动量与能量结合综合题附答案

动量与能量结合综合题附答案
动量与能量结合综合题附答案

动量与能量结合综合题

1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd

B.cd始终做减速运动,ab始终做加速运动,但追不上cd

C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动

D.磁场力对两金属杆做功的大小相等

h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为

3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为

后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求:

1,质量为m时物块与木板碰撞后的速度;

2,质量为2m时物块向上运动到O的速度。

3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热Q最多是多少

(2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少

4.(20分) 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,两物块的质量均为M=0.60kg。一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A物块,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。已知物块A的长度为0.27m,A离开桌面后,落地点到桌边的水平距离s=2.0m。设子弹在物块A、B 中穿行时受到的阻力保持不变,g取10m/s2。求:

(1)物块A和物块B离开桌面时速度的大小分别是多少;

(2)求子弹在物块B中穿行的距离;

(3)为了使子弹在物块B中穿行时物块B未离开桌面,求物块B到桌边的最小距离。

v

A B

h

s

5.宇宙射线每时每刻都在地球上引起核反应。自然界的14C大部分是宇宙射线中的中子轰击“氮-14”产生的,核反应方程式为。若中子的速度为v1=8×l06m/s,反应前“氮-14”的速度认为等于零。反应

后生成的14C粒子的速度为v2=×l05m/s,其方向与反应前中子的运动方向相同。

①求反应中生成的另一粒子的速度:

②假设此反应中放出的能量为0.9MeV,求质量亏损。

6.(19分)如图12所示,质量M=1.0kg的木块随传送带一起以v=2.0m/s的速度向左匀速运动,木块与传送带间的动摩擦因数μ=。当木块运动至最左端A点时,一颗质量为m=20g的子弹以v0=×102m/s水平向右的速度击穿木块,穿出时子弹速度v1=50m/s。设传送带的速度恒定,子弹击穿木块的时间极短,且不计木块质量变化,g=10m/s2。求:(1)在被子弹击穿后,木块向右运动距A点的最大距离;

(2)子弹击穿木块过程中产生的内能;

(3)从子弹击穿木块到最终木块相对传送带静止的过程中,木块与传送带间由于摩擦产生的内能。(AB间距离足够长)

7、为了有效地将重物从深井中提出,现用小车利用“双滑轮系统”(两滑轮同轴且有相同的角速度,大轮通过绳子与物体相连,小轮通过另绳子与车相连)来提升井底的重物,如图所示。滑轮离地的高度为H=3m,大轮小轮直径之比为3:l,(车与物体均可看作质点,且轮的直径远小于H),若车从滑轮正下方的A点以速度v=5m/s匀速运动至B点.此时绳与水平方向的夹角为37°,由于车的拉动使质量为m=1 kg

物体从井底处上升,则车从A点运动至B点的过程中,试求:

a.此过程中物体上升的高度;

b.此过程中物体的最大速度;

c.此过程中绳子对物体所做的功。

轨道最低点P的切线相平。现有一质量m=2kg的滑块(可视为质点)以v0=6m/s的初速度滑上小车左端,二者共速时小车还未与墙壁碰撞,当小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=,g取10m/s2,求:

(1)滑块与小车共速时的速度及小车的最小长度;

(2)滑块m恰好从Q点离开圆弧轨道时小车的长度;

(3)讨论小车的长度L在什么范围,滑块能滑上P点且在圆轨道运动时不脱离圆轨道

11.两根足够长的平行光滑导轨,相距1m水平放置。匀强磁场竖直向上穿过整个导轨所在的空间B = T。金属棒ab、cd质量分别为0.1kg和0.2kg,电阻分别为Ω和Ω,并排垂直横跨在导轨上。若两棒以相同的初速度3m/s 向相反方向分开,不计导轨电阻,求:

①棒运动达到稳定后的ab棒的速度大小;

②金属棒运动达到稳定的过程中,回路上释放出的焦耳热;

③金属棒运动达到稳定后,两棒间距离增加多少

光滑水平导轨良好接触,导轨上还放有质量为0.20kg 的另一导体棒cd ,整个装置处于竖直向上的匀强磁场中。将ab 棒向右拉起0.80m 高,无初速释放,当ab 棒第一次经过平衡位置向左摆起的瞬间,cd 棒获得的速度是0.50m/s 。

在ab 棒第一次经过平衡位置的过程中,通过cd 棒的电荷量为1C 。空气阻力不计,重力加速度g 取10m/s 2,求:(1)

ab 棒向左摆起的最大高度;(2)匀强磁场的磁感应强度;(3)此过程中回路产生的焦耳热

13.(20分)如图所示,竖直放置的圆弧轨道和水平轨道两部分相连. 水平轨道的右侧有一质量为 2 m 的滑块C 与轻质弹簧的一端相连,弹簧的另一端固定在竖直的墙M 上,弹簧处于原长时,滑块C 静止在P 点处;在水平轨道上方O 处,用长为L 的细线悬挂一质量为 m 的小球B ,B 球恰好与水平轨道相切,并可绕O 点在竖直平面内摆动。质量为 m 的滑块A 由圆弧轨道上静止释放,进入水平轨道与小球B 发生弹性碰撞. P 点左方的轨道光滑、右方粗糙,滑块A 、C 与PM 段的动摩擦因数均为 =,A 、B 、C 均可视为质点,重力加速度为g .

(1)求滑块A 从2L 高度处由静止开始下滑,与B 碰后瞬间B 的速度。

(2)若滑块A 能以与球B 碰前瞬间相同的速度与滑块C 相碰,A 至少要从距水平轨道多高的地方开始释放

(3)在(2)中算出的最小值高度处由静止释放A ,经一段时间A 与C 相碰,设碰撞时间极短,碰后一起压缩弹簧,弹簧最大压缩量为

3

1L ,求弹簧的最大弹性势能。

参考答案

1.C

【解析】

试题分析:让cd 杆以初速度v 向右开始运动,cd 杆切割磁感线,产生感应电流,两杆受安培力作用,安培力对cd 向左,对ab 向右,所以ab 从零开始加速,cd 从v 0开始减速.那么整个电路的感应电动势减小,所以cd 杆将做加速度减小的减速运动,ab 杆做加速度减小的加速运动,当两杆速度相等时,回路磁通量不再变化,回路中电流为零,两杆不再受安培力作用,将以相同的速度向右匀速运动.故C 正确,AB 错误.两导线中的电流始终相等,但由于通过的距离不相等,故磁场对两金属杆做功大小不相等;故D 错误;故选C 。 考点:电磁感应问题的力的问题

【名师点睛】本题是牛顿第二定律在电磁感应现象中的应用问题.解答本题能搞清楚物体的受力情况和运动情况,突然让cd 杆以初速度v 向右开始运动,cd 杆切割磁感线,产生感应电流,两杆受安培力作用,根据牛顿第二定律判断两杆的运动情况。

【解析】 试题分析:①设物块与木板碰撞时,物块的速度为0v ,由能量守恒得到:

设物块与木板碰撞后一起开始向下运动的速度为1v ,因碰撞时间极短,动量守恒:102mv m v =,解得: ②设质量为m 时物块与木板刚碰撞时弹簧的弹性势能为p E ,当它们一起回到O 点时,弹簧弹性势能为零,且此时物块与木板速度恰好都为零,以木板初始位置为重力势能零点,由

设2v 表示质量为2m 时物块与木板碰撞后一起开始向下运动的速度,由动量守恒得到: 2023mv m v =

此后物块与木板碰撞后向上运动通过O 点时,木板和物块具有相同的速度v ,由机械能守恒

考点:能量守恒、动量守恒定律

【名师点睛】物体的碰撞瞬间,我们应该考虑到动量守恒定律;对于简谐运动,我们要运用

该运动的特殊位置物理量的特点以及对称性;动能定理的应用范围很广,可以求速度、力、功等物理量,特别是可以去求变力功。

3.(1)2014

Q mv =; (2)2204B L v F a m mR

==

【解析】

试题分析:(1)从开始到两棒达到相同速度v 的过程中,两棒的总动量守恒,有mv mv 20= 根据能量守恒定律,整个过程中产生的焦耳热2022041)2(2121mv v m mv Q =-=

(2)设ab 棒的速度变为04

3v 时,cd 棒的速度为'v ,则由动量守恒可知 '4

300mv mv mv += 解得041'v v = 此时回路中的电动势为0002

14143BLv BLv BLv E =-= 此时回路中的电流为R

BLv R E I 420== 此时cd 棒所受的安培力为R

v L B BIL F 4022== 由牛顿第二定律可得,cd 棒的加速度2204B L v F a m mR

== 考点:动量守恒定律;闭合电路的欧姆定律;导体切割磁感线时的感应电动势

【名师点睛】本题主要考查了动量守恒定律、闭合电路的欧姆定律、导体切割磁感线时的感应电动势。分根据动量守恒定律确定两棒最后的末速度是本题的关键,分析这类电磁感应现象中的能量转化较易:系统减少的动能转化为回路的焦耳热;本题涉及到动生电动势、动量守恒定律、牛顿第二定律及闭合电路欧姆定律综合的力电综合问题,故本题属于难度较大的题。

4.(1) B v =10m/s (2)2105.3-?=B L m (3)s min =×10-2

m 【解析】(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛

运动 A A v =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒: B A v m M Mv mv )(0++=

B 离开桌边的速度B v =10m/s

(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:A Mv mv mv 210+= 401=v m/s

子弹在物块B 中穿行的过程中,由能量守恒

① 子弹在物块A 中穿行的过程中,由能量守恒

② 由①②解得2105.3-?=B L m

(3)子弹在物块A 中穿行的过程中,物块A 在水平桌面上的位移为s 1,根据动能定理

③ 子弹在物块B 中穿行的过程中,物块B 在水平桌面上的位移为s 2,根据动能定理

④ 由②③④解得物块B 到桌边的最小距离21min s s s += s min =×10-2m

本题考查动量守恒与能量守恒的应用,物块A 被子弹射穿后做平抛运动飞出桌面,由平抛运动规律可求得平抛运动的初速度及子弹射穿后木块的速度,在子弹射穿木块过程中系统动量守恒,子弹射进木块B 中,木块B 向右加速,使得A 、B 分离,如果以子弹、木块A 、B 为一个系统,内力远远大于外力,系统动量始终守恒,初状态为AB 静止,末状态为子弹与B 共速,列式可求得B 的速度,再以子弹和木块A 为研究对象,动量守恒可求得子弹飞出后的速度,此时AB 速度相同,再以子弹和B 为一个系统,系统动能的减小量完全转化为内能,系统的内能为阻力乘以相对距离及打进物体B 的深度,由此可求解

5.(1),/.'s m 1025v 62?=(2)kg 1061m 30-?=.?

【解析】①轰击前后系统动量守恒,选中子速度方向为正方向

''221111v m v m v m +=

(1分) 氢核速度为,/.'s m 1025v 62?=方向与中子原速度方向相同 (1分)

②由质能方程 2mc E ??= (1分)

得 kg 1061m 30-?=.?

本题考查动量守恒定律,轰击前后系统动量守恒,找到初末状态,规定正方向,列公式求解,由爱因斯坦的质能方程可求得质量亏损

6.(1)10.90s m = (2)872.5E J =(3)

【解析】(1)设木块被子弹击穿时的速度为u ,子弹击穿木块过程动量守恒

01 mv Mv mv Mu -=+解得 3.0/u m s = ………………………………(2分 设子弹穿出木块后,木块向右做匀减速运动的加速度为a ,根据牛顿第二定律μmg=ma 解得2 5.0/a m s = …………………………………………(2分)木块向右运动到离A 点最远时,速度为零,设木块向右移动最大距离为s 1

212?u as = 解得 10.90s m = ………………………………………(2分)

(2)根据能量守恒定律可知子弹射穿木块过程中产生的内能为 E= …………………………(3分) 解得

872.5E J = …………………………………………………(1分)

(3)设木块向右运动至速度减为零所用时间为t 1,然后再向左做加速运动,经时间t 2与传送带达到相对静止,木块向左移动的距离为s 2。根据运动学公式

222v as =解得20.40m s = ………………………………………(2分) t 1==, t 2== ………………………………………(1分)木块向右减速运动的过程中相对传送带的位移为

2.1m =, 产生的内能

1'Mg 10.5J Q s μ== ……………………………………(2分)木块向左加速运动的过程中相对传送带的位移为22''0.40s vt s =-=m ,

产生的内能2'' 2.0J Q M s g μ== ……………………………………(2分)

所以整个过程中木块与传送带摩擦产生的内能

1212.5J Q Q Q =+= …………………………………………………(2分)

本题考查的是动量守恒定律及能量守恒的综合力学问题,先根据动量守恒及牛顿第二定律解出木块向右移动最大距离;再根据能量守恒解出产生的内能;再根据匀变速运动的规律及摩擦力做功计算出产生的内能;

7.6m

8.12m/s

9.132J

【解析】

10.(1)L 1=3m(2) m L L L 421=+=(3)m L 8.2'

2=

【解析】(1)由动量守恒知,10)(v M m mv +=,

得v 1=4m/s (4分)设小车的最小长度为L 1 由能量守恒知212120211)(v M m mv mgL +-=μ,得L 1=3m (4分) (2)m 恰能滑过圆弧的最高点,R v m mg Q

2=(2分)

小车粘在墙壁后,滑块在车上滑动,运动到最高点Q ,

在这个过程对滑块由动能定理:21222

1212mv mv R mg mgL Q -=

--μ(2分) 解得:m L 12=

所以小车长度m L L L 421=+=(2分)

(3)由(2)可知,滑块要想运动到Q 点,小车的长度L 必须满足:m L m 43≤≤ 若滑块恰好滑至41

圆弧到达T 点时就停止,则滑块也能沿圆轨道运动而不脱离圆轨道。

小车粘在墙壁后,滑块在车上滑动,运动到T 点, 在这个过程对滑块由动能定理:21'

22

10mv mgR mgL -=--μ(2分) 解得m L 8.2'

2=(2分)

本题考查的是动量守恒和动能定理的应用。

11.(1)ab 、cd 棒组成的系统动量守恒,最终具有共同速度V ,以水平向右为正方向, 则m cd V 0 – m ab V 0 =(m cd + m ab )V

V = 1 m/s

(2)根据能量转化与守恒定律,产生的焦耳热为: Q = 减 =(m cd +m ab )

(V 02 – V 2)/ 2 = J

(3)对cd 棒利用动量定理:– BIL·t = m cd (V – V 0) BLq = m cd (V 0 – V )

又 q = /(R 1 + R 2)= BL s /(R 1 + R 2) s = m cd (V 0 – V )(R 1+R 2)/ B 2L 2 = 1. 5 m

【解析】略

12.(1)设ab 棒下落到最低点时速度为 v 1,由机械能守恒有:m 1gh 1=21112m v 8.0102211??==gh v m/s=4m/s … (1分)

设ab 棒向左摆动的最大高度为h 2 ,ab 棒与导轨接触时与cd 棒组成的系统,在水平方向动

量守恒,定水平向左为正方向 111

22mv m v m v ''=+ '1122110.140.20.530.1

m v m v v m s m s m '-?-?====3m/s … (1分) 再由机械能守恒 2111212m v m gh '= 10

2322212?='=g v h = (1分) (2) 设匀强磁场的磁感应强度为B ,cd 棒通电时间为t ?,对cd 棒由动量定理有22BIL t m v '??= (1分)

q I t =?? (1分)

220.20.50.210.5m v B qL '?===T ?

(1分) (3)设产生的焦耳热为Q ,由能量守恒可知:

1111221122

Q m gh m v m v ''=--= … 【解析】略

13.(1)2gL

(2)H L 2

5≥

(3)Ep mgL =13 【解析】(1)对A ,由机械能守恒得:mg 2L =

------2分

v 0=2gL -------1分

A 与

B 碰B A mv mv mv +=0 -------2分 22202

121B A mv mv mv += -------2分 速度交换,v B = v 0 =2gL ------1分

(2)要使滑块A 能以与B 碰前瞬间相同的速度与C 碰撞,必须使小球B 受A 撞击后在竖直平面内完成一个完整的圆周运动后从左方撞击A ,使A 继续向右运动。

设A 从距水平面高为 H 的地方释放,与B 碰前的速度为v 0

对A ,由机械能守恒得:202

1mv mgH = ----- 2 分 设小球B 通过最高点的速度为v B ,则它通过最高点的条件是:

L

v m mg B 2≤ ------- 2 分 小球B 从最低点到最高点的过程机械能守恒:

2202

1221B mv mgL mv += -------- 2 分 解得: H L 2

5≥ -------- 1分 (3)从这个高度下滑的A 与C 碰撞前瞬间速度:gL v 50= ----- 2 分

设A 与C 碰后瞬间的共同速度为v ,由动量守恒:

v m m mv )2(0+= -------- 2 分

A 、C 一起压缩弹簧,由能量守恒定律。有:

L mg mg Ep v m m 3

1)2()2(212??++=+μμ -------2分 解得: Ep mgL =13 -- ----1分

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量与能量之难点解析专题5

动量与能量之难点解析 专题01 动量与能量分析之“碰撞模型” 专题02 动量与能量分析之“板-块模型” 专题03 动量与能量分析之“含弹簧系统” 专题04 动量与能量分析之“爆炸及反冲问题” 专题05 动量与能量观点在电磁感应中的应用 专题5 动量与能量观点在电磁感应中的应用 【方法总结】 解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下: 1. “双轨+双杆”模型 以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好: 模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+= 2. 巧用“动量定理”求通过导体电荷量q 思路:动量定理得:p t BIL p t F ?=????=??安,由于t I q ??=,所以p BLq ?=,

即:BL p q ?= 【精选试题解析】 1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。下列图像中可能正确的是( ) 2. [多选]如图所示,两根相距为d 的足够长的光滑金属导轨固定在水平面上,导轨电阻不计。磁感应强度为B 的匀强磁场与导轨平面垂直,长度等于d 的两导体棒M 、N 平行地放在导轨上,且电阻均为R 、质量均为m ,开始时两导体棒静止。现给M 一个平行导轨向右的瞬时冲量I ,整个过程中M 、N 均与导轨接触良好,下列说法正确的是( ) A .回路中始终存在逆时针方向的电流 B .N 的最大加速度为B 2Id 2 2m 2R C .回路中的最大电流为BId 2mR D .N 获得的最大速度为I m 3. (2019浙江选考)如图所示,在间距L =0.2m 的两光滑平行水平金属导轨间存在方向垂直于 纸面(向内为正)的磁场,磁感应强度为分布沿y 方向不变,沿x 方向如下: 10.2{50.20.2 10.2Tx m B xT m x m Tx m >=-≤≤-<- 导轨间通过单刀双掷开关S 连接恒流源和电容C =1F 的未充电的电容器,恒流源可为电路提供恒定电流I =2A ,电流方向如图所示。有一质量m =0.1kg 的金属棒ab 垂直导轨静止放置于x 0=0.7m 处。开关S 掷向1,棒ab 从静止开始运动,到达x 3=-0.2m 处时,开关S 掷向2。已知棒ab 在运动过程中始终与导

高中物理《动量与能量》知识点与学习方法

高中物理《动量与能量》知识点与学习方法 动量与能量 动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。 一、力学规律的选用原则 1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。 2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。 3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。 4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。 5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统 机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。 二、利用动量观点和能量观点解题应注意下列问题 (1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。 (2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。 (3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题

时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。 (4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的 观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。 机械振动1、判断简谐振动的方法 简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。特征是:F=-kx,a=-kx/m. 要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。然后再找 出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。 2、简谐运动中各物理量的变化特点 简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x存在直接或间接关系: 动量与能量 动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。 一、力学规律的选用原则

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

(江浙选考1)202x版高考物理总复习 专题四 动量与能量观点的综合应用 考点强化练42 动量与能量

考点强化练42动量与能量观点的综合应用 1.如图所示,水平放置的宽L=0.5 m的平行导体框,质量为m=0.1 kg,一端接有R=0.2 Ω的电阻,磁感应强度B=0.4 T的匀强磁场垂直导轨平面方向向下。现有一导体棒ab垂直跨放在框架上,并能无摩擦地沿框架滑动,导体棒ab的电阻r=0.2 Ω。当导体棒ab以v=4.0 m/s的速度向右匀速滑动时,试求: (1)导体棒ab上的感应电动势的大小及感应电流的方向? (2)要维持导体棒ab向右匀速运动,作用在ab上的水平拉力为多大? (3)电阻R上产生的热功率为多大? (4)若匀速后突然撤去外力,则棒最终静止,这个过程通过回路的电荷量是多少? 2.(2018浙江嘉兴选考模拟)如图甲,两条足够长、间距为d的平行光滑非金属直轨道MN、PQ与水平面成θ角,EF上方存在垂直导轨平面的如图乙所示的磁场,磁感应强度在0~T时间内按余弦规律变化(周期为T、最大值为B0),T时刻后稳定为B0。t=0时刻,正方形金属框ABCD在平行导轨向上的恒定外力作用下静止于导轨上。T时刻撤去外力,框将沿导轨下滑,金属框在CD边、AB边经过EF 时的速度分别为v1和v2。已知金属框质量为m、边长为d、每条边电阻为R,余弦磁场变化产生的正弦交流电最大值E m=,求: (1)CD边刚过EF时,A、B两点间的电势差; (2)撤去外力到AB边刚过EF的总时间; (3)从0时刻到AB边刚过EF的过程中产生的焦耳热。

3.(2018浙江台州高三上学期期末质量评估)如图所示,两根相同平行金属直轨道竖直放置,上端用导线接一阻值为R的定值电阻,下端固定在水平绝缘底座上。底座中央固定一根绝缘弹簧,长L质量为m 的金属直杆ab通过金属滑环套在轨道上。在直线MN的上方分布着垂直轨道面向里,磁感应强度为B的足够大匀强磁场。现用力压直杆ab使弹簧处于压缩状态,撤去力后直杆ab被弹起,脱离弹簧后以速度为v1穿过直线MN,在磁场中上升高度h时到达最高点。随后直杆ab向下运动,离开磁场前做匀速直线运动。已知直杆ab与轨道的摩擦力大小恒等于杆重力的k倍(k<1),回路中除定值电阻外不计其他一切电阻,重力加速度为g。求: (1)杆ab向下运动离开磁场时的速度v2; (2)杆ab在磁场中上升过程经历的时间t。 4.(2018浙江宁波六校期末)如图所示,两根平行金属导轨MN、PQ相距d=1.0 m,两导轨及它们所在平面与水平面的夹角均为α=30°,导轨上端跨接一阻值R=1.6 Ω的定值电阻,导轨电阻不计。整个装置处于垂直两导轨所在平面且向上的匀强磁场中,磁感应强度大小B=1.0 T。一根长度等于两导轨间距的金属棒ef垂直于两导轨放置(处于静止),且与导轨保持良好接触,金属棒ef的质量m1=0.1 kg、电阻r=0.4 Ω,到导轨最底端的距离s1=3.75 m。另一根质量m2=0.05 kg的绝缘棒gh,从导轨最底端以速度v0=10 m/s沿两导轨上滑并与金属棒ef发生正碰(碰撞时间极短),碰后金属棒ef沿两导轨上滑s2=0.2 m后再次静止,此过程中电阻R产生的焦耳热Q=0.2 J。已知两棒(ef和gh)与导轨间的动摩擦因数均为μ=,g取10 m/s2,求:

物理能量和动量经典总结知识点

运用动量和能量观点解题的思路 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 ? 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 ? 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点: ? 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 ? 2.要能视情况对研究过程进行恰当的理想化处理。 ? 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 ? 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 ? 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是: ? 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 ? 2.若是多个物体组成的系统,优先考虑两个守恒定律。 ? 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 ? 例1图1中轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处于原长状态。另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行。当A滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好回到出发点P并停止。滑块A和B与导轨的摩擦因数都为,运动过程中弹簧最大形变量为,重力加速度为。求A从P点出发时的初速度。 ? 解析:首先要将整个物理过程分析清楚,弄清不同阶段相互作用的物体和运动性质,从而为

动量与能量结合综合题附答案汇编

动量与能量结合综合题1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则() A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

能量和动量的综合应用(超详细)

【本讲主要内容】 能量和动量的综合应用 相互作用过程中的能量转化及动量守恒的问题 【知识掌握】 【知识点精析】 1. 应用动量和能量的观点求解的问题综述: 该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。 2. 有关机械能方面的综述: (1)机械能守恒的情况: 例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。等等…… (2)机械能增加的情况: 例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。等等…… (3)机械能减少的情况: 例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析: 如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。 滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。 A 、 B 为系统,动量守恒。(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。 由动量守恒定律可求出共同速度0 v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理: 对A :W fA =2020202B 2 1)(212121)(mv m M mv m mv mv s s f -+=-=?+-

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

高三物理能量和动量经典总结知识点

运用动量和能量观点解题的思路 河南省新县高级中学吴国富 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个 重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下 几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应 作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时 这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过 程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原 则是: 1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量

高中物理动量和能量知识归纳

高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律 时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理 空间积累效应(做功)w=Fs ?动能发生变化?动能定理 2.动量观点:动量:p=mv= K mE 2 冲量:I = F t 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’ 一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=? P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP ' (两物体动量变化大小相等、方向相反) 实际中应用有:m 1v 1+m 2v 2=' 22' 11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算 简化为代数运算。 相对性:所有速度必须是相对同一惯性参照系。 同时性:表达式中v 1 和v 2 必须是相互作用前同一时刻的瞬时速度,v 1 ’和v 2’ 必须是相互作用后同一时刻的瞬时 速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos ? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t (?p= t w =t FS =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = F v

一轮复习模块-动量和能量 学生用

高三物理零模复习之动量和能量 1.冲量与功的比较 (1)定义式????? 冲量的定义式:I =Ft (作用力在时间上的积累效果)功的定义式:W =Fs cos θ(作用力在空间上的积累效果) (2)属性? ???? 冲量是矢量,既有大小又有方向(求合冲量应按矢,量合成法则来计算)功是标量,只有大小没有方向(求物体所受外力的,总功只需按代数和计算) 2.动量与动能的比较 (1)定义式??? 动量的定义式:p =m v 动能的定义式:E k =12m v 2 (2)属性????? 动量是矢量(动量的变化也是矢量,求动量的变化,应按矢量运算法则来计算)动能是标量(动能的变化也是标量,求动能的变化,只需按代数运算法则来计算) (3)动量与动能量值间的关系????? p =2mE k E k =p 22m =12p v (4)动量和动能都是描述物体状态的量,都有相对性(相对所选择的参考系),都与物体的受力情况无关.动量的变化和动能的变化都是过程量,都是针对某段时间而言的. 二、动量观点的基本物理规律 1.动量定理的基本形式与表达式:I =Δp .分方向的表达式:I x 合=Δp x ,I y 合=Δp y . 2.动量定理推论:动量的变化率等于物体所受的合外力,即Δp Δt =F 合. 3.动量守恒定律 (1)动量守恒定律的研究对象是一个系统(含两个或两个以上相互作用的物体). (2)动量守恒定律的适用条件 ①标准条件:系统不受外力或系统所受外力之和为零. ②近似条件:系统所受外力之和虽不为零,但比系统的内力小得多(如碰撞问题中的摩擦力、爆炸问题中的重力等外力与相互作用的内力相比小得多),可以忽略不计. ③分量条件:系统所受外力之和虽不为零,但在某个方向上的分量为零,则在该方向上系统总动量的分量保持不变. (3)使用动量守恒定律时应注意: ①速度的瞬时性;②动量的矢量性;③时间的同一性. 三、功和能 1.中学物理中常见的能量 动能E k =12m v 2;重力势能E p =mgh ;弹性势能E 弹=12 kx 2;机械能E =E k +E p ;分子势能;分子动能;内能;电势能E =qφ;电能;磁场能;化学能;光能;原子能(电子的动能和势能之和);原子核能E =mc 2;引力势能;太阳能;风能(空气的动能);地热、潮汐能. 2.常见力的功和功率的计算: 恒力做功W =Fs cos θ;重力做功W =mgh ;一对滑动摩擦力做的总功W f =-fs 路; 电场力做功W =qU ;功率恒定时牵引力所做的功W =Pt ; 恒定压强下的压力所做的功W =p ·ΔV ; 电流所做的功W =UIt ;洛伦兹力永不做功;瞬时功率P =F v cos_θ;平均功率=W t =F cos θ. 四、弹性碰撞 在一光滑水平面上有两个质量分别为m 1、m 2的刚性小球A 和B 以初速度v 1、v 2运动,若它们能发生正碰,碰撞后它们的速度分别为v 1′和v 2′.v 1、v 2、v 1′、v 2′是以地面为

弹簧的动量和能量问题#(精选.)

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种: ①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

高中物理复习专题 动量与能量

专题三动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。 (3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能 变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动能、光子等形式向外释放)

高中物理:《动量和能量的综合应用》教案

动量和能量的综合应用 一. 教学内容: 动量和能量的综合应用 二. 重点、难点: 1. 重点:分过程及状态使用动量守恒和能量规律 2. 难点:动量和能量的综合应用 【典型例题】 [例1](1)如图,木块B 与水平桌面的接触是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧(质量不可忽略)合在一起作为研究对象(系统),此系统从子弹开始射入到弹簧压缩到最短的整个过程中,动量是否守恒。 (2)上述情况中动量不守恒而机械能守恒的是( ) A. 子弹进入物块B 的过程 B. 物块B 带着子弹向左运动,直到弹簧压缩量达最大的过程 C. 弹簧推挤带着子弹的物块B 向右移动,直到弹簧恢复原长的过程 D. 带着子弹的物块B 因惯性继续向右移动,直到弹簧伸长量达最大的过程 答案:(1)不守恒;(2)BCD 解析:以子弹、弹簧、木块为研究对象,分析受力。在水平方向,弹簧被压缩是因为受 到外力,所以系统水平方向动量不守恒。由于子弹射入木块过程,发生剧烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒。 [例2] 在光滑水平面上有A 、B 两球,其动量大小分别为10kg ·m/s 与15kg ·m/s ,方向均为向东,A 球在B 球后,当A 球追上B 球后,两球相碰,则相碰以后,A 、B 两球的动量可能分别为( ) A. 10kg ·m/s ,15kg ·m/s B. 8kg ·m/s ,17kg ·m/s C. 12kg ·m/s ,13kg ·m/s D. -10kg ·m/s ,35kg ·m/s 答案:B 解析:① A 与B 相碰时,B 应做加速,故p B ′>p B ,即B 的动量应变大,故A 、C 不对, 因A 、C 两项中的动量都不大于p B =15kg ·m/s 。② A 、B 相碰时,动能不会增加,而D 选项 碰后E k ′=B A B A m m m m 2152102352012 222+>+ 故不合理。 [例3] 在光滑的水平地面上,质量m 1=0.1kg 的轻球,以V 1=10m/s 的速度和静止的重球发生正碰,重球质量为m 2=0.4kg ,若设V 1的方向为正,并以V 1’和V 2’分别表示m 1 和m 2的碰后速度,判断下列几组数据出入不可能发生的是( ) A. V’1=V’2=2m/s B. V’1=0,V’2=2.5m/s

10.4电磁感应与动量、能量的综合应用

1 电磁感应与动量、能量的综合应用 题组一:动量守恒、动量定理 【例1】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成。其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B ,导轨水平段上静止放置一金属棒 cd ,质量为2m 。,电阻为2r 。另一质量为m ,电阻为r 的金属棒ab ,从圆弧段M 处由静止释放下滑至N 处 进入水平段,圆弧段MN 半径为R ,所对圆心角为60°,求: (1)ab 棒在N 处进入磁场区速度多大?此时棒中电流是多少? (2)cd 棒能达到的最大速度是多大? (3)cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例2】(动量定律)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B =0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m 。两根质量均为 m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻 为R =0.50Ω。在t =0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t =5.0s ,金属杆甲的加速度为a =1.37m/s 2 ,问此时两金属杆的速度各为多少? 【例3】两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?

相关文档
最新文档