构

近晶型结构是所有液晶中具有最接近结晶结构的一类。这类液晶中,棒状分子

依靠所含官能团提供的垂直于分子的长轴方向的强有力的相互作用,互相平行排列成层状结构,分子的长轴垂直于层片平面。在层内,分子排列保持着大量二维固体有序性,但是这些层片又不是严格刚性的,分子可以在本层内活动,但不能来往于各层之间,结果这类柔性的二维分子薄片之间可以相互滑动,而垂直于层片方向的流动则要困难。因此,近晶型液晶一般在各个方向都是非常粘滞的。2.1.2向列型结构

此类液晶有相当大的流动性。因为这类液晶,棒状分子之间只是互相平行排列。但是他们的重心排列则是无序的,在外力作用下发生流动,很容易沿流动发祥取向,并且互相穿越。向列型液晶的棒状分子也仍然保持着与分子轴方向平行的排列状态,但没有近晶型液晶中那种层状结构。此种液晶仍然显示正的双折射性。此外与近晶型液晶相比,向列型液晶的粘度小,富于流动性。产生这种流动性的原因主要是由于向列型液晶各个分子容易顺着长轴方向自由移动。

2.1.3胆甾型结构

胆甾型液晶和近晶型液晶一样具有层状结构但层内的分子排列却与向列型液晶类似,分子长轴在层内是相互平行的。这类液晶比较突出的特点是各层的分子轴方向与邻接层的分子轴方向都略有偏移,液晶整体形成螺旋结构,螺距的长度与可见光波长数量级相同。胆甾型液晶的旋光性、选择性光散射和圆偏振光二色性等光学性质,就是由这种特殊的螺旋结构引起的。胆甾型液晶的光学性质与近晶型和向列型液晶有所不同,具有负的双折射性质。

医用高分子常用材料(精)

医用高分子常用材料 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

3.结构与性能 3.3 常用材料 1.硅橡胶 硅橡胶是一种以Si-O-Si为主链的直链状高分子量的聚有机硅氧烷为基础,添加某些特定组分,按照一定的工艺要求加工后,制成具有一定强度和伸长率的橡胶态弹性体。 硅橡胶具有良好的生物相容性、血液相容性及组织相容性,植入体内无毒副反应,易于成型加工、适于做成各种形状的管、片、制品,是目前医用高分子材料中应用最广、能基本满足不同使用要求的一类主要材料。 具体应用有:静脉插管、透析管、导尿管、胸腔引流管、输血、输液管以及主要的医疗整容整形材料。 2.聚乳酸 聚乳酸是以乳酸或丙交酯为单体化学合成的一类聚合物,属于生物降解的热塑性聚酯,具有无毒、无刺激、良好的生物相容性、可生物分解吸收、强度高、可塑性加工成型的合成类生物降解高分子材料。 其降解产物是乳酸、CO2和H2O。经FDA批准可用作手术缝合线、注射用微胶囊、微球及埋置剂等制药的材料。u=3351883538,102612699&fm=21&gp=0 3.聚氨酯 聚氨酯是指高分子主链上含有氨基甲酸酯基团的聚合物,简称PU,是由异氰酸酯和羟基或氨基化合物通过逐步聚合反应制成的,其分子链由软段和硬段组成。聚氨酯具有一个主要的物理结构特征是微相分离结构,其微相分离表面结构与生物膜相似。 由于存在着不同表面自由能分布状态,改进了材料对血清蛋白的吸附力,抑

制血小板黏附,具有良好的生物相容性和血液相容性。目前医用聚氨酯被用于人工心脏、心血导管、血管涂层、人工瓣膜等领域。 参考文献 [1] 李小静,张东慧,张瑾,等.医用高分子材料应用五大新趋势[J].CPRJ中国塑料橡胶,2016 [2]杂志社学术部,医用高分子材料的临床应用:现状和发展趋势.中国组织工程研究与临床康复,2010,14(8)

通用高分子材料及加工工艺简介

通用高分子材料及加工工艺简介 按照材料制备方法和在国民经济建设中的用途,高分子材料分为通用高分子材料和功能高分子材料两大类.通用高分子材料指目前能够大规模工业化生产,已普遍应用于建筑,交通运输,农业,电气电子工业等国民经济主要领域和人们日常生活的高分子材料.这其中又分为塑料,橡胶,纤维,粘合剂,涂料等不同类型.功能高分子材料是近年来,随着高分子科学的发展以及与其他学科领域相互交叉,结合,新近研制成功和正在研究开发的一批新型高分子材料,它们被赋予新的功能和高性能,如导电,导磁,光学性能,阻尼性能,生物功能,智能响应能力等.在国防,航空航天,生物医用,微电子等高技术领域显示出极其重要的科学价值和极富挑战性的潜在的经济效益. 通用高分子材料的品种十分丰富,限于篇幅,这儿不能一一介绍.本章只是简要介绍通用高分子材料的特性和分类,以及有关制备技术,加工工艺等方面的基本知识. 热塑性和热固性塑料 一,塑料的特性和分类 塑料,英文称Plastics,德文称Kunststoff,专指以聚合物为主要成分,在一定条件(温度,压力等)下可塑化成型为一定形状,在常温下具有相当力学强度的材料和制品. 塑料是高分子材料最主要的品种之一,具有质量轻,比强度高,电绝缘性好,耐化学腐蚀,耐辐射,容易成型加工等特点,可以制成多种多样制品,适应人类社会不同的需求.各种塑料的相对密度大致为0.9~2.2,仅为钢铁的1/4~1/8.例如一吨尼龙-6从体积上讲可以代替大约3.6吨铝,7.8吨不锈钢,9.8吨生铁和10.2吨铜,质轻使塑料在交通运输,航空航天等领域有很强的竞争力.大多数塑料的体积电阻率很高,约1010~1020Ω·cm,是优良的电绝缘材料,也常用作绝热材料和其他阻隔(如隔音)材料.多数塑料的化学稳定性好,能耐酸,碱,耐油,耐污和其他腐蚀性物质,化学工业大量采用塑料管道和用塑料做贮槽衬里.许多塑料的摩擦系数很低,可用作制造塑料轴承,轴瓦,塑料齿轮等机械工业所需的部件,且可用水作润滑剂.同时,有些塑料的摩擦系数较高,可用于配制制动装置的摩擦零件.与木材,陶瓷,金属材料相比,塑料制品的另一大优点是原料来源广,加工工艺简单,可以方便地制成各种薄膜,管材,型材,造型复杂的配件及产品,而且能耗少,制造成本低,环境污染小. 塑料的突出缺点是,力学性能比金属材料差,表面硬度较低,大多数品种易燃,使用温度范围较窄.这些正是当前塑料改性的研究方向和重点. 根据材料的凝聚态性质,塑料是指玻璃化转变温度或熔融温度高于通常

【精品】液晶高分子材料在图形显示方面的发展与应用

液晶显示材料的发展与应用 郑磊 (安徽工业大学化学与化工学院安徽马鞍山) 摘要:液晶有许多特殊的性能,因而在许多领域得到应用。其中最常见是液晶显示技术.本文简述了液晶高分子材料在图形显示方面的发展历史、发展趋势以及研究与应用现状。 关键词:液晶;图形显示;显示材料;应用;发展 1引言 人们早已熟知液晶本身和液晶在电子显示器件方面、非线性光学方面的应用。液晶显示的手表、计算器、笔记本电脑和高清晰度彩色液晶电视都已经商品化,液晶的商业用途多达百余种,它使显示等技术领域发生重大的革命性变化. 2液晶显示技术的发展 经历4个阶段发展为液晶电视 “使用液晶可以制造超薄显示屏”。40多年前的1968年5月,美国RCA公司在纽约召开的液晶显示屏新闻发布会上的发言震惊了全世界。发现液晶可用于显示的是RCA公司的GeorgeHeilmeier,他甚至还表示,“梦想中的壁挂式电视只需数年即可实现”.自那之后,日本、英国、瑞士、德国的显示屏研发人员都开始参与液晶面板的开发工作,全球性开发的帷幕正式拉开。 但是,液晶显示屏的实用化并不容易.当时,液晶的使用寿命和可靠性等基

本问题都未能解决,使用不到1个小时显示就会消失,更别提要用液晶制造电视了. 之所以会存在使用寿命和可靠性方面的问题,主要是因为将直流电压加载到液晶上时,液晶材料及电极会发生氧化还原反应而变质。虽然也可以采用交流电来驱动液晶,但是显示性能较差。最终解决这一问题的是夏普公司。该公司发现,如果在液晶材料中加入离子性杂质,使其导电率升高,就可以采用交流驱动获得良好的显示特性。利用这项技术,1973年5月,夏普公司推出全球首款液晶应用产品——使用液晶显示屏作为显示部件的小型计算器EL—805.

高分子材料概述课程报告之液晶高分子材料

高分子材料概述课程报告之液晶高分子材料一.概述 进入近代社会特别是进入二十一世纪,人类对材料的需求越来越迫切,对材料的性能和经济性的要求也越来越高,在这样的背景下,液晶高分子材料显然具有巨大优势。可液晶高分子材料又是一类什么材料呢? 首先来介绍一下液晶:液晶是某些小分子有机化合物或某些高分子在熔融态或在液体状态下, 形成的有序流体, 既具有晶体的各向异性, 又具有液体的流动性, 是一种过渡状态, 这种中间态称为液晶态,又称为物质的第四态或介晶态。处于这种状态下的物质称为液晶。而液晶高分子是由液晶单元和柔性间隔以化学键结合而成。由于它们兼具液晶的取向有序性和位置有序性及高分子的长键分子特性等优异功能,使得它们成为全世界的学术研究机构与大公司实验室都极为关注的材料。而在自然界也存在天然液晶高分子材料,如纤维素衍生物、多肽及蛋白质、DNA和RNA等,与它们对应的则为合成液晶高分子。根据液晶形成的条件,可以将液晶高分子分为溶致液晶高分子和热致液晶高分子。它们分别在一定浓度的溶液中或在一定温度范围内表现出液晶性,这种溶致性或热致性决定了在制备液晶高分子材料时采用的工艺技术。 二.液晶高分子材料的性能 液晶高分子含有棒状等具有一定长径比的液晶单元,因此其分子键都为刚性或半刚性。这种刚性或半刚性的分子键易于形成空间位置

上排布的有序性和在液晶态加工过程中分子键能高度取向,因此液晶高分子材料具有一系列优异的性能。液晶高分子的熔体具有高流动性、低成型收缩率、低热膨胀系数与高的尺寸稳定性、高强度与高模量、耐高温等力学性能,并有优异的电绝缘性能、耐化学腐蚀性、耐老化性、阻燃性等一系列优异的综合性能。作为液晶白增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。正是由于其优异的性能和广阔的应用前景,使得液晶高分子材料成为当前高分子科学中颇有吸引力的一个研究领域。 三.液晶高分子材料的分类 液晶高分子材料具有如此优异的性能,那其分类又有哪些呢?目前,液晶高分子分类方法有三种。从液晶基元在分子中所处的位置可分为主链型和侧链型两类。从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分又有近晶型、向列型、胆甾型三种不同的结构类型。 (1)近晶型结构 近晶型结构是所有液晶中具有最接近结晶结构的一类。这类液晶中,棒状分子依靠所含官能团提供的垂直于分子的长轴方向的强有力的相互作用,互相平行排列成层状结构,分子的长轴垂直于层片平

液晶高分子材料的现状及研究进展

液晶高分子材料的现状及研究进展 摘要:本文综述了液晶高分子材料的研究现状,包括简单介绍了液晶高分子的发展历史,结构及性能,介绍了液晶高分子研究的新进展,对液晶高分子早各个领域的应用和潜在的性能进展做了简要的阐述,并针对液晶高分子存在的问题提出了相应的建议。 关键词:液晶高分子研究应用 前言 高分子科学,以30年代H.staidinger建立高分子学说为开展.此后高分子化学有了飞跃的发展.与此同时,高分子物理化学也有相应的发展。高分子化学注重对高聚物合成以及性质的研究,而高分子物理则重点研究高聚物的结构与性能,二者相辅相成,近年来研究较多的高分子液晶材料就是两者结合的典范。 液晶现象是1888年奥地利植物学家F.Reintizer[1]在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 这样人们自然会联想到具有这种结构的高分子材料。1937年Bawden和Pirie[1]在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性。这是人们第一次发现生物高分子的液晶特性,其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就,1959年推出芳香酰胺液晶,但分子量较低,1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex,1972年研制出强度优于玻璃纤维的超高强.高模量的Kevlar纤维,并付注实用,以后,高分子液晶的研究则从溶致型转向为热致型。在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%。主要用于接插件、开关、继电器、模塑印刷电路板、光缆结构件、复合材料、机械手、泵/阀门组件、功能件等,极大地推动了液晶高分子技术及其它高新技术的发展。 从高分子液晶诞生到现在只有50多年的历史,是一门很年轻的学科。虽然高分子液晶[2]是具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。但目前对它的研究仍处于较低的水平,理论研究较狭隘,液晶高分子尚存在制品的机械性能各向异性、接缝强度低、价格相对较高等缺点,这些都有待于进一步的改进,所以高分子液晶仍是高分子科学研究的一个热点。 1液晶高分子材料的特性[3] 1.1取向方向的高拉伸强度和高模量

液晶高分子的性质及应用

液晶高分子的性质及应用 作者:翟洪岩、杨怀斌、岳敏、尹国强、张家乐、张维液晶高分子自上世纪70年代被开发出以来,经历了一系列的发展,现已成为普遍使用的一种高分子材料。人们已对液晶高分子的结构、性质、合成方法以及液晶高分子的应用都有了较为深刻的认识。这篇文章讨论的主要关于高分子液晶的性质(物理性质)及其应用。 一、高分子液晶的物理性质。 液晶高分子作为一种特殊的高分子材料,自然具有与一般高分子材料不同的性质。液晶具有液体的流动性和固体的有序性,对外界刺激如光、机械压力、温度、电磁场及化学环境的变化具有较高的灵敏性。高分子液晶制品具有高强度、高模量,尺寸稳定性、阻燃性、绝缘性好,耐高温、耐辐射、耐化学药品腐蚀、线膨胀率低,并有良好的加工流动性等优异性能。 1、高弹性。 液晶对外场作用较为敏感,即使不大的电磁力、切变力、表面吸附等都能使液晶产生较大形变。液晶可独立存在展曲、扭曲、弯曲三种弹性形变。 2、粘滞性与流变性。 液晶存在取向有序性,这将影响流体力学行为。而液晶高分子还具有的高分子的粘滞特性,这与分子长度密切相关。一般液晶高分子为多畴状态,畴的大小在几微米之内,故在宏观上液晶高分子是各向同性的,其许多物理性质如力学性能等,表观上也是多向同性的。溶致型液晶高分子溶液在各向同性相时,粘度随浓度增大而增大。进入液晶相后,粘滞系数突然降低。分子量越大,进入液晶相浓度也越低,最大粘滞系数升高。 体系进入液晶相后,指向矢受切变流的影响而沿它的流动方向取向,从而迅速降低了粘滞系数。当切变流动停止一段时间后,样品会逐渐弛豫回原来的多畴状态。如果在此之前就使液晶高分子降温或溶剂移走成为固态,仍可获得相当好的宏观取向,即各向异性固体。 3、其他性质。 胆甾相液晶具有螺旋结构。因此有特殊的光学性质,如选择反射、圆二色性、强烈的旋光性及其色散、电光和磁光效应等。

高分子材料的分类

高分子材料的分类 高分子材料分类标准有:①按来源分类②按应用分类③按应用功能分类④高分子主链结构分类等等 高分子材料按来源分类:高分子材料按来源分为天然高分子材料和合成高分子材料。 高分子材料按应用分类:高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。 ②纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。 ③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。 ④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。 ⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。 ⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。高分子复合材料也称为高分子改性,改性分为分子改性和共混改性。 ⑦功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。 高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 高分子材料按应用功能分类:高分子材料分为通用高分子材料、特种高分子材料和功能高分子材料三大类。 按高分子主链结构分类:①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC ②杂链高聚物:分子主链由C、O、N、P等原子构成。如:聚酰胺、聚酯、硅油。③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。如:硅橡胶 其它分类:按高分子主链几何形状分类:线型高聚物,支链型高聚物,体型高聚物。 按高分子微观排列情况分类:结晶高聚物,半晶高聚物,非晶高聚物。

常用高分子材料总结

常用高分子材料总结

不饱和聚酯(UP)由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨基塑料脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电弧 性和一定的机械强度,有自熄性、无 臭、无味、耐热性、耐水性比酚醛塑 料稍差,外观美丽鲜艳,耐霉菌,制 造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低,而 且耐沸水煮,耐热性也优于脲醛塑料 一般可在150-200℃范围内使用,并 有抗果汁、洒类饮料的沾污,密胺餐 具而出名 (UMF)制品具有优良的 耐电弧性能和很高的机 械强度,以及良好的电 绝缘性和耐热性;耐电 弧防爆电器设备配件, 要求高强度的电器开关 和电动工具的绝缘部件 等。 三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 醛树脂 UMF 聚氨酯(PU)主链含—NHCOO— 重复结构单元的一 类聚合物,由异氰 酸酯(单体)与羟 基化合物亲电加聚 而成 良好的耐油性、韧性、耐磨性、耐老 化性和粘合性,用不同材料可制得适 应较宽温度范围材料(-50~150) 聚合方法随材料性质而不同得到:热 塑弹性体、弹性纤维、硬质泡沫塑料、 软质泡沫塑料、涂料、胶粘剂 聚氨酯弹性体,轻质泡 沫,涂料,乳液,胶粘 剂,磁性材料 环氧树脂(EP)分子中含有两个或 两个以上环氧基团 的有机高分子化合 物,一般相对分子 质量都不高 形式多样,固化方便,粘附力强,收 缩性低,固化后,力学性能,电性能, 化学稳定性优良,尺寸稳定性好,耐 霉菌 含有活泼的环氧基、羟基、醚键,可 与多种类型的固化剂发生交联反应 而形成不溶、不熔的具有三向网状结 构,须固化 槽、管、船体、机体、 储罐、气瓶、简易模具、 汽车构件、电容器等塑 封件各种构件黏结剂、 涂料

高分子液晶材料

高分子液晶材料 高分子1101 田原3110705027 摘要: 液晶高分子是在一定条件下能以液晶相态存在的高分子,高分子化合物的功能特性和液晶相序的有机结合赋予了液晶高分子以鲜明的个性和特色,以高强度、高模量、低热膨胀率、耐辐射和化学药品腐蚀等优异性能开辟了特种高分子材料的新领域。在机械、电子、航空航天等领域的应用已崭露头角,目前正向生命科学、信息科学、环境科学蔓延渗透,并将波及其它科技领域。 关键词:高分子液晶材料历史与发展结构与性能 一、概述 液晶LC D(L iq ui d Crysta l Display)对于许多人而言已经不是一个新鲜的名词。从电视到随身听的线控,它已经应用到了许多领域。液晶现象是1888年奥地利植物学家 F.Reintizer在研究胆甾醇苯甲酯时首先发现的。研究表明,液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键结合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。 二、液晶高分子材料的分类及其特性 目前,液晶高分子分类方法有三种。从液晶基元在分子中所处的位置可分为主链型和侧链型两类。从应用的角度可分为热致型和溶致型两类,这两种分类方法是相互交叉的,即主链型液晶高分子同样具有热致型和溶致型,而热致型液晶高分子又同样存在主链型和侧链型。从液晶高分子在空间排列的有序性不同,液晶高分又有近晶型、向列型、胆甾型三种不同的结构类型。 1、主链型液晶高分子 主链型高分子液晶是指介晶基元处于主链中的一类高分子材料。在20世纪70 年代中期以前,它们多是指天然大分子液晶材料。自从D upont 公司首次获得聚芳香酰胺的溶液型主链型高分子液晶性质的应用以来,主链型高分子液晶材料的合成、结构与性能关系和应用等都得以很大发展。按液晶形成过程,主链型高分子液晶可以分为溶液型主链高分子液晶和热熔型主链高分子液晶。a:溶液型主链高分子液晶 其研究最多的则是聚芳香酰胺类和聚芳香杂环类聚合物。酰胺为代表的一类溶液型高分子液晶而言,就必须借助于极强的溶剂,

常用高分子材料对比

PS料与ABS料性能上区别? PS塑料(聚苯乙烯) ,物料性能:电绝缘性(尤其高频绝缘性)优良,无色透明,透光率仅次于有机玻璃,着色性耐水性,化学稳定性良好,.强度一般,但质脆,易产生应力脆裂,不耐苯.汽油等有机溶剂. 适于制作绝缘透明件.装饰件及化学仪器.光学仪器等零件. 成型性能:1.无定形料,吸湿小,不须充分干燥,不易分解,但热膨胀系数大,易产生内应力.流动性较好,可用螺杆或柱塞式注射机成型.2.宜用高料温,高模温,低注射压力,延长注射时间有利于降低内应力,防止缩孔.变形.3.可用各种形式浇口,浇口与塑件圆弧连接,以免去处浇口时损坏塑件.脱模斜度大,顶出均匀.塑件壁厚均匀,最好不带镶件,如有镶件应预热. ABS(丙烯腈-丁二烯-苯乙烯),为浅黄色粒状或珠状不透明树脂,无毒、无味,吸水率低。具有优良的物理机械性能,极好的低温抗冲击性能,优良的电性能、耐磨性、尺寸稳定性、耐化学性、染色性。易于加工成型。ABS耐水、无机盐、碱和酸类,不溶于大部分醇类和烃类溶剂,易溶于醛、酮、酯及某些氯化烃中。ABS的缺点是可燃,热变形温度较低,耐侯性较差。燃烧特点:易燃;离火继续燃烧;火焰黄色,浓黑烟;软化,起泡;丙烯腈味。溶解性能:可溶溶剂:二氯甲烷;不溶溶剂:醇类、脂肪烃、水.应用:汽车业,机械设备,电子电器等。 31、ABS.PS.PP.PE等材料的特性主要用途及各个标号的区别。 ABS具有刚性好,冲击强度高、耐热、耐低温、耐化学药品性、机械强度和电器性能优良,易于加工,加工尺寸稳定性和表面光泽好,容易涂装,着色,还可以进行喷涂金属、电镀、焊接和粘接等二次加工性能。主要应用:汽车、器具、电子/电器、建材、ABS合金/共混物 PS电绝缘性(尤其高频绝缘性)优良,无色透明,透光率仅次于有机玻璃,着色性耐水性,化学稳定性良好,.强度一般,但质脆,易产生应力脆裂,不耐苯.汽油等有机溶剂. 适于制作绝缘透明件.装饰件及化学仪器.光学仪器等零件. PE基本分为三大类,即高压低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE)。薄膜是其主要加工产品,其次是片材和涂层、瓶、罐、桶等中空容器及其它各种注塑和吹塑制品、管材和电线、电缆的绝缘和护套等。主要用于包装、农业和交通等部门。 pp便宜、轻、良好的加工性和用途广,催化剂和新工艺的开发进一步促进了应用领域的扩大,有人说:“只要有一种产品的材料被塑料替代,那么这种产品就有使用聚丙烯的潜力”。主要用途:编织袋、防水布,耐用消费品:如汽车、家电和地毯等。 32、PC常用制品有那几种,VCD碟片及外包装盒是什么塑料做的? 聚碳酸酯(PC)材料具有质轻、透明、强度高、抗震及加工性能好等优点,在50多年的发展历程中,应用领域不断拓展。 PC制品的应用已渗透到汽车、建筑、医学、服装等行业之中,PC车灯、PC汽车天窗、汽车通讯系统中的光波传导器光纤、透明的天棚屋顶、PC板材、PC 针剂管、除此之外,游泳池底部的自照明系统、太阳能采集系统、高清晰大型电视屏幕、纺织品中可进行织物材料识别的芯片标记纤维等一些全新的领域都少不了PC材料的身影,PC制品正在为各行各业作出贡献,其应用潜力还将得到进一步的开发。 光盘是人们最为熟悉的PC应用领域,而它正朝着大容量方向发展,新型的DVD 的存储容量有望达到1000亿字节。

高分子液晶材料的应用及发展趋势讲解

# 16 #陶瓷2009. No. 3 高分子液晶材料的应用及发展趋势 王瑾菲蒲永平杨公安杨文虎 ( 陕西科技大学材料科学与工程学院西安710021) 摘要液晶相是不同于固相和液相的一种中介相态。系统地阐述了液晶的发现、形成机制以及分类,简单介绍了液晶高分子的结构特点,介绍了主链型和侧链型液晶高分子研究的新进展,并对液晶在各个领域的应用研究和潜在性能进展作了简要的阐述。 关键词液晶高分子液晶研究进展 Application and the Development of Liquid Crystal Polymer Materials Wang Jinfei, Pu Yongping, Yang Gongan, Yang Wenhu( School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi. an, 710021) Abstract: Liquid crystal phase is different from the solid phase and an intermediate liquid phase. This paper described the discovery of the LCD, and the mechanism for the formation and classification, briefly introducd the liquid crystalline polymer structural, researched new progress of the main- chain and side- chain type liquid crystal polymer and indicated the application progress and potential properties of LCD in all fields. Key words: Liquid crystalline polymer; Liquid crystal; Study progress 1 液晶的发现 液晶是某些物质在熔融态或在溶液状态下形成的有序流体的总称。液晶的发现可以追溯到1888年,奥 地利植物学家 F Reinitzer发现,把胆甾醇苯酸脂( Cho-l esteryl Benzoate, C6 H5 CO2 C27 H45 , 简称 CB) 晶体加热到145. 5 e 会熔融成为混浊的液体, 145. 5 e 就是该物质的熔点。继续加热到178. 5e,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。O Lehmann经过系统地研究指出,在一定的温度范围内,有些物质的机械性能与各向同性液体相似;但是它们的光学性质却和晶体相似,是各向异性的。因此,这些介于液体和晶体之间的相被称为液晶相[ 1]。 2 液晶高分子的分类 液晶是一类具有特殊性质的液体,既有液体的流动性又有晶体的各向异性特征。现在研究及应用的液晶主要为有机高分子材料。一般聚合物晶体中原子或

高分子材料常用专业术语中英对照表分析

加工processing 反应性加工reactive processing 等离子体加工plasma processing 加工性processability 熔体流动指数melt [flow] index 门尼粘度Mooney index 塑化plasticizing 增塑作用plasticization 内增塑作用internal plasticization 外增塑作用external plasticization 增塑溶胶plastisol 增强reinforcing 增容作用compatibilization 相容性compatibility 相溶性intermiscibility 生物相容性biocompatibility 血液相容性blood compatibility 组织相容性tissue compatibility 混炼milling, mixing 素炼mastication 塑炼plastication 过炼dead milled 橡胶配合rubber compounding 共混blend 捏和kneading 冷轧cold rolling 压延性calenderability 压延calendaring 埋置embedding 压片performing 模塑molding 模压成型compression molding 压缩成型compression forming 冲压模塑impact moulding, shock moulding 叠模压塑stack moulding 复合成型composite molding 注射成型injection molding 注塑压缩成型injection compression molding 射流注塑jet molding 无流道冷料注塑runnerless injection molding 共注塑coinjection molding 气辅注塑gas aided injection molding 注塑焊接injection welding 传递成型transfer molding

液晶高分子材料的现状及研究进展.doc

液晶高分子材料研究进展 肖桂真,纺织学院,1030011063 摘要:高分子液晶是近年来迅速兴起的一类新型高分子材料,它具有高强度、高模量、耐高温、低膨胀率、低收缩率、耐化学腐蚀的特点。本文综述了液晶高分子材料的发展历史,结构及性能,详细介绍了液晶高分子材料的种类以及在各个领域的应用,和液晶高分子材料的潜在发展前景。 关键词:功能高分子材料;液晶高分子材料;研究;应用 0前言 功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。功能高分子材料之所以具有特定的功能,在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。高分子液晶材料是近年来研究较多的一种功能高分子材料,它是介于液体和晶体之间的一种中介态,具有独特的结构与性能。 1高分子液晶的发展 1.1液晶的发现 液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。液晶的发现可以追溯到1888年,奥地利植物学家F.Reinitzer发现,把胆甾醇苯酸脂(Ch01.esteryl Benzoate,C6 H5C02C27 H45.简称CB)晶体加热到145.5℃会熔融成为混浊的液体,145.5℃就是该物质的熔点,继续加热到178.5 ℃,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。O.Lehnmnn经过系统地研究指出,在一定的温度范围内,有些物质的机械性能与各向同性液体相似;但是它们的光学性质却和晶体相似,是各向异性的。因此,这些介于液体和晶体之间的相被称为液晶相。 1.2液晶高分子的发展 1937年Bawden和Pirie在研究烟草花叶病病毒时,发现其悬浮液具有液晶的特性,这是人们第一次发现生物高分子的液晶特性。其后1950年,Elliott与Ambrose第一次合成了高分子液晶,溶致型液晶的研究工作至此展开。50年代到70年代,美国Duponnt公司投入大量人力才力进行高分子液晶发面的研究,取得了极大成就:1959年推出芳香酰胺液晶,但分子量较低;1963年,用低温溶液缩聚法合成全芳香聚酰胺,并制成阻燃纤维Nomex;1972年研制出强度优于玻璃纤维的超高强、高模量的Kevlar纤维,并付注实用;此后,高分子液晶的研究则从溶致型转向为热致型,在这一方面Jackson等作出了较大贡献,他们合成了对苯二甲酸已二醇酯与对羟基苯甲酸的共聚物,可注塑成型,这是一种模量极高的自增强液晶材料。 从应用领域分析,液晶高分子材料在电子电气行业中需求量最大且发展迅速,1998年可达3600 吨,平均年增长23.1 %;其次是通讯业,需求量约1540 吨,增长21.1%;工业界及运输业总需求量不到1700 吨,平均年增长率约为I1%,主要用于接插件、开关、继电

常用高分子材料汇总

常用高分子材料汇总

————————————————————————————————作者:————————————————————————————————日期: 2

常用高分子材料总结 塑料:1、热固性塑料 2、热塑性塑料:①通用塑料(五大通用塑料) ②工程塑料(通用工程塑料特种工程塑料) 工程塑料具有更高的力学强度,能经受较宽的温度变化范围和较苛刻的环境条件,具有较高的尺寸稳定性, 五大通用工程塑料为:聚酰胺、聚碳酸酯、聚甲醛、热塑性聚酯、聚苯醚。 分 类 名称概述性能特点加工性能主要应用 酚醛树脂(PF)酚类和醛类缩聚而 成的合成树脂的总 称。最常用的是苯 酚和甲醛 力学强度高;性能稳定;坚硬耐磨; 耐热、阻燃、耐腐蚀;电绝缘性良好; 尺寸稳定性好;价格低廉;色深,难 于着色 本身很脆,成型时需排气,须加入纤 维或粉末状填料。有层压和模压 电绝缘材料(俗称电 木)、家具零件、日用品、 工艺品、耐酸用的石棉 酚醛塑料 3

热固性塑不饱和聚酯 (UP) 由二元酸(或酸酐) 与二元醇经缩聚而 制得的不饱和线型 热固性树脂 力学强度高,强度接近钢材,可用作 结构材料,可在常温常压下固化 在不饱和聚酯中加入苯乙烯等活性 单体作为交联剂(影响其性能),并 加入引发剂和促进剂,可以在低温或 室温下交联固化形成。 主要用途是玻璃纤维增 强制成玻璃钢,大型化 工设备及管道,飞机零 部件,汽车外壳小型船 艇,透明瓦楞板,卫生 盥洗器皿、 氨 基 塑 料 脲甲醛 树脂UF 氨基模塑料俗称电 玉粉,是由氨基树 脂为基质添加其他 填充剂、脱模剂、 固化剂、颜料等, 经过一定塑化工艺 制成 (UF)坚硬耐刮伤、有较好的耐电 弧性和一定的机械强度,有自熄性、 无臭、无味、耐热性、耐水性比酚醛 塑料稍差,外观美丽鲜艳,耐霉菌, 制造电器开关、插座、照明器具 (MF)的吸水性比脲醛树脂要低, 而且耐沸水煮,耐热性也优于脲醛塑 料一般可在150-200℃范围内使用, 并有抗果汁、洒类饮料的沾污,密胺 餐具而出名 (UMF)制品具有优良 的耐电弧性能和很高的 机械强度,以及良好的 电绝缘性和耐热性;耐 电弧防爆电器设备配 件,要求高强度的电器 开关和电动工具的绝缘三聚氰 胺甲醛 树脂MF 脲三聚 氰胺甲 4

液晶高分子材料的类型

液晶高分子材料的类型,结构特点,主要应用领域及其发展 趋势 摘要:对液晶高分子材料的类型,结构特点进行重点介绍,并对其的应用领域与发展趋势进行介绍与展望。 关键词:液晶高分子材料,高分子材料,新型高分子液晶材料, 引言:液晶高分子材料是近十儿年迅速兴起的一类新型高分子材料,它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能,作为液晶白增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层,被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。正是由于其优异的性能和广阔的应用前景,使得液晶高分子材料成为当前高分子科学中颇有吸引力的一个研究领域。 我国液晶高分子研究始于20世纪70年代初,1987年在上海召开的第一届全国高分子液晶学术会议标志着我国高分子液晶的研究上了一个新的台阶。此后,全国高分子液晶态学术会议每两年召开一次,共召开了8次。1994年在北京召开IUPAL国际液晶高分子会议,20世纪80年代周其凤等提出了新的甲壳型液晶高分子的概念并从化学合成和物理性质等角度给出了明确的结论,得到了国内学者的关注。而北京大学在该研究一直处于领先地位,已成功合成了上百个具有不同化学结构的甲壳型液晶高分子,并从不同的视角对其结构和性质开展了研究。 1.1液晶的发现 液晶是介于液体和晶体之间的一种特殊的热力学稳定相态,它既具有晶体的各相异性,又有液态的流动性,液晶高分子就是具有液晶性的高分子,大多数由小分子量基元键合而成,它是一种结晶态,既具有液体的流动性又具有晶体的各向异性特征。液晶的发现可以追溯到1888年,奥地利植物学家F.Reinitzer发现,把胆甾醇苯酸脂(Ch01.esteryl Benzoate,简称CB)晶体加热到145.5℃会熔融成为混浊的液体,145.5℃就是该物质的熔点,继续加热到178.5 ℃,混浊的液体会突然变成清亮的液体,而且这种由混浊到清亮的过程是可逆的。

液晶高分子材料

液晶高分子材料开发进展及应用 摘要:液晶高分子材料超越高分子材料化学、化学科学和材料科学的领域,涉及了物理学、生命科学和信息科学等多学科领域,是一个十分活跃的研究领域和前言科学。本文主要阐述了高分子材料的开发和在各个领域的应用。 关键词:液晶高分子材料;进展;应用 液晶是一些化合物所具有的介于固态晶体的三维有序和无规液态之间的一种中间相态,又称介晶相( meso phase) ,是一种取向有序流体, 既具有液体的易流动性,又有晶体的双折射等各向异性的特征。液晶1888 年由奥地利植物学家Reinitzer首次发现,在本世纪50 年代之前,液晶没能引起科技界的广泛重视。然而60 年代,以RCA 公司进行液晶显示和光阀方面的工作为标志,液晶得到了实际的应用。液晶高分子( LCP) 的大规模研究工作起步更晚,但目前已发展为液晶领域中举足轻重的部分。如果说小分子液晶是有机化学和电子学之间的边缘科学,那么液晶高分子则牵涉到高分子科学、材料科学、生物工程等多门学科,而且在高分子材料、生命科学等方面都得到大量应用。 1.液晶高分子的分类[1] 1.1按照液晶相分类 1.1.1向列型液晶 液晶分子刚性部分平行排列,重心排列无序,保持一维有序性,液晶分子沿其长轴方向可移动,不影响晶相结构,是流动性最好的液晶。 1.1.2近晶型液晶 在所有液晶中近固体晶体而得名。分子刚性部分平行排列,构成垂直于分子长轴方向的层状结构,具二维有序性。 1.1.3胆甾型液晶 构成液晶的分子是扁平型的,依靠端基的相互作用平行排列成层状结构。但它们的长轴与层面平行而不是垂直。在相邻两层之间,由于伸出平面外的光学活性基团的作用,分子长轴取向依次规则地旋转一定角度,层层旋转构成螺旋结构。此类液晶可使反射的白光发生色散而呈现彩虹般颜色。 1.2按照分子中液晶基元的位置分类 1.2.1主链型液晶高分子 液晶基元在高分子主链上。如kevlar纤维。

1生活中常见合成高分子材料

11、生活中常见合成高分子材料 [考点解析] 天然高分子(如棉花、羊毛、淀粉、纤维素、蛋白质) 1 .高分子材料 ,聚乙烯)橡胶、塑料、纤维 2.常见合成高分子 [典例分析]例1.不粘锅内壁有一薄层为聚四氟乙烯的高分子材料的涂层,用不粘锅烹烧菜肴时不易粘锅、烧焦。下列关于聚四氟乙烯的说法正确的是( )。 A .不粘锅涂层为新型有机高分子材料,商品名为 “特氟隆” B .聚四氟乙烯的单体是不饱和烃 C .聚四氟乙烯中氟元素的质量分数为76% D .聚四氟乙烯的化学性质较活泼 解析:聚四氟乙烯仍属于传统的三大合成材料之一——塑料,它的单体是四氟乙烯,属于不饱和卤代烃;其氟元素的质量分数 ;化学性质稳 定,广泛应用于炊具,商品名为“特氟隆”。答案:C 例2.塑料的主要成分是___________,热塑性塑料的特点是___________,热固性塑料的特点是___________。人们根据需要制成了许多特殊用途的塑料,如___________塑料、___________塑料、___________塑料等,其中___________塑料在宇宙航空、原子能工业和其他尖端技术领域将发挥重要的作用。 答案:合成树脂;加热到一定温度可软化甚至熔化,可以反复加工,多次使用;一旦加工成型,就不会受热熔化;工程;增强;改性;工程 分析:了解几种常见塑料的品种、性能及用途。

[自我检测] 1.汽车轮胎的主要成分是()。 A.塑料B.纤维C.复合材料D.橡胶 2.下列物质不属于塑料的是()。 A.有机玻璃B.聚四氟乙烯C.电木D.白明胶 3.下列塑料可作耐高温材料的是()。 A.聚氯乙烯B.聚四氟乙烯C.聚苯乙烯D.有机玻璃 4.丁列物质属于天然纤维的是()。 A.粘胶纤维B.木材C.丙纶D.涤纶 5.制作VCD、DVD光盘的材料和装修用的“水晶板”,都是有机玻璃。它属于( )。 A.合成材料B.复合材料C.金属材料D.无机非金属材料6.下列有关高分子材料的表述不正确 ...的是()。 A.棉花、羊毛、天然橡胶等属于天然高分子材料 B.塑料、合成纤维、黏合剂、涂料等是合成高分子材料 C.高分子材料是纯净物 D.不同高分子材料在溶解性、热塑性和热固性等方面有较大的区别 7.下列对一些塑料制品的叙述中,不正确的是()。 A.塑料凉鞋可以热修补,因为制作材料具有热塑性 B.聚乙烯塑料可反复加工多次使用 C.因为塑料制品易分解,塑料制品废弃可采用深埋处理 D.酚醛塑料制品如电木插座不能进行热修补,是因为酚醛塑料不具有热塑性 8. 下列不属于新型有机高分子材料的是()。 A.高分子分离膜B.液晶高分子材料C.生物高分子材料D.丁苯橡胶9.高分子分离膜可以让某些物质有选择地通过而将物质分离,下列应用不属于高分子分离膜的应用范围的是()。 A.分离工业废水,回收废液中的有用成分 B.食品工业中,浓缩天然果汁、乳制品加工和酿酒 C.将化学能转换成电能,将热能转换成电能 D.海水的淡化 10.材料是为人类社会所需要并能用于制造有用器物的物质。按用途分可分为结构材料、功能材料等;按化学组成和特性又可分成四类,请将下列物质的标号填在相应的空格中: A. 水泥B.半导体材料C.塑料D.超硬耐高温材料E.陶瓷F.普通合金 G.合成橡胶合成纤维H.玻璃 ⑴属于传统无机非金属材料的有;⑵属于新型无机非金属材料的有; ⑶属于金属材料的有;⑷属于高分子材料的有。

相关文档
最新文档