凝汽器真空度下降的分析与处理

凝汽器真空度下降的分析与处理
凝汽器真空度下降的分析与处理

凝汽器真空度下降的分析与处理摘要:由于凝汽器真空下降使汽轮机组运行的安全性、可靠性、稳定性和经济性降低,分析真空降低的原因,提出提高机组凝汽器真空的有效方法显然十分必要。根据这一现状,结合现场实际,分析凝汽器真空下降的主要特征及其原因,根据相关参数的变化和电厂运行检修规程,提出相应的处理方法,以保证机组在合理的背压下运行,提高机组运行的安全性、可靠性、稳定性和经济性。

关键词:凝汽器;真空度;分析。

凝汽器真空度对机组运行安全性和热经济性有很大影响。在运行中,凝汽器工作状态恶化将直接引起汽轮机热耗、汽耗增大和出力降低。一台200MW汽轮机,真空下降1% ,引起热耗增加0.029% ,少发电58KW;而对一台600MW 的汽轮机,则热耗增加0.05% ,少发电306KW。整体上说,真空每降低1KPa,汽轮机汽耗增加1.5%—2.5% 。另外,真空下降使汽轮机排汽缸温度升高,引起汽机轴承中心偏移,严重时还引起汽轮机组振动。为保证机组出力不变,真空降低时应增加蒸汽流量,这样导致了轴向推力增大,使推力轴承过负荷,影响机组安全运行。因此,对真空度进行分析和处理十分必要。

1、凝汽器真空的确定[1]

凝汽器真空度是根据凝汽器的凝结温度确定的。冷却水由入口温度t w1逐渐吸热上升到出口处温度t w2,冷却水温升Δt=t w2-t w1。蒸汽凝结温度t s与t w2的差为传热端差,以δt表示:δt=t s-t w2,则主凝结区的蒸汽温度为:t s=t w1+Δt+δt。凝汽器的压力p c为t s所对应的饱和压力。

2、凝汽器真空度下降分析[2,3]

凝汽器真空度下降可分为急剧下降和缓慢下降。

2.1 急剧下降。

急剧下降也称为凝汽器事故性真空破坏,产生这种事故的原因有以下几种。

2.1.1 冷却水泵工作不正常

冷却水是凝汽器中用于冷却汽轮机排汽的唯一冷却介质,冷却水泵的故障必然引起冷却水量的降低,严重时可能引起凝汽器冷却水失水,导致凝汽器压力急剧升高的严重事故。引起故障的主要原因有:厂用电中断、冷却水泵和驱动电机故障、冷却水吸水口滤网堵塞、吸

入水位过低、冷却水泵轴封或吸水管漏入空气等造成冷却水中断,冷却水出水管部分堵塞,排水虹吸高度被破坏,造成冷却水量不足。

在机组负荷一定的情况下,冷却水出口温度升高,必然使冷却水系统的正常工作遭到破坏。吸水管的污脏,引起阻力增加;供水管道堵塞、工作轮和轴的磨损会引起水泵特性的改变,反映出冷却水量的降低,而排水管线上有空气积聚是虹吸恶化和发生破坏的原因。近代大型凝汽器在水室的最高点装设抽气器,定时抽出水室里的空气,来保证虹吸的正常工作。否则虹吸被破坏,吸水高度瞬间上升,使供水量立即下降,造成冷却水量减少,冷却水出口温度上升,从而使凝汽器里的传热效果变差,凝汽器真空度下降。

运行中的冷却水泵事故停运,引起循环水中断,循环水在10s 内减到零。主机自动停运,热负荷瞬间减为零,真空瞬间提高而后降低。凝汽器内汽温上升,大约60s后,汽温可能上升到80℃,这时排汽缸喷水冷却装置投入使用,以保护排汽缸温度不超过80℃。伴随这种工况的出现,将使真空破坏阀的动作,加速汽轮机停运。

2.1.2抽气设备工作失常

抽气设备的任务是在机组启动时建立真空以及在运行中抽除从真空不严密处漏入空气和未凝结蒸汽。随着蒸汽参数的提高和机组功率的增大,以及机组滑压参数运行的运用,大部分机组使用射水抽气器和真空泵。下面以射水抽气器为例分析其对凝汽器真空度的影响。(1)图(1)为300MW射水抽气器的工作特性曲线。由图1可看出,在一定的工作水温度t w和工作

水压力p w下,射水抽气器的抽气压力p m也随抽气量G a的增加而升高,不过没有明显的工作段与过载段之分(如图1图的虚线)。但是凝汽器p c=f(G a)关系曲线(如图1的实线)却有工作段和过载段之分。在工作段,漏气量减少时,抽出蒸汽量却增加了,因p c与G a无关。但在过载段,漏气量已经很大,蒸汽量已减至最小,进一步增大漏气量,必然导致p m和p c增加,p c增大即是凝汽器真空下降,特性线p c=f(G a)与p m=f(G a)实际是互相重合的。根据上面对射水抽气器工作特性的分析可知,抽气器的抽气压力p m随G a增加而升高,G a增加

的同时p c在过载段也随之增大。因此,对抽气器的合理监控十分必要。

(2)抽气器工作水压力低、水量不足或增加过多,也反映到抽气器抽吸能力的下降,引起凝汽器真空的降低。对一定的抽气压力而言,工作水压力p w越小,抽气量越少,从而不能满足凝汽器中所需的抽气要求,使凝汽器真空下降。同时,工作水量不足,吸入室中因没有足够的工作水而压力升高,抽吸能力下降。工作水量增加过多时,在扩压管出口处发生排水堵塞现象,造成排水管水压升高,吸入室压力增加,抽吸能力也下降。因此必须对抽气器工作水压力和流量进行合理控制,以维持正常的抽吸能力。

(3)如果射水抽气器的工作水采取开式循环方式,则工作水温受外界影响较大,外界温度变化必然引起其温度发生变化。如果采取闭式循环方式,并且停止向射水池补充水,不向射水池外溢水,则工作水温度将不断升高。

工作水温度升高的原因是:

a) 射水泵与工作介质的摩擦产生能量消耗转变为热量;

b) 抽空气管道内空气在工作水中放热;

c) 水蒸汽因为有凝结过程而放出的汽化潜热。

所有这些都对射水抽气器工作水有加热作用。

以某电厂200MW机组为例,假设全年平均保持凝汽器内压力为5.39KPa,抽气器吸入室内压力为3.434KPa,分别对应气—汽混合物的温度34.6℃和26.7 ℃。按HEI标准,对于三排汽口三壳体的凝汽器,抽吸的气—汽混合物量为195.06kg/h,其中干空气为61.24kg/h,水蒸汽为134.72kg/h。经计算可知,134.72kg/h的水蒸汽每h在抽气器内放热量为282 036kJ/h;射水泵与工作介质摩擦产生的热量为1 080 246kJ/h。而b项的数值很小,相对于a项和c项可以忽略不计。

对射水抽气器,当工作水温超过30℃时,每升高5℃,吸入室的压力就提高1.96kPa,对凝汽器真空的影响相当大。这主要因为当工作水温升高至一定程度后,在高度真空的喷管喉部,部分工作水汽化,体积突然膨大,而使抽吸能力下降。所以工作水温对抽真空装置的抽吸能力及凝汽器真空的影响也相当大。因此,在闭式循环射水抽气器的运行中,必须监视工作水温度的变化,定期或连续补充冷水,溢出高温水,防止工作水温度过分升高。

(4)射水抽气器排水管路的阻力会影响抽气器的工作性能。当射水抽气器出水口在射水池水面以下时,如果出水口淹得太深,由于水池中的水温比射水管中的水温低、比重大,排水管外的压力过大阻碍抽气器工作水的排出,从而导致射水抽气器的抽气能力下降。当射水抽气器的出水口在射水池水面以上时,如果射水泵发生故障,无法射水或射水量急剧下降,外界空气将大量漏入凝汽器中,造成真空急剧下降的严重事故。另外,轴封系统抽空气进入抽气器中,抽气器中的空气量增加,空气的比容远大于工作水的比容,使工作水流动的沿程阻力增大,抽气器的抽气能力下降,也引起抽气器中气水激振。

2.1.3凝结水泵工作失常

凝结水泵在运行过程中一般不需要调节,需要调节的是汽轮机组凝汽器热井水位。因为绝大多数的凝结水泵是在凝汽器额定水位下运行,以保证凝结水泵吸入口的倒灌高度有一个稳定值,防止凝结水泵叶轮汽蚀,同时,水位过高会浸没冷凝管,减少有效的冷却面积,降低真空,又使冷却水过冷;水位过低会影响凝结水泵运行的稳定性。凝结水泵输送凝结水,在吸入水管里几乎处于饱和温度下,当变工况、入口产生涡流等时,极容易使凝结水泵在汽化状态下工作,汽化结果必然会造成泵入口叶轮汽蚀。汽蚀不仅损坏叶轮,缩短泵的使用寿命,还会造成凝结水泵振动,危及运行的安全。为了增加凝结水泵的抗汽蚀性能,在吸入口为150㎜及以上的凝结水泵入口首级叶轮前加置诱导轮,诱导轮用防蚀金属制成。

2.1.4机组真空系统空气渗漏

空气通过两个渠道漏入凝汽器:一是通过机组真空系统的不严密处漏入,另一个是随同蒸汽一起进入凝汽器。由于锅炉给水经过多重除氧,所以后者数量不多,约占从凝汽器抽除空气总量的百分之几。因此,抽出的空气主要是通过机组负压状态部件的不严密处漏入。除了凝汽器自身的严密性外,真空系统的气密性也取决于机组所有其余

处于真空状态部件的严密性,它们包括给水加热器、低压汽缸、汽封、轴封、向大气排放的管道等。

空气大量漏入凝汽器,将造成凝汽器传热恶化,使抽气设备过载,凝结水过冷度及含氧量急剧增加,破坏凝汽器真空度,使凝汽器设备无法正常工作。因此,气密性的评定与监督是确保凝汽器正常运行 的重要课题。凝汽器在稳定工况下运行时,抽气量几乎与漏气量完全相等。对于射水抽气器,必须通过装设向凝汽器(真空系统)人为地输送空气的装置,利用射水抽气器的工作特性(图1),进行漏气量测量。

总之,当发生真空度急剧下降所引起的事故状态时,汽轮机必须立即减负荷,并通过对事故现象的分析,采取措施,消除引起真空度急剧下降的因素。如果短时间内无法使真空度恢复正常,或者真空度继续急剧恶化,则有可能使汽轮机强迫停机,然后详细检查并采取措施。

2.2缓慢下降

当凝汽器真空度以较小数值缓慢下降时,查找原因比较困难。此时应全面考察凝汽设备的运行状态,仔细分析各有关测试数据,表1 列出常见的真空度下降现象,根据工程实际分析其原因,得出相应的消除真空度下降的方法和措施。 表1 凝汽器真空恶化的分析

现象 产生的原因 消除的方法

1、凝汽器负荷和冷却水进口水温不变,而冷却水温升Δt 超过额定值,水阻增加,冷却水进口压力增加,端差δt 在额定值范围内或少许超过

额定值

凝汽器冷却管板脏污,出口水室存在空气等,使冷却水流量减少 凝汽器冷却管板脏 污,出口水室存在 空气等,使冷却水 流量减少

2、凝汽器负荷和冷却水进口温度不变,而冷却水温升Δt 超过额定值,冷却水进出口压力增加,凝汽器水阻降低,端差δt 变

冷却水出口水管闸门未全开,喷水池喷嘴堵塞等使冷却水回水管压力增大,或是冷却水流量减少

开大冷却水回水闸,扫清喷水池喷嘴,降低回水管压力

化不大

3、凝汽器负荷和冷却水出口温度不变,而冷却水温升Δt 超过额定值,冷却水进出口管负压降低,凝汽器水阻减小 冷却水出口管上部虹吸破坏,致使冷却水流量减少;或冷却水泵故障(泵入口管滤网结垢、堵塞,入口门卡涩,水轮及导叶堵塞、结垢或磨损)或吸入空气,冷却水压力降低

启动虹吸抽气器或采取其他措施恢复虹吸作用;消除冷却水泵缺陷造成的故障

4、凝汽器在不同负荷下凝结水温度都比以前高,端差δt 增大,冷

却水温升Δt 稍有增大,

主抽气器抽出的空气温

度与冷却水进口温度之

差增大,凝汽器气密性

证明没有过量空气漏入

凝汽器冷却管脏污、结垢 刷洗和干燥冷却管,冷却水加氯 5、汽轮机排汽温度上升,冷却水出口水温不变,端差δt 增大,凝结水温度降低,过冷度增加,主抽气器抽出的空气温度与冷却水进口温度之差无变化,气密性试验证明有空气漏入

凝汽器

轴封供汽压力低,真空系统管道法兰、虹吸截门盘根处漏空气,真空系统的密封水中断使空气漏入,凝结水泵吸入侧盘根不严密,漏入空气

调整使轴封供汽压力正常,消除漏空气部分的缺陷,保持足够的真空系统密封水,上紧或更换凝结水泵入口侧盘根 6、现象同5,但试验证明无过量空气漏入凝汽器。抽气器内部可能有冲击声 主抽气器工作不正常,射水泵或真空泵工作水温度过高

加大溢水和补水量,降低工作水温度

7、凝汽器水位升高到 空气管管口,冷却水出(1)水泵真空部位漏空气或其他故障造成凝结水不(1)水泵故障不能消除时,应立即启动

口水温不变,端差δt 增大,凝结水温度降低,过冷度增大,抽气器排出空气和蒸汽量明显增加,凝汽器真空度下降 能从 凝汽器中排,水位过高 (2)凝汽器冷却管破裂或冷却管的管环盘根不严,冷却水漏入凝结水中(此时出现凝结水硬度增大现象) 备用泵,恢复凝汽器正常工作,然后查找漏气部位或其他缺陷加以消除

(2)检查和化验凝

结水硬度,证实凝汽

器冷却管破裂或胀

口漏水,可在运行中

停止半侧凝汽器或

在停机时堵漏

3、总结

凝汽器真空度受到很多因素影响,在凝汽器日常管理中,对真空度的监测及管理是最为关键的一项,而这很大程度上取决于对冷却管清洁度的管理和冷却水量的合理调配,只有对此两项进行合理管理,才能使凝汽器在最佳真空状态下运行。

参考文献:

[1]沈士一,庄贺庆,康松,等 《汽轮机原理》北京:中国电力出版社,1998

[2]张卓澄 《大型电站凝汽器》 北京:机械工业出版社,1993 [3]齐复东,贾树本,马义伟《电站凝汽设备和冷却系统》 北京:水利电力出版社,1990

作者简介:杜飞,男,30,工学学士。1999年7月毕业于长沙电力学院热能工程系。其后,进入谏壁发电厂发电部工作,2005年4月调至扬州第二发电厂工作,在谏壁发电厂参加了#9号机组由300MW 直流锅炉改造为330MW 控制循环锅炉的改造调试工作。期间参与了#9号机组的大修。从事本专业多年,有丰富的运行经验。

_汽轮机凝汽器真空度下降原因分析

汽轮机凝汽器真空度下降原因分析在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。汽轮机的真空下降会使汽轮机的可用热焓降减少器综合性.凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空;是每个发电厂节能的重要内容。而凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,提高凝汽器性能,维持机组经济真空运行,直接提高整个汽轮机组的热经济性。 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述: 一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停机。 ⑵循环水量不足 循环水量不足的主要特征是:真空逐步下降;循环水出口和人口温差增大。由于引起循环水量不足的原因不同,因此有其不同的特点,所以可根据这些特征去分析判断故障所在,并加以解决: ①若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,冷却塔布水量减少,可断定是凝汽器内管板堵塞,此时可采用反冲洗、凝汽器半面清洗或停机清理的办法进行处理。

热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 热电厂汽轮机凝汽器真空度下降成因及处理措施探究(2021)

热电厂汽轮机凝汽器真空度下降成因及处理 措施探究(2021) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 凝汽设备是凝汽式汽轮机的重要组成部分,而凝汽器真空度直接影响整个热电厂的运行稳定性、经济性、可靠性与安全性,因此为了防止凝汽器出现真空下降的状况,应该准确的分析引起凝汽器真空下降的原因,并采取相应的措施进行处理,保证汽轮机正常的运行。 1.热电厂汽轮机凝汽器真空下降的原因 1.1.凝汽器真空系统不严密。真空系统存在小漏点时,不凝结的汽体会进入处于真空转台的位置,泄露到凝汽器中,如果不凝结的汽体过多,并滞留在凝汽器中影响传热,很容易造成真空异常下降。凝汽器真空系统不严密造成的真空下降的主要表现为:凝汽器出口循环水温与汽轮机排汽温度的差值增大,凝结水冷却度增大。 1.2.凝汽器水侧泄露。凝汽器铜管泄露会导致硬度较高的冷却水进入凝汽器汽测,提升凝汽器水位,引起凝汽器真空下降,此外,其还会导致水质变坏,腐蚀或锅炉或其他设备,甚至会引起锅炉爆管。

燃机电厂凝汽器真空系统泄漏原因分析、处理

燃机电厂凝汽器真空系统泄漏原因分析、处理 发表时间:2019-09-17T11:05:14.663Z 来源:《电力设备》2019年第7期作者:沈思宇杨云龙 [导读] 摘要:凝汽器真空系统真空好坏与汽轮机的的安全和经济运行紧密相关,但影响机组真空的因素多、真空系统范围广,真空漏点排查困难。 (华能重庆两江燃机发电有限责任公司重庆 400700) 摘要:凝汽器真空系统真空好坏与汽轮机的的安全和经济运行紧密相关,但影响机组真空的因素多、真空系统范围广,真空漏点排查困难。本文结合华能重庆两江燃机电厂凝汽器真空系统泄漏排查、分析、处理案例,将燃机电厂真空泄漏现象、真空泄露原因分析、处理方案和轴封加热器疏水多级水封问题进行深入剖析,拟为其他公司机组凝汽器真空系统泄漏的处理解决提供参考。 关键词:真空泄露、原因分析、处理方案、多级水封 1 前言: 凝汽器真空下降,对机组振动,胀差,轴向位移,推力瓦温度和回油温度,低压缸的排汽温度等都会造成影响,关乎机组安全运行;同时,凝汽器在漏入空气后,排汽压力升高,蒸汽焓降减小,同时不凝结气体分压升高,对蒸汽换热、凝结的影响,加大了排汽损失。对机组经济运行也至关重要。 2 机组概况 华能重庆两江燃机发电有限责任公司两套2*470MW燃气-蒸汽联合循环蒸汽轮机为东方电气集团生产的联合循环冲动式、三压、再热、双缸、向下排汽、抽凝供热汽轮机,额定功率133.7MW。每台机组配备两台100%容量的水环式真空泵,型号:2BE1 253。启动时,两台真空泵并列运行,满足启动时间要求,正常运行时一台运行,一台备用。真空泵的排汽管连接方式为顶排式。 3 两江燃机电厂凝气器真空系统漏真空案例分析 按照DL/T932-2005《凝汽器与真空系统运行维护导则》【1】要求,机组正常运行时,每月进行一次真空严密性试验,机组容量>100 MW,真空严密合格标准为:凝汽器背压上升速率≤270pa/min(华能重庆两江燃机要求凝汽器背压上升率≤200pa/min合格)。华能重庆两江燃机电厂最近出现两次凝汽器真空系统漏真空问题,通过一系列的查漏消缺工作进行了消除。 案例一 2018年7月份,两江燃机电厂两台机组真空严密性试验均超过合格值,试验结果不合格。以一次实验结果为例,试验数据为:#1机背压上升率为600pa/min。针对#1机组真空严密性试验数值超标问题,进行相应的运行调整操作:增启循环水泵真空无明显变化;增启真空泵真空下降0.4kPa左右;调整轴封压力及轴加风机负压真空无明显变化。确认#1机组真空系统存在泄漏。针对这一问题,电厂进行了一系列查漏工作,如灌水查漏、法兰接头等喷肥皂水检漏、低压轴封系统割管检查等,最终通过氦质仪检漏查明漏点: 氦质谱仪器查漏:在真空泵排气管出口采用型氦质谱检漏仪监测氦气浓度,对#1机凝汽器抽真空系统管道法兰、阀门,与凝汽器疏水扩容器连接的疏水管道法兰、阀门,轴封系统管道阀门及轴封加热器、疏水管道阀门,凝汽器膨胀节,连通管及低压缸中分面结合面通过喷氦气进行检漏。检漏发现:低压缸进汽膨胀节处法兰处喷氦检测排气氦气含量高达3.2×10-4远高于检漏仪本底值2.0×10-7Pa/L.s。 1)针对漏点的解决方案: 针对喷氦查漏发现漏点,结合机组运行情况,机组连续启停时,采取了涂专用密封胶堵漏消缺方案;并于年底,利用机组停运检修机会,起吊汽轮机中低压缸连通管后更换了法兰垫片消缺(消缺方案见图1、图2)。 结合消缺后真空严密性试验数据比较,可以确认导致本次#1机真空严密性试验不合格的原因为低压缸进汽膨胀节处法兰垫片损坏漏真空所致。 图1:低压缸进汽膨胀节结构图(为1根螺栓带三密封垫形式,如果13两个密封垫损坏将出现内缸蒸汽外漏,14处密封垫损坏将导致外缸处漏真空) 图2:低压缸进汽法兰面实物图(检修时对此处下部法兰进行了改良:在精确控制两片垫片厚度一致的情况下,由齿形垫改型为压缩性、回弹性更好的缠绕垫,以保证内外均可严密密封) 2)缺陷处理效果: 在明确低压缸进汽膨胀节处法兰垫片损坏漏真空为主要漏点后,电厂采取了对泄露法兰缝隙涂胶堵漏临时消缺方案。临时堵漏后真空严密性试验,#1机真空严密性试验:凝汽器背压上升速率87pa/min ,合格。后续#1机利用检修机会更换低压缸进汽膨胀节处法兰垫片后做真空严密性试验,凝汽器背压上升率64.2pa/min,远优于合格值。至此两江燃机电厂#1机组漏真空问题圆满解决。 案例二 2019年1月28日,华能重庆两江燃机电厂#2机组做真空严密性试验,凝汽器背压上升率618 pa/min,不合格。针对#2机组真空严密性试验数值超标问题,两江电厂再次开展相关真空查漏工作: 氦质谱仪器查漏:结合之前真空系统查漏经验,首先对之前易出问题的漏点查起,运用氦质谱检漏仪对#2低压缸前、后轴封、低压缸

凝汽器真空度对汽轮机效率的影响分析

凝汽系统及凝汽器真空影响因素 摘要 凝汽设备是汽轮机组的重要辅机之一,是朗肯循环中的重要一节。对整个电厂的建设和安全、经济运行都有着决定性的影响。 从循环效率看,凝汽器真空的好坏,即汽轮机组最终参数的高低,对循环效率所产生的影响是和机组初参数的影响同等重要的。虽然提高凝汽器真空可以使汽轮机的理想焓降增大,电功率增加,但不是真空越高越好。影响凝汽器真空的原因是多方面的,主要有:汽轮机排气量、循环水流量、循环水入口温度等。 关键词:朗肯循环;汽轮机;凝汽器;真空

2凝汽器性能计算及真空度影响因素分析 提高朗肯循环热效率的途径 ①提高平均吸热温度的直接方法是提高初压和初温。在相同的初温和背压下, 提高初压可使热效率增大,但提高初压也产生了一些新的问题,如设备的强度问题。在相同的初压及背压下,提高新汽的温度也可使热效率增大,但温度的提高受到金属材料耐热性的限制。。 ②降低排汽温度在相同的初压、初温下降低排汽温度也能使效率提高,这是 由于循环温差加大的缘故。但其温度下降受到环境温度的限制。

2.2 凝汽系统的工作原理 图6.1是汽轮机凝汽系统示意图,系统由凝汽器5、抽气设备1、循环水泵4、凝结水泵6以及相连的管道、阀门等组成。 图6.1 汽轮机凝汽系统示意图 1-抽气设备;2-汽轮机;3-发电机;4-循环水泵;5-凝汽器;6-凝结水泵 凝汽设备的作用主要有以下四点[9]: (1)凝结作用凝汽器通过冷却水与乏汽的热交换,带走乏汽的汽化潜热而使其凝结成水,凝结水经回热加热而作为锅炉给水重复使用。 (2)建立并维持一定的真空这是降低机组终参数、提高电厂循环效率所必需的。 (3)除氧作用现代凝汽器,特别是不单设除氧器的燃气蒸汽联合循环的装置中的凝汽器和沸水堆核电机组的凝汽器,都要求有除氧的作用,以适应机组的防腐要求。 (4)蓄水作用凝汽器的蓄水作用既是汇集和贮存凝结水、热力系统中的各种疏水、排汽和化学补给水的需要,也是缓冲运行中机组流量急剧变化、增加系统调节稳定性的需求,同时还是确保凝结水泵必要的吸水压头的需要。 为了达到上述作用,仅有凝汽器是不够的。要保证凝汽器的正常工作,必须随时维持三个平衡:○1热量平衡,汽轮机排汽放出的热量等于循环水带走的热量,故在凝汽系统中设置循环水泵。○2质量平衡,汽轮机排汽流量等于抽出的凝结水流量,所以在凝汽系统中必须设置凝结水泵。○3空气平衡,在凝汽器和汽轮机低压部分漏入的空气量等于抽出的空气量,因此必须设置抽气设备[14]。 凝汽器内的真空是通过蒸汽凝结过程形成的。当汽轮机末级排汽进入凝汽器后,受到循环水的冷却而凝结成凝结水,放出汽化潜热。由于蒸汽凝结成水的过

机组真空下降的原因分析与处理方法

机组真空下降的原因分析与处理方法 前言: 汽轮机的排汽进入凝汽器汽侧,大流量的循环水送入凝结器铜管内侧,通过铜管内循环水与排汽换热把排汽的热量带走,使排汽凝结成水,其比容急剧减小(约减小到原来的三万分之一),因此原为蒸汽所占的空间便形成了真空。而不凝结气体则通过真空泵抽出,从而起到维持真空的作用。 我厂曾经多次发生凝汽器的真空下降的异常情况,给汽轮机组的安全经济运行造成一定的影响,真空每下降1Kpa将增加约3g/kw.h 煤耗;各机组都不同程度发生过凝汽器真空下降的异常情况,只是真空下降的最低数值不同。造成凝汽器真空下降的原因较多,现在就生产实际工作中遇到的造成凝汽器真空下降常见的原因与处理方法介绍给大家仅供参考、交流。 一、在汽轮机组启动过程中,造成凝汽器真空下降的原因: 1、汽轮机轴封压力不正常 (1)、原因:在机组启动过程中,若轴封供汽压力不正常,则凝汽器真空值会缓慢下降,当轴封压力低时,汽轮机高、低压缸的前后轴封会因压力不足而导致轴封处倒拉空气进入汽缸内,使汽轮机的排汽缸温度升高,凝汽器真空下降。而造成轴封压力低的原因可能是轴封压力调节阀故障;轴封供汽系统上的阀门未开或开度不足。 (2)、象征:真空表指示值下降、汽轮机的排汽缸温度的指示值上升。(3)、处理:当确证为轴封供汽压力不足造成凝汽器真空为缓慢下降

时,值班员必须立即检查轴封压力、汽源是否正常,在一般情况下,只需要将轴封压力调至正常值即可。若是因轴封汽源本身压力不足,则应立即切换轴封汽源,保证轴封压在正常范围内即可,若是无效,则应该进行其它方面检查工作。 2、凝汽器热水井水位升高 (1)、原因:凝汽器的热水井水位过高时,淹没凝汽器铜管或者凝汽器的抽汽口,则导致凝汽器的内部工况发生变化,即热交换效果下降,这时真空将会缓慢下降。而造成凝汽器的热水井水位升高的原因可能是a、凝结水泵故障;b除盐水补水量过大;c、凝汽器铜管泄漏;d、凝结水启动放水排水不畅;e、凝结水系统上的阀门开度不足造成的。(2)、象征:真空表指示下降,汽轮机的排汽缸温度上升、而凝汽器水位计、就地水位计水位也会上升。 (3)、处理:当确证为凝汽器的热水井水位升高造成凝汽器真空为缓慢下降时,值班员必须立即检查究竟是什么原因使凝汽器水位上升,迅速想办法将凝汽器水位降至正常水位值。 3、凝汽器循环水量不足 (1)、原因:当循环水量不足时,汽轮机产生的泛汽在凝结器中被冷却的量将减小,进而使排汽缸温度上升,凝汽器真空下降,造成循环水量不足的原因可能是循环水泵发生故障;循环水进水间水位低引起循环水泵汽化,使循环水量不足;机组凝汽器两侧的进、出口电动门未开到位;在凝汽器通循环水时,系统内的空气未排完。 (2)、象征:真空表指示值会下降,汽轮机的排汽缸温度的指示值上

凝汽器真空度文档

凝汽器真空的影响因素与改善措施 凝汽器真空是表征凝汽器工作特性的主要指标,是影响汽轮机经济运行的主要 因素之一。真空降低使汽轮机的有效焓降减少,会影响汽轮机的出力和机组设备的 安全性。电站凝汽器一般运行经验表明:凝汽器真空每下降1kPa,汽轮机汽耗会增 加1.5%—2.5%。而且,凝汽器真空的降低,会使排汽缸温度升高,引起汽轮机轴 承中心偏移,严重时会引起汽轮机组振动。此外,当凝汽器真空降低时,为保证机 组出力不变,必须增加蒸汽流量,而蒸汽流量的增加又将导致铀向推力增大,使推 力轴承过负,影响汽轮机的安全运行。所以在实际的热电厂运行中,最好使凝汽器 在设计真空值附近运行。 4.1 真空降低的危害 凝汽器是凝汽式机组的一个重要组成部分,其工况的好坏,直接影响整个机组 的安全性和经济性。例如一台200MW的机组,真空每下降1%,引起热耗增加0.029 %,少发电约58KW,而一台600MW的机组,真空每下降1%,引起热耗增加0.05%, 少发电约306KW。有资料显示 ,凝汽器每漏入50kg/h的空气,凝汽器真空下降1Kpa, 机组的热耗增加约6%-8%。 1)经济方面的影响 a. 真空降低,使汽轮机热耗增加。对于高压汽轮机,真空每降低1%,可使机 组热耗增加4.9%。 b真空降低,使凝结水过冷度增加。对于高压汽轮机,凝结水每过冷1℃,也使 热耗增加0.15%。 c 为了提供真空,开大铀封供汽压力和流量,导致油中带水,增大了油耗。 2)安全方面的影响 a.由于真空降低,使排汽压力,排汽温度升高,降低了汽轮机经济性。严重 时,由于排汽温度过高,还将引起汽轮机低压缸胀差发生异常变化和低压缸变形, 改变机组的中心,造成机组振动,可能引起故障停机。 b.由于真空降低,凝结水中含氧量增加,最高超过100%,凝结水系设备和管 道被腐蚀产生的氧化铁进入锅炉,腐蚀炉方的水冷壁、过热器等设备和管道。 c.为了提高真空运行,开大轴封供汽压力和供汽流量,导致轴封漏汽进入润 滑油系统,使油中带水,使调节系统失灵,造成机组运行不稳定,给机组的安全运 行带来严重的隐患。 d.其他方面的影响。在实际中,凝结器真空降低还存在许多缓慢的危害。如凝结水管道被腐蚀,低压加热器铜管被腐蚀,除氧器淋水盘被腐蚀等。 因此,为了确保机组的安全、经济运行,我们必须保持机组在设计真空值附近 运行。 4.2 凝汽器真空降低原因 汽轮机凝汽系统的真空问题与热力系统的设计合理与否、制造安装、运行维护 和检修的质量等多种因素有关,必须根据每台机组的具体情况进行具体分析。汽轮 机凝汽器真空偏低的主要原因有:

汽轮机真空下降原因的分析

第二章汽轮机真空下降的原 因 在现代大型电站凝汽式汽轮机组的热力循环中,凝汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。而凝汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要考核指标。凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如机组真空下降1%,机组热耗将要上升0.6%~1%。凝汽器内所形成的真空受凝汽器传热情况、真空系统严密性状况、冷却水的温度、流量、机组的排汽量及抽气器的工作状况等因素制约。因此有必要分析机组凝汽器真空度下降的原因,找出预防真空度下降的措施,从而提高凝汽器性能,维持机组经济真空运行,以便直接提高整个汽轮机组的热经济性。 第一节汽轮机凝汽器真空度下降的主要特征 在汽轮机组的正常运行中我们可以通过各种仪表、数据来了解和分析汽轮机凝汽器的真空度好坏情况。一般汽轮机凝汽器真空度下降的主要特征有: (1)真空表指示降低; (2)排汽温度升高; (3)凝结水过冷度增加;

(4)凝汽器端差增大; (5)机组出现振动; 第二节汽轮机凝汽器真空度下降原因分析 引起汽轮机凝汽器真空度下降的原因主要有循环水量中断或不足、循环水温升高、后轴封供汽中断、抽气器或真空泵故障、凝汽器满水(或水位升高)、凝汽器结垢或腐蚀,传热恶化、凝汽器水侧泄漏、凝汽器真空系统不严密,汽侧泄漏导致空气涌入等。就这些问题我将分别做出分析、阐述:一、循环水量中断或不足 ⑴循环水中断 循环水中断引起真空急剧下降的主要特征是:真空表指示回零;凝汽器前循环水泵出口侧压力急剧下降;冷却塔无水喷出。循环水中断的原因可能是:循环水泵或其驱动电机故障;循环 毕业设计(论文)说明书专用第7页 水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内等。循环水中断时,应迅速卸掉汽轮机负荷,并注意真空降到允许低限值时进行故障停

汽轮机凝汽器真空度下降原因论文

浅析汽轮机凝汽器真空度下降的原因摘要:凝气设备是汽轮机组重要辅机之一,凝汽器用来冷却汽轮机排汽,使之凝结为水,再由凝结水泵送到除氧器,经给水泵送到锅炉。凝结水在发电厂是非常珍贵的,尤其对高温、高压设备。在汽轮机排汽口造成高度真空,使蒸汽中所含的热量尽可能被用来发电,因此,凝汽器工作的好坏,对发电厂经济性影响极大。在正常运行中凝汽器有除气作用,能除去凝结水中的含氧,从而提高给水质量防止设备腐蚀。因此在汽轮机运行中,监视和保证凝结水是非常重要的。 关键词:汽轮机、凝汽器真空度 abstract: the gas equipment of the steam turbine unit is one of important auxiliary machine, condensed steam turbine exhaust steam used for cooling, condenses into water, then the condensate pumps to the deaerator, the pump to the boiler. condensate in the power plant is a very precious thing, especially for high temperature and high pressure equipment. in the steam turbine exhaust steam mouth cause high vacuum, make steam as far as possible contains quantity of heat is used to make electricity, therefore, condenser work is good or bad, the economy influence on power stations is great. in normal operation of condenser have in addition to gas effect, can remove condensate of oxygen, so as to improve the quality

凝汽器真空和严密性的分析及对机组运行的影响

凝汽器真空和严密性的分析及对机组运行的影响 (秦山核电公司运行部) 摘要:结合本厂分析了凝汽器内的真空高低对汽轮机的经济性、安全性的主要影响;凝汽器的汽侧真空严密性对于机组运行的影响及对汽轮发电机组真空系统漏空进行了分析。说明了在真空系统发生漏空后应采取的判断方法和措施。 关键词: 经济真空;极限真空;过冷度;真空严密性;分析真空用图;漏空点;分析。 汽轮机凝汽器内真空的产生,主要是依靠汽轮机排汽在凝汽器迅速凝结成水,体积急剧缩小而造成的。其次是依靠射汽(射水)抽汽器连续抽出凝汽器内的不凝结气体和空气。为了使汽轮机的排汽能够迅速冷却而凝结成水,必须向凝汽器不断通人大量的冷却用循环水。 A.真空变化对汽轮机的安全与经济都有较大的影响。真空低即排汽压力高,可以使汽轮机的耗汽量增加,经济性降低。真空高即排汽压力低,可以使汽轮机的耗汽量减少,经济性提高。所以,凝汽式机组运行时,应维持较高的真空。 1. 凝汽器内真空的升高 当主蒸汽压力和温度不变,凝汽器真空升高时,蒸汽在汽轮机内的总焓降增加,排汽温度降低,被循环水带走的热量损失减少,机组运行的经济性提高;但要维持较高的真空,在进入凝汽器的循环水温度相同的情况下,就必须增加循环水量,这时循环水泵就要消耗更多的电量。因此,机组只有维持在凝汽器的经济真空下运行才是最有利的。所谓经济真空,就是通过提高凝汽器真空,使汽轮发电机组多发的电量与循环水泵多消耗的电力之差达到最大值时凝汽器所达到的真空。另外,真空提高到汽轮机末级喷嘴的蒸汽膨胀能力达到极限时(此时的真空值称为极限真空),汽轮发电机组的电负荷就不再增加。所以凝汽器的真空超过经济真空并不经济,并且还会使汽轮机末几级的蒸汽湿度增加,使末几级叶片的湿汽损失增加,加剧了蒸汽对动叶片的冲蚀作用,缩短了叶片的使用寿命。因此,凝汽器真空升高过多,对汽轮机运行的经济性和安全性都是不利的。

汽轮机凝汽器系统真空查漏

汽轮机凝汽器系统真空查漏 机组真空是火力发电厂重要的监视参数之一,真空变化对汽轮机安全、经济运行都有影响,运行经验表明,凝汽器真空降低直接影响循环效率,每降低1KPa真空会使汽轮机热耗增加0.94%,机组煤耗增加 3.2g/kwh。真空下降使循环效率下同时会造成汽轮机排汽温度的升高,引起汽轮机转子上移,轴承中心偏离,严重时会引起汽轮机的振动。此外,凝汽器真空降低时为保证机组出力不变,必须增加蒸汽流量,导致轴向推力增大,变化严重时会影响汽轮机安全运行。另一方面,空气漏入凝结水中会使凝结水溶氧超标,腐蚀汽轮机、锅炉设备,影响机组的安全运行。因此在汽轮机运行中必须严格控制机组真空下降。机组运行中真空主要与循环水量水温及系统严密性有关。如果出现真空下降,排除比较常见的故障外,真空系统的泄漏是造成下降的主要原因。其现象主要表现为真空数值下降、排汽温度升高、主汽流量增加及凝汽器端差增大等,直接影响到机组运行的安全经济性。 我厂凝汽器是由东方汽轮机厂生产制造N17660型表面式换热器,水室采用对分制,便于运行中对凝汽器进行半面清洗,凝汽器、凝结水泵、射水抽汽器、循环水泵及这些部件之间所连接的管道称为凝汽设备,凝汽器真空的高低对汽轮机运行的经济性有着直接的关系,所以要求真空系统(包括凝汽器本体)要有高度的严密性。一般是通过定期进行真空严密性试验来检验真空系统的严密程度。通过试

验,可掌握真空系统严密性的变化情况,鉴定凝汽器工作的好坏,以便采取对策查找及消除漏点,防止空气漏入影响传热效果及真空,不同机组对真空严密性有不同的要求,真空严密性用每分钟真空下降值表示。 凝汽器真空系统的密封点很多,包括与凝汽器连接的负压管道的焊口、膨胀节、疏水扩容器、减温水管道、多级水封、水位计等涉及汽机、热控等多个专业,检修工艺要求严格,检修工艺要求严格,涉及范围广,要求责任心强。真空系统严密性应在机组检修期间得以保证,如果由于密封不严、检修工艺不合理及查漏不全面等在机组运行一段时间后发生泄漏,仍应该采取各种措施,积极进行真空严密泄漏查找工作。为保证汽轮机真空系统查漏工作的顺利进行,确保机组的安全经济运行,特制定如下措施: 一组织措施 1、本工作的开展需要运行、点检、检修及热力试验组协调完成。 2、准备好查漏工作所需要的氦质谱检漏仪、氦气瓶、便携式气袋、喷射用铜管及连接用胶管、对讲机等工器具,保证合格足量的氦气。 3 、査漏工作要确定一个工作负责人,负责査漏工作中各部门的协调联系工作以及査漏工作的分工安排。 4、查漏工作由设备部组织进行,发电部专工、热试组人员、汽机车间检修班组人员配合,运行当值人员保证机组稳定运行并配合进行各阶段严密性试验。

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复; ②循出阀门误关、凝汽器水侧板管堵塞、收球大网板不在运行位置:循环水压上升,温升增大; ③进水不畅:循泵电流晃动,进水压力下降,出水真空降低,循环水温升增大,水量不足;. |4 Q1 j- {3 u ④虹吸破坏(进水压力低、板管堵塞、出水侧漏空气):虹吸作用减小时,会使水量减少,却又提高了循环水母管压力,而压力高对维持水量是有利的,所以虹吸破坏必然是个过程。出水真空晃动且缓慢下降,温升增大。操作:提高循环水压力(关小出水门),对循出放空气,重新建立出水真空。 (2)轴封汽压力低:提高压力,关小轴加排汽风机进气门;冷空气会使转子收缩,负差胀增大。 (3)凝汽器水位高:排汽温度升高同时,凝水温度下降,过冷度增加。端差增大;水位﹥抽汽口高度、运行凝泵跳闸、管路堵、备用泵逆止门坏、系统主要

热电厂汽轮机凝汽器真空度下降成因及处理措施探究通用范本

内部编号:AN-QP-HT492 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 热电厂汽轮机凝汽器真空度下降成因及处理措施探究通用范本

热电厂汽轮机凝汽器真空度下降成因及处理措施探究通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 凝汽设备是凝汽式汽轮机的重要组成部分,而凝汽器真空度直接影响整个热电厂的运行稳定性、经济性、可靠性与安全性,因此为了防止凝汽器出现真空下降的状况,应该准确的分析引起凝汽器真空下降的原因,并采取相应的措施进行处理,保证汽轮机正常的运行。 1.热电厂汽轮机凝汽器真空下降的原因 1.1.凝汽器真空系统不严密。真空系统存在小漏点时,不凝结的汽体会进入处于真空转台的位置,泄露到凝汽器中,如果不凝结的汽体过多,并滞留在凝汽器中影响传热,很容易造

凝汽器真空对汽轮机工作的影响分析及对策(葛乃友)

凝汽器真空对汽轮机工作的影响分析及对策 葛乃友 (芦岭阳光能源综合利用有限公司煤矸石发电厂;安徽宿州234113) [摘要]浅析凝汽器真空对汽轮机工作的影响、保真空方法、真空下降及处理及案例分析。 [关键词]汽轮机;真空;影响;对策 1 引言 以前总以为通过增加凝汽器的真空度能提高汽轮机的效率,其实则不然,真空度越高,机组的效率并不越高。特别在北方,冬季循环水一般都在10℃以下,虽然真空度较高,但汽轮机凝结水温度却大大降低。过冷度的增加,导致了综合热效率的降低,经济性就差。所以应根据机组负荷、季节等情况确定,加上合理调整循环水泵运行数量与方式。只有汽轮机排汽压力达到最佳真空时才行。 2 凝汽器真空对汽轮机工作的影响 安全经济发供电是电力生产的基本原则,为提高生产运行可靠性和经济性,应积极开展节能技术改造,推广运用四新技术,充分挖掘设备潜力,力求降耗增效。提高系统经济运行质量,首先就要加强经济指标的管理,对影响机组经济运行的凝汽器问题,如汽轮机背压、凝汽器端差、过冷度、循环水入口温度,循环水温升等参数,都与经济运行有关,特别是初压力、初温度和排汽压力影响最大。降低汽轮机的排汽压力,使循环放热过程的平均温度降低,是提高热经济性的主要方法之一。排汽压力还与冷却水温度和流量、凝汽器的冷却面积和构造、汽轮机末级的通流面积、汽轮机的负荷等有关。在蒸汽初参数和循环形式已定的情况下,循环热效率随排汽压力的降低而提高。 为提高机组效率,一般可通过提高凝汽器真空这个途径。真空越高,效率也越高,但不能无限制的提高。汽轮机末极叶片的通流能力是一定的,当蒸汽在末极叶片中膨胀达最大值时与之对应的真空称为极限真空,此时再提高真空,蒸汽就在叶片外膨胀,不做功了。凝汽器的最佳真空是:提高凝汽器的真

凝汽器真空分析

凝汽器真空分析 排汽真空度对汽轮机正常运行起着非常重要的作用。真空度下降, 会使汽轮机的汽耗和最后几级叶片的反动度增加、轴向推力增大.随着排汽温度升高, 会引起汽轮机转子旋转中心漂移而产生振动, 甚至引起汽缸变形及动静间隙增大。如因冷水量不足而引起故障的, 还会导致铜管过热而产生振动及破裂, 缩短凝汽器的使用寿命。 凝汽器传热端差值的变化标志着凝汽器运行状况的好坏, 可作 为判别凝汽器运行状态的依据。运行中端差值越小, 则运行情况越好,机组的热效率越高。凝汽器的传热端差是指凝汽器排汽温度与冷却水出口温度的差值。影响凝汽器传热端差的因素比较复杂, 主要包括凝汽器传热性能、热负荷、清洁系数、空气量及循环水系统的特性等。 1.空气量 凝汽器的空气来源有二个,一是由新蒸汽带入汽轮机的, 由于锅炉给水经过除氧, 这项来源极少;二是处于真空状态下的各级与相应的回热系统、排汽缸、凝汽设备等不严密处漏入的, 这是空气的主要来源。空气严密性正常时进入凝汽器的空气量不到蒸汽量的万分之一, 虽然少但危害很大。主要是空气阻碍蒸汽放热, 使传热系数减小, 端差增大从而使真空下降。空气的第二大危害是使凝结水的过冷度增大。降低空气量主要从真空严密性和真空泵的工作性能考虑。 2.真空严密性 真空严密性差是造成汽轮机真空低的主要原因, 在根据工程调 试的经验, 真空系统易泄漏空气的薄弱环节有:

1)凝汽器热井、低压加热器玻璃管水位计经常出现漏点、缺陷, 漏 入空气, 造成严密性下降。 2)轴封加热器水位自动调节失灵导致水位偏低, 水封无法建立, 导 致空气漏入。 3)采用迷宫式水封的给水泵, 其密封水排至凝汽器, 水封无法有效 建立, 导致空气漏入。 4)低压缸防爆门、小汽机排汽管防爆门、凝汽器入孔门等也经常由 于密封不严, 或防爆门出现裂缝, 导致空气漏入。 5)大机、小机低压轴封由于轴封压力不能满足需要, 造成轴封泄漏, 另外, 汽封间隙的大小、汽封的完好程度也是造成轴封泄漏的重要因素。 6)凝结水泵进口法兰、凝泵水封泄漏也经常导致凝结水溶氧不合格。 7)管道安装。目前的新建机组, 安装质量较好, 压力管道均进行水 压试验, 真空管道均进地灌水试验, 由于法兰, 阀门盘根等原因导致泄漏的情况较小。 8)部分低压管道上的疏水阀、排汽阀, 关闭不严, 导致真空泄漏。 根据实际情况及分析研究, 可采用以下处理措施: 机组运行过程中维持轴封系统各疏水、U形水封的正常工作。 1)机组运行过程中维持好轴封加热器的正常水位。 2)按设计要求调整汽轮机轴端汽封间隙, 减小轴端漏汽量。 3)运行中严格控制低压汽封供汽压力、温度, 遇到汽封系统运行不 正常, 应及时进行分析,不可随意提高汽封供汽压力、温度。

机组真空下降的原因及处理

造成凝汽器真空下降的原因较多,现在就生产实际工作中遇到的造成凝汽器真空下降常见的原因与处理方法介绍给大家仅供参考、交流。 一、在汽轮机组启动过程中,造成凝汽器真空下降的原因: 1、汽轮机轴封压力不正常 (1)、原因:在机组启动过程中,若轴封供汽压力不正常,则凝汽器真空值会缓慢下降,当轴封压力低时,汽轮机高、低压缸的前后轴封会因压力不足而导致轴封处倒拉空气进入汽缸内,使汽轮机的排汽缸温度升高,凝汽器真空下降。而造成轴封压力低的原因可能是轴封压力调节阀故障;轴封供汽系统上的阀门未开或开度不足。 (2)、象征:真空表指示值下降、汽轮机的排汽缸温度的指示值上升。(3)、处理:当确证为轴封供汽压力不足造成凝汽器真空为缓慢下降时,值班员必须立即检查轴封压力、汽源是否正常,在一般情况下,只需要将轴封压力调至正常值即可。若是因轴封汽源本身压力不足,则应立即切换轴封汽源,保证轴封压在正常范围内即可,若是无效,则应该进行其它方面检查工作。 2、凝汽器热水井水位升高 (1)、原因:凝汽器的热水井水位过高时,淹没凝汽器铜管或者凝汽器的抽汽口,则导致凝汽器的内部工况发生变化,即热交换效果下降,这时真空将会缓慢下降。而造成凝汽器的热水井水位升高的原因可能是a、凝结水泵故障;b除盐水补水量过大;c、凝汽器铜管泄漏;d、凝结水启动放水排水不畅;e、凝结水系统上的阀门开度不足造成的。 (2)、象征:真空表指示下降,汽轮机的排汽缸温度上升、而凝汽器水位计、就地水位计水位也会上升。

(3)、处理:当确证为凝汽器的热水井水位升高造成凝汽器真空为缓慢下降时,值班员必须立即检查究竟是什么原因使凝汽器水位上升,迅速想办法将凝汽器水位降至正常水位值。 3、凝汽器循环水量不足 (1)、原因:当循环水量不足时,汽轮机产生的泛汽在凝结器中被冷却的量将减小,进而使排汽缸温度上升,凝汽器真空下降,造成循环水量不足的原因可能是循环水泵发生故障;循环水进水间水位低引起循环水泵汽化,使循环水量不足;机组凝汽器两侧的进、出口电动门未开到位;在凝汽器通循环水时,系统内的空气未排完。 (2)、象征:真空表指示值会下降,汽轮机的排汽缸温度的指示值上升,凝汽器循环水的进、出口压力会波动,凝汽器循环水的进、出口水温度会发生变化(进口温度正常,出口温度升高)。 (3)、处理:当确证为凝汽器循环水量不足造成凝汽器真空为缓慢下降时,值班员应迅速检查循泵运行是否正常,进水间水位是否正常。迅速到就地检查机组凝汽器的两侧进、出口电动门是否已经开到位,两侧进、出口压力是否波动(若是波动则对其进行排空气工作,直至空气管排出水为止)。 4、处于负压区域内的阀门状态误开(或误关) (1)、原因:由于机组启动过程中,人员操作量大,在此过程中难免会发生操作漏项或是误操作的情况,这是造成此类真空下降的主要原因。 (2)、象征:真空下降、汽轮机的排汽缸温度升高,发生的时间之前,值班人员正好完成与真空系统有关操作项目。 (3)、处理:当确证为处于负压区域内的阀门状态误开(或误关)造成凝汽器

汽轮机真空高的原因分析及防范措施

编号:SM-ZD-97936 汽轮机真空高的原因分析 及防范措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

汽轮机真空高的原因分析及防范措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 摘要:本文对EHNKS50/80/16冷凝式汽轮机开车以来真空高的几个原因进行了分析,以便操作人员了解汽轮机真空高的原因,对其进行防范措施 关键词:汽轮机真空分析防范措施 EHNKS50/80/16冷凝式汽轮机T7612,用于神华宁煤45000Nm3/h空分装置压缩机组驱动用抽汽凝汽式汽轮机组。 其中,凝汽器真空度对凝汽式汽轮机组运行安全性和热经济性有很大影响。在运行中,凝汽器工作状态恶化将直接引起汽轮机热耗、汽耗增大和出力降低。另外,真空下降使汽轮机排汽缸温度升高,引起汽机轴承中心偏移,严重时还引起汽轮机组振动。为保证机组出力不变,真空降低时会增加蒸

凝汽器真空低的原因分析危害及采取的措施

凝汽器真空低的原因分析危害及采取的措施 【摘要】凝汽器真空度对机组运行安全性和热经济性有很大影响,在机组运行中,凝汽器工作状态恶化将直接引起汽轮机热耗、汽耗增大和出力降低;另外,真空下降会引起汽轮机排汽缸温度升高、汽机轴承中心偏移,严重时还会引起汽轮机组振动。 【关键词】凝汽器真空度;热经济性 0.前言 本厂#5、#6机组为330MW亚临界、反动式、单轴、一次中间再热、双缸双排汽、抽汽凝汽式供热汽轮机组。采用单背压、单壳体、对分双流程表面式凝汽器。凝汽器其作用是使汽轮机排汽受冷却凝结成水,形成高度真空,使汽机内的蒸汽膨胀到低于大气压力从而多做功。凝汽器真空度对机组运行安全性和热经济性有很大影响,在机组运行中,凝汽器工作状态恶化将直接引起汽轮机热耗、汽耗增大和出力降低;另外,真空下降会引起汽轮机排汽缸温度升高、汽机轴承中心偏移,严重时还会引起汽轮机组振动。 1.凝汽器真空低的原因分析 1.1 真空系统空气渗漏空气通过两个渠道漏入凝汽器:一是由机组真空系统的不严密处漏入,二是随同蒸汽一起进入凝汽器。由于锅炉给水经过多重除氧,所以由后一种渠道渗入的空气数量不多,约占从凝汽器抽空气总量的百分之几,抽出的空气主要是由机组负压状态部件的不严密处漏入。除了凝汽器自身的严密性外,真空系统的气密性,包括了给水加热器、低压缸、汽轴封、向空排气气密性等也会影响到凝汽器的真空度管道的。 1.2 循环水系统凝汽器真空除了受空气渗漏的影响外,还与循环水流量、进水温度及传热效果等有关。(1)冷却水进口温度。在其它条件相同。冷却倍率不变时,冷却水进口温度越低,排汽温度也越低,即凝汽器真空就越高。(2)冷却水量。当汽机负荷、冷却水温度不变时,增加冷却水量,冷却水温升必然减小。冷却水温升的大小反映冷却水量情况,当其温差大于8℃~12℃时,应增加冷却水量,以增强换热效果,提高凝汽器真空。(3)凝汽器端差δt的影响。凝汽器压力下的饱和温度与凝汽器冷却水出口温度之差称为端差。端差是反映凝汽器热交换状况的指标,其主要与凝汽器铜管表面的清洁程度有关,即铜管传热越强端差越小。相同条件下,端差增大,说明凝汽器铜管结垢增多,热交换性能降低,使循环水出口温度降低,凝汽器的传热端差增大,从而造成凝汽器的真空下降,因此必须尽量减小凝气器端差,以提高凝汽器真空。 1.3 真空系统真空泵工作水压力低、水量不足或增加过多,都可能导致真空泵抽吸能力的下降,造成凝汽器真空的降低。因此必须对真空泵工作水压力和流量进行合理控制,以维持正常的抽吸能力,保证凝汽器的正常真空。

凝汽器真空下降处理

23 凝汽器真空下降 23.1 象征: 23.1.1 各真空表计显示真空下降。 23.1.2 排汽温度升高。 23.1.3 负荷自动下降。 23.1.4 真空泵电流增大。 23.2 原因: 23.2.1 循环水量不够,运行循泵出口蝶阀未全开、循环水室聚集空气、备用循泵出口蝶阀未关严等。23.2.2 真空泵故障,包括运行真空泵汽水分离器水位过高或过低,运行真空泵入口碟阀门误关及备用真空泵入口门未关严等。 23.2.3 轴封压力下降。 23.2.4 凝汽器水位过高,造成真空泵入口管进水。 23.2.5 真空系统泄漏或有关阀门误动。 23.2.6 小机真空系统泄漏。 23.2.7 补水管道断水,空气进入凝汽器。 23.3 处理: 23.3.1 发现真空下降,首先应对照低压缸排汽温度表进行确认,并查找原因进行相应处理。 23.3.2 发现凝汽器真空下降至88kPa时,立即启动备用真空泵运行,提高凝汽器真空,如真空继续降低,应按真空每下降1kPa,减负荷60MW,凝汽器真空降至76.74kPa,负荷应减至零。 23.3.3 机组负荷>10%额定负荷时,真空低至73.44kPa时,应手动停机。 23.3.4 机组负荷≤10%额定负荷时,真空低于70.14kPa,汽轮机真空低保护动作跳闸,否则手动停机。 23.3.5 凝汽器真空下降时,应根据低压缸排汽温度升高情况,开启低压缸喷水电磁阀,控制排汽温度不超过79℃,排汽温度达121℃且持续15min或>121℃应停机。 23.3.6 因真空低紧急停机时,不允许开启高、低压旁路,关闭所有进入凝汽器的疏水门。 23.3.7 报警至停机时间不得超过60min。 23.3.8 检查当时机组有无影响真空下降的操作,如有立即停止并恢复到原运行方式。 23.3.9 因循环水中断或水量不足引起的真空下降,应立即启动备用循环水泵,如循环水全部中断,应立即脱扣停机,并关闭凝汽器循环水进出水门,待凝汽器排汽温度下降到50℃左右时,再向凝汽器通循环水。 23.3.10 循环水水量减少时,应检查运行循环泵工作是否正常、出口蝶阀是否全开,备用泵碟阀关闭是否严密,否则启动备用泵。 23.3.11 检查真空泵运行情况,及时调整汽水分离器水位正常,备用真空泵入口门不严时切换备用泵运行。 23.3.12 检查轴封系统工作情况,及时维持轴封压力正常。 23.3.13 检查凝汽器水位,水位高时及时调整。 23.3.14 检查凝汽器补水管道充水正常,否则关闭凝汽器补水门,待水位正常后再打开。 23.3.15 若仪用气压力低,导致真空泵入口碟阀关闭,及时恢复仪用气压力正常,并根据真空降负荷。23.3.16 因凝汽器真空系统漏空气引起的真空下降: 23.3.16.1 检查真空破坏门及真空系统的有关阀门是否误开,如误开立即关闭。 23.3.16.2 对真空系统的设备进行查漏和堵漏。如轴封加热器∪型管水封不正常,应注水;真空破坏门不严密,应关严并注水;真空系统有关阀门(仪表排污门、水位计排放门)等误开,应立即关闭;给水泵汽轮机轴封泄漏,应立即消除;给水泵密封水不正常,水封∪型管泄漏时,应立即调整水封∪型管水位正常或立即隔离水封∪型管,将密封水回水倒至地沟,待调整水封正常时重新倒回凝汽器。 23.3.16.3 检查小机真空系统是否泄漏,小机真空系统泄漏,不能维持在低真空报警值以上,又无法处理时,减负荷停故障小机,关闭排汽碟阀及疏水,进行处理。

相关文档
最新文档