国外深水钻井液技术现状

国外深水钻井液技术现状
国外深水钻井液技术现状

国外深水钻井液技术现状

(一)引言

自1985年以来,随着第一批水深在300 m以上深水油气勘探开发项目的投入建设,国际深水油气勘探开发逐渐增多。最初10年的年平均增长速度为65%,西北欧、巴西、墨西哥湾的勘探开发速度最快,2001年起墨西哥湾深水区的产量已超过浅水区。据统计,截至2000年,水深500 m的深水油气田有162个,遍及世界各海域,其中尤以美洲的墨西哥湾海域、拉丁美洲的巴西海域及西非海域最多,深水油气田探明油气储量为22.6×108t油当量,占海上油气田探明总储量的12%。目前,深水钻井还面临着许多难题,对钻井液技术的要求更高,本文在分析深井钻井存在的主要难题的基础上,详细介绍了国外先进的深水钻井液技术,并对其发展趋势进行了分析。

(二)深水钻井中存在的问题

与浅水区域相比,深水钻井面临的主要问题有:海底页岩的稳定性差、钻井液用量大、井眼清洗难、浅层天然气与形成的气体水合物、低温下钻井液的流变性、地层破裂压力窗口窄等。这些问题给钻井工作带来了诸多困难,同时对钻井液技术提出了更高的要求:在保证钻井安全的前提下,兼顾钻井成本和环境效益。

1.海底页岩的稳定性差

在深水区中,由于沉积速度、压实方式以及含水量的不同,海底页岩的活性大。河水和海水携带细小的沉积物离海岸越来越远,由于缺乏上部压实作用,胶结性较差,易于膨胀、分散,导致过量的固相或细颗粒分散在钻井液中,从而影响钻井液性能。

2.钻井液用量大

在深水环境下的钻井液需求量是很大的。一般隔水管体积就高达159 m3,再加上平台钻井液系统,而且由于井眼直径大,为了钻达设计井深,一般下入的套管也多(常常是4~7层),因此钻井液用量就比其他同样井深的陆上或浅水区的井大得多。

3.井眼清洗难

深水钻井时,由于开孔直径、套管和隔水管的直径都比较大,如果钻井液流速不足就难以达到清洗井眼的目的。因此,对钻井液清洗井眼的能力提出了更高要求。一般采用稠浆清洗、稀浆清洗、联合清洗、增加低剪切速率黏度,以及有规律地短程起下钻等方法,这些方法均有助于清除钻井过程中的钻屑。使用与钻井过程中钻井液黏度不同的清扫液清除钻屑效果较明显,比如使用稀浆钻进,稠浆清洗钻屑。

4.浅层气与气体水合物

深水钻井作业中,气体水合物的形成不仅是一个经济问题,更是一个安全问题。气体水合物类似于冰的结构,主要由气体分子和水分子组成,外观上看起来类似于脏冰,但是它在性质上又不像冰,如果压力足够,它可以在0℃以上形成。海底附近或井中溶解的水合物受到冷却后易在隔水管和压井阻流管线上重新凝结,尤其是在节流管线、钻井隔水导管、防喷器以及海底的井口里,一旦形成气体水合物,就会堵塞气管、导管、隔水管和海底防喷器等,从而造成严重的事故;

同样钻井过程中的水合物分解可能导致地层变弱,井眼扩大、固井失败以及井眼清洁方面的问题。

5.温度过低

随着水深加大,钻井环境的温度也越来越低,给钻井和采油作业带来很多问题。如在低温下,钻井液的黏度和切力大幅度上升,而且会出现显著的胶凝现象,形成天然气水合物的可能性增大。

6.地层孔隙压力和破裂压力之间“窗口”狭窄

深水区域上覆岩层相当一部分由海水所替代,因此上覆岩层压力与陆地上相比偏低,由于地层具有较低的破裂压力而孔隙压力没有很大的变化,这就使孔隙压力与破裂压力之间的差变得非常小。对于相同沉积厚度的地层来说,随着水深的增加,地层的破裂压力梯度在降低,致使破裂压力梯度和地层孔隙压力梯度之间的窗口较窄,深海钻井尤其是表层地层容易出现井漏等井下复杂情况。(三)国外深水钻井常用的钻井液体系

1.水基钻井液体系

水基钻井液具有成本低及环保等优点,但其在深水钻井作业中面临着复杂地层井壁失稳以及天然气水合物的生成等突出问题。目前主要通过无机盐、聚合醇以及聚胺等抑制剂抑制海底泥页岩水化分散,通过水合物抑制剂抑制水合物的生成。

水合物热力学抑制剂是防治天然气水合物的有效途径,该类抑制剂可改变水和烃分子间的热力学平衡条件,从而防止水合物生成,应用效果较好的有NaCl、甲醇和乙二醇。但该类抑制剂用量大、费用高,且存在环保或设备腐蚀问题,而水合物动力学抑制剂由于其用量少,环保性能好而越来越受到国内外研究机构的重视。目前较成熟的产品包括聚乙烯基吡咯烷酮、聚乙烯基己内酰胺和含内酰胺基团的共聚物等。动力学抑制剂通过抑制水合物晶核生成或抑制水合物晶体生长发挥作用,但目前对其作用机理的认识尚有较大欠缺。研究表明,动力学抑制剂和热力学抑制剂具有协同作用,两者配合使用可以取得更好的效果。

2.油基/合成基钻井液

油基/合成基钻井液具有机械钻速高,井壁稳定性好等优点,但该类钻井液在深水低温环境下会发生严重增黏甚至胶凝。“恒流变”概念是相对于常规油基钻井液提出的,是指钻井液在较大的温度范围内(4.4—65℃)保持相对稳定的读数,动切力和10min 静切力。恒流变钻井液与常规油基/合成基钻井液的主要区别在于流型调节剂的改进。

3.合成基钻井液体系

合成基钻井液是国外深水区域常用的钻井液体系之一,对这方面的研究也较多。合成基钻井液已被墨西哥湾的许多承包商使用。因线型烷烃没有足够的生物降解性,且具有一定的生物毒性,之前用于墨西哥湾的未掺合的线型烷烃和线型α烯烃不能再用了。出于对技术需求、成本和环境效应的考虑,大部分钻井液公司使用烷烃、烯烃和酯的混合物。酯/烯烃混合物是合成基钻井液中最常用的基液。到目前为止,酯/烯烃混合物为基液的合成基钻井液已在70余口井进行了应用,该钻井液已用于水深超过2 438.4 m的井中和大陆架地层温度超过176.7℃的区域。

在墨西哥海湾深水地区的小井眼侧钻超深井中成功应用了合成基钻井液。在进行深水钻井时,最初选用了盐水/淀粉/聚合醇水基钻井液,由于井下条件恶化,发生了压差卡钻,因此选用了合成基钻井液,顺利完井。合成基钻井液的综合性

能优于水基钻井液和油包水钻井液。实践证明,使用合成基钻井液可以减少事故发生的概率。1996—1997年期间,阿莫克公司的深水钻井史上,使用合成基钻

井液处理钻井事故时间缩短69%,大大减少了钻井周期。尽管与水基钻井液相比,合成基钻井液成本高,但是综合计算后,钻井综合成本降低55%,钻速提高达70%。但其环境影响问题仍需进一步研究。

4.其他钻井液体系

柴油基钻井液曾一度因其低廉的价格和优良的保护井壁作用而得到广泛应用,但其对环境有极大的危害,并且对人体健康也有不利影响,可引起眼部和呼吸道疼痛,影响记忆力等。1999年2—3月在美国德州奥斯汀举行的SPE/EPA会议上报道了一种符合环境安全要求的油基钻井液体系。该体系使用矿物油(芳香族含<0.1%)和棕榈油(完全不含芳香族)代替柴油,矿物油和棕榈油均无毒,

并且易生物降解,有较好的环境可接受性,对环境影响极小。

巴西Albacora油田,水深454 m的AB-L57B井,以常规钻井钻至井深2 800 m (垂深2 563 m),244.5 mm套管下入到井斜角为31°的斜井段。目的层是两个夹杂着页岩的砂岩井段,孔隙压力当量密度约是0.816 kg/L。215.9 mm钻头钻

至井深2 989 m(垂深2 725 m),使用了密度0.864 kg/L的充氮水基钻井液。使

用充氮水基钻井液降低了对地层损害,防止或减少了井眼问题(例如不同程度的卡钻、循环漏失等),降低了钻井成本。

(四)深水钻井液技术发展方向

针对深水钻井风险高,投入大,后勤及环保要求高的特点,重视天然材料及其改性产品,研发低毒性、低成本、低用量的高效处理剂和新型环保深水钻井液体系是未来深水钻井液技术的发展方向。

(1)天然气水合物生成与抑制机理研究

目前对水合物动力学抑制剂的机理研究尚不深入,且该类抑制剂存在受过冷度限制和成本较高等问题,需进一步分析抑制剂的分子结构与其性能之间的关系,深入研究水合物抑制剂的作用机理,研发低用量、低成本、低毒性的高效动力学抑制剂,并开展动力学抑制剂和热力学抑制剂的协同作用机理研究,开发高效水合物抑制剂组合。

(2)深水井壁稳定机理与防塌对策研究

深入分析深水地层特点,建立深水疏松地层和含水合物地层的室内模拟手段与井壁稳定性评价方法,优化钻井液防塌技术对策,可将纳米技术运用到深水钻井液处理剂的研发中,纳米颗粒具有独特的表面特性与力学性能,可进入深水疏松地层以及浅层水流砂层的孔隙中,通过吸附成膜和架桥封堵作用抑制海底泥页岩分散,提高地层强度,缓解井壁失稳、井漏以及浅层水—气流动等问题。

(3)深水钻井液低温流变性调控与井眼清洗技术研究

建立深水低温环境下大环空低速梯度携岩与井眼清洗模拟实验设备与方法,对分别适用于水基钻井液和油基/合成基钻井液的流型调节剂进行优化,提高其

使用温度范围。

(4)深水钻井液无害化处理与再利用技术研究

加强钻井液无害化处理与再利用技术研究,尤其是油基/合成基钻井液的固

液分离、回收与再利用及岩屑处理技术,是深水钻井液现场工艺的发展方向。

海洋深水钻井钻井液技术

海洋深水钻井钻井液技术 深水钻井一般指在海上作业中水深超过900m的钻井;水深大于1500m时为超深水钻井,近年来随着海洋石油储量开采比例的不断增加,海洋石油勘探逐步向深水区发展。然而,深水钻井所涉及的钻井环境温度低、钻井液用量大、海底页岩稳定性、井眼清洗、浅水流动、浅层天然气及形成的气体水合物等问题,给钻井、完井带来严峻的挑战。 1.深水钻井带来的主要问题 与浅水区域相比,深水钻井面临的主要问题有以下几个方面:①井壁稳定性;②钻井液用量大;③地层破裂压力窗口窄;④井眼清洗;⑤低温下钻井液的流变性;⑥浅层天然气与形成的气体水合物。这些问题给钻井工艺带来了许多困难,同时对钻井液提出了更高的要求。 1.1 海底页岩的稳定性 在深水区中,由于沉积速度、压实方式以及含水量的不同,海底页岩的活性大。河水和海水携带细小的沉积物离海岸越来越远,由于缺乏上部压实作用,胶结性较差,易于膨胀、分散,导致过量的固相或细颗粒分散在钻井液中。如通过稀释或替换钻井液来控制钻井液的低密度钻井液的低密度固相的含量,必将需要大量钻井液。因此,针对海底页岩稳定的问题,采取了加入一定量的页岩稳定剂的措施。如在深水钻井液中加入无机盐(NaCl、CaCl2)和具有浊点的聚合醇、以达到增强页岩稳定性的目的。 1.2 钻井液用量大 实践证明,在深水钻井作业中的钻井液量远远大于其它同样深度但钻井条件不同的井,因为海洋钻井需要采用隔水管、隔水管体积一般高达159m3,加上平台钻井液系统,所以钻井液需要用量比其他同样深度但钻井条件不同井大得多。钻井中为了避免复杂情况的发生,一般多下几层套管,因此所需的井眼直径也相应增大。深水钻井时应配备3台高频率振动筛,以及大流量的除砂器和除泥器等固控设备,在非加重的钻井液中,固相的有效清除率大于75%,将钻井液中的钻屑含量控制在适当的范围内,可节省大量的钻井费用。 1.3 井眼清洗 深水钻井时,由于开孔直径、套管和隔水管的直径都比较大,如果钻井液流速不足就难以达到清洗井眼的目的。因此,对钻井液清洗井眼的能力提出高要求,一般采用稠浆清洗、稀浆清洗、联合清洗、增加低剪切速度粘度,以及有规律地短程起下钻等方法,均有助于钻井过程中钻屑的清除。使用与钻井过程中钻井液粘度不同的钻井液清除钻屑效果较明显,比如使用稀浆钻进,稠浆清洗钻屑。 1.4 浅层气与气体水合物 深水钻井遇到的主要问题之一是浅层气砂岩引起的气体水合物的生成。一般在钻井液管线中发现生物气(沼气)并不算大问题。但是在深层发现含气砂岩则会引起大问题。因为对砂岩地层来说,浅层一般多是含有重油的非胶结性地层,而深层则是含有气体的低渗透率的硬质地层。在深水钻井作业中,气体水合物的形成不仅是一个经济问题,更是一个安全问题因为这种气体水合物是堵塞气体传输管线的主要原因。气体水合物类似冰的结构,主要由气体分子和水分子组成,外观上看起来类似于脏水。但是它在性质上又不象冰,如果压力足够,它可以在0℃以上形成。在深水钻井作业中,海底较高的静水压力和较低的环境温度进一步增加了生成气体水合物的可能性,尤其是节流管线、钻井隔水导管以及海底的井口里,一旦

完井技术国内外发展现状分析

完井技术国内外发展现状分析 第1章前言 1.1 现代完井技术发展现状 完井工程是衔接钻井和采油工程而又相对独立的工程,是从钻开油气层开始,到下套管注水泥固井、射孔、下生产管柱、排液,直至投产的一项系统工程。完井设计水平的高低和完井施工质量的优劣,对油气井生产能否达到预期指标和油田开发的经济效益有决定性的影响。 近十多年来,国内外完井均有了较快发展,并已发展成为独立的学科。除常规井完井技术日益完善外,其他特殊井完井也得到了很大发展,如水平井完井、复杂地质条件下的完井、小井眼完井、分支井完井、深井超深井完井、现代智能完井、膨胀管完井等。国内在完井技术方面虽然取得了一些进步,但是与国外相比,完井技术还有很大差距,特别是在不同储层选择合适的完井方式、水平井完井、欠平衡井完井、小井眼完井、分支井完井,从而影响了油气井的产量及经济效益。 1.2 本文的主要研究内容 1.查阅现代完井技术方面的文献,对各种完井技术现状进行综合性分析: (1)射孔完井技术; (2)割缝衬管完井技术; (3)砾石充填完井技术; (4)膨胀管完井技术; (5)封隔器完井技术; (6)智能完井技术。 2. 调研国内外最新完井技术现状,重点分析国内外现代完井技术现状、最新进展、应用成果以及发展趋势等,并对国内完井技术方案实施的可行性和完井技术的研究方向作初步预测和探讨。

第2章常规完井技术 完井方式的选择主要是针对单井而言。虽单井属于同一油藏类型,但是所处构造位置不同,所选定的完井方式也不尽相同,如油藏有气顶、底水,若采用裸眼完成,技术套管则应将气顶封隔住,再钻开油层,而不钻开底水层。若采用射孔完成,则应避射气顶和底水。又如油藏有边水,套管射孔完成时,油田开发要充分利用边水驱动作用,避射开油水过渡带。下面主要介绍常用的几种常规完井方式[1]。 2.1 裸眼完井技术 裸眼完井方式分先期裸眼完井方式、复合型完井方式和后期裸眼完井方式三种。 先期裸眼完井方式(如图2-1)是钻头钻至油层顶界附近后,下套管柱水泥固井。水泥浆上返至预定设计高度后,再从套管中下入直径较小的钻头,钻穿水泥塞,钻开油层至设计井身完井。 复合型完井方式(如图2-2)是指适合于裸眼完井的厚油层,但上部有气顶或顶界邻近又有水层时,可以将技术套管下过油气界面,使其封隔油层的上部,然后裸眼完井,必要时再射开其中的含油段。 后期裸眼完井方式(如图2-3)是不更换钻头,直接钻穿油层至设计井深,然后下套管至油层顶界附近,注水泥固井。固井时,为防止水泥浆损害套管鞋以下的油层,通常在油层段垫砂或者换入低失水、高粘度的钻井液,以防水泥浆下沉。 图2-1 先期裸眼完井示意图 1—表层套管 2—生产套管 3—水泥环 4—裸眼井壁 5—油层

环保钻井液技术现状及发展趋势_杨振杰

环保钻井液技术现状及发展趋势 杨振杰 (西安石油大学石油工程学院,陕西西安) 摘要 综述了环保钻井液技术发展现状,通过分析环保钻井液存在的问题,对环保钻井液的发展趋势提出了认识。环保钻井液应具有:与油基钻井液相当或接近的抑制性能;配制和维护成本与普通水基钻井液相近;满足施工地区的环保排放标准,对农业生产无害,最好是有益于当地的生态环境;保证施工人员的健康和安全;适应于各种复杂井和深井的钻探需要。在今后的环保钻井液技术研究中,应该重视对天然高分子材料和各种环保处理剂的改性和完善以及对无毒无污染的有机盐和无机盐使用技术的攻关,解决环保钻井液抑制性和抗温性问题,开发低成本高性能的无毒环保钻井液。 关键词:钻井液 环境保护 抑制性 生物可降解性 综述 由于对环境保护问题的日益重视,与钻井液有关的环保和安全问题使得高效、低成本和无毒钻井液的研究开发成为发展的重要方向。中国陆上油田由于受钻井液成本等因素的制约,环保钻井液技术发展较慢。本文综述了环保钻井液技术发展现状,通过分析环保钻井液存在的问题,对环保钻井液的发展趋势提出了建议,希望能对环保钻井液的技术进步有所启发。 环保钻井液的发展现状 1.硅酸盐钻井液 硅酸盐钻井液无毒、无荧光、低成本的特性日益受到重视。Barnfather J L等人认为,目前使用的油基钻井液和合成基钻井液并不能真正满足环保、立法和成本控制的要求。研究开发一种既适应复杂地层要求又能满足环保要求的钻井液是目前面临的一个重要问题[1]。硅酸盐钻井液能够稳定各种复杂地层,具有优良的类似于油基钻井液的抑制稳定性能,但也是通过聚合醇和低价无机盐的复配等来强化体系的整体性能。普遍使用的硅酸钠产品溶液模数为2.1,固相含量为42%,密度为1.5g/cm3。典型的硅酸盐钻井液的pH值控制在11.8~12.3之间。硅酸盐钻井液成本比普通水基钻井液高30%左右。 Marquis Fluids公司自1998年起在加拿大西部、英国和哥伦比亚近40口大位移定向水平井、高温高压复杂深井中使用了强抑制性硅酸钠/钾环保钻井液体系,提高了机械钻速,抑制了页岩的水化膨胀,降低了成本,成功地替代了逆乳化钻井液和硫酸钾钻井液。硅酸钾还可以作为化肥,有利于植物的生长发育,只要使用得当对环境完全无害。 Barnfather J L等人将硅酸盐钻井液应用于挪威的海上油田,控制了易膨胀水化的泥页岩。作为油基钻井液和合成基钻井液的替代体系,该体系减少了化学添加剂的排放量,满足了海洋钻井的环保要求[2]。硅酸盐与聚合醇复配,增强了硅酸盐钻井液的整体性能,因为单纯的硅酸盐钻井液难以满足深井和高难度井的钻探需要。新一代硅酸盐聚合物钻井液中液体硅酸盐(固相含量为30%左右)加量为5%~15%[2]。Ward和Chapman J W认为硅酸钠和硅酸钾复配可提高钻井液抑制效果,减少硅酸盐的用量[3],而且具有优良的储层保护性能。 John C U rquhart提出用天然高分子材料复配的无固相硅酸盐钻井液,其组成为30%硅酸钾溶液(有效浓度为30%,模数为2.5,pH值为11)加入3~6kg/m3黄原胶和1~3kg/m3CMC。该体系的滤失量可控制到0,密度可根据需要进行调整[4]。该体系特点为:①真正无毒;②能够防止页岩地层的坍塌,抑制泥岩的水化分散,加固胶结差的地层;③密实的堵塞作用可防止钻井液滤液的侵入。硅酸盐加入钻井液后,提高了钻井液的整体抗温性。 硅酸盐钻井液的开发多数是以聚合物钻井液为基础。硅酸盐钻井液一般都需要与聚合物、盐类、抗高温处理剂等复配来增强抑制能力,由于复配处理剂的影响,这些硅酸盐钻井液难以形成真正的无毒环保钻井液[5~8]。丁锐通过对硅酸盐钻井液稳定井壁机理进行系统研究认为,硅酸盐稳定井壁的机理包括多方面的协同作用:①尺寸分布较宽的硅酸盐粒子通过吸附扩散等途径结合到井壁表面,堵塞缝隙;②侵入地层孔隙内的硅酸根遇到pH值小于9的 第21卷第2期 钻 井 液 与 完 井 液 Vol.21,No.2 2004年3月 DRILLING FLUID&COMPLETION FLUID Mar.2004

钻井液技术发展历史及未来趋势

钻井液技术发展历史及未来趋势 2014-08-14能源情报文/蔡利山中国石化石油工程技术研究院 钻井液技术的发展与钻井工程的技术需求不可分割,从20 世纪初始以自然造浆方式进行钻探作业到今天专业化多功能的钻井流体的广泛应用(各种钻井液体系的应用情况详见表1),时间经过了大约 1 个世纪。在此期间,钻井液工艺和材料一直在不断发展。由于理论与手段(甚或思维方式)的局限性,其发展过程可能会出现反复,发生技术革命的因素正在积累,但最终的突破点在哪里,目前仍显得扑朔迷离。 从表 1 可以看出三大特点:一是应用于特定环境下的特种钻井流体,如气基、泡沫、盐基流体等,这类技术自出现以后一直应用至今;二是效果稳定、操作简单的体系一直在沿用,如油基钻井液;三是具有持续技术传承的体系,如聚合物及其衍生体系,就目前的发展情况看,由于新材料研发因素的支撑,可能是最具生命力的一个领域。 从本质上讲,钻井液的功能实际上有两个:一是保持井壁稳定,以确保井眼在钻达设计深度之前,上部裸眼井段几何形状的变化不会影响正常的钻进作业;二是及时高效地将钻头破碎的岩屑携带至地面,以保持井筒清洁。除此之外的所有功能都是钻井液的衍生或附加功能,从钻井工程的性质看,保持已钻成井眼的稳定是第一位的,没有这一基础,与钻井工程有关的所有技术环节都无从谈起。鉴于此,围绕井壁稳定需求进行的技术探索从未停止过,相关研究多集中在钻井液体系、工艺材料、应力平衡技术以及能量变化对井壁稳定性影响的研究等方面。 1 钻井液体系的研究 这方面的研究一直是重点,且较为活跃。 1.1 钾基聚合物体系

为了尽可能发挥高价金属离子的化学抑制作用,在钻井液中常常同时加入KCl 和石灰(CaO),以利用Ca2+稳定矿物晶格的能力,这种体系国外被称为钾钙基或钾石灰聚合物体系。 国内的高钙盐体系于2000 年前后开始投入现场应用,其特点是采用抗钙能力很强的聚合物助剂与CaCl2共同形成Ca2+高于1000mg/L(滤液)的稳定钻井液体系。考虑到成本因素,现场维护时滤液中的Ca2+通常保持在1200~1400mg/L,很少超过1600mg/L。此技术有效发挥了Ca2+能够提高体系化学抑制能力的效率,极大地提高了钾钙基钻井液体系的化学防塌能力,可以认为是钻井液在防塌技术上的一个进步。 1.2 阳离子体系 随着化学抑制理论的不断发展,人们认识到阳离子基团在有序吸附排列于黏土矿物晶层的同时可以有效地将吸附水分子排挤出来,使黏土矿物产生去水化效应,亦即阳离子化以后的钻井液体系能够最大限度地发挥抑制防塌作用。国内在1987 年前后开始在现场试用阳离子钻井液体系(或者是以阳离子化的钻井液助剂对常规钻井液体系进行改造),1995 年以后,关于阳离子钻井液体系及其相关助剂的研究与现场应用案例明显增加。在对以往10 年阳离子钻井液技术研究与应用总结的基础上,殷平艺在1998 年首次提出了“新的钻井液研究必将以带有正电固相颗粒的阳离子钻井液体系为主体”的观点。但就总体效果看,这方面的研究没有突破性进展,但探索性的工作一直没有停止,直到现在仍可看到个别井使用阳离子体系的报道,但大多数时候是将阳离子助剂作为抑制剂或包被剂使用。 1.3 正电钻井液体系 2000 年以后,正电钻井液开始进入现场试用,这实际上是一种完全阳离子化的体系,其标志是体系(或滤液)的ξ 电位至少应大于0,考虑到正、负两种电荷中和效率极高,最终形成的正电钻井液的ξ 电位应不低于20mV,以便能够有足够多的正电荷用于支付以钻屑为主的负电性物质的消耗,如此方可投入现场试用。从部分井的现场应用情况看,正电体系实质上是阳离子化程度较高的阳离子体系,其ξ 电位一般不高于-20mV(传统水基钻井液的ξ 电位通常在-40~-30mV),这主要是因为现场条件下进入浆体的各种物质大多是负电性的,加之体系配伍的正电助剂不成熟,维护处理时仍以常规助剂为主,正电助剂反而成为辅助添加剂,导致正电体系在短时间内回归为常规体系。纵观钻井液化学抑制理论的发展历程,在防塌技术实践中,正电钻井液体系的研究原本是最有希望出现革命性突破的节点,但因理论的运用与现实发生了严重冲突,最终导致这种技术性的探索工作前景黯淡。 1.4 KCl—聚胺强抑制体系

深水钻井的难点及关键技术

深水钻井的难点及关键技术 随着油气资源的持续开采, 陆地未勘探的领域越来越少, 油气开发难度越来越大。占地球面积70%以上的海洋有着丰富的油气资源, 油气开发重点正逐步由陆地转向海洋, 并走向深海。目前, 国外钻井水深已达3000 m 以上, 而我国海上油气生产一直在水深不足500 m 的浅海区进行, 我国南海拥有丰富的油气资源但这一海域水深在500~ 2 000m, 我国目前还不具备在这样水深海域进行油气勘探和生产的技术。周边国家每年从南沙海域生产石油达5 000×10 4 t 以上, 相当于我国大庆油田的年产量, 这种严峻的形势迫使必须加快我国南海等海域的深水油气勘探开发。石油工业没有关于“深水”的预先定义。“深水”的定义随时间、区域和专业在不断变化。随着科技的进步和石油工业的发展,“ 深水”的定义也在不断发展。据2002 年在巴西召开的世界石油大会报道,油气勘探开发通常按水深加以区别:水深400m 以内为常规水深 400m-1500m 为深水,超过1500m 为超深水。但深度不是唯一的着眼点,只要越过大陆架,典型的深水问题就会出现。一、深水钻井的难点 与陆地和浅水钻井相比, 深水钻井有着更为复杂的海况条件面临着更多的难题, 主要表现在以下几个方面。 1、不稳定的海床由于滑坡形成的快速沉积,浊流沉积,

陆坡上松软的、未胶结的沉积物形成了厚、松软、高含水、未胶结的地层。这种地层由于沉积速度、压实方式以及含水量的不同,所以它们的活性很大,给导管井段的作业带来了很大困难。河水和海水携带细小的沉积物离海岸越来越远,这些沉积物由于缺乏上部压实作用,所以胶结性差。 在某些地区,常表现为易于膨胀和分散性高,这将会导致过量的固相或细颗粒分散在钻井液中。 2、较低的破裂压力梯度 对于相同沉积厚度的地层来说,随着水深的增加,地层的破裂压力梯度在降低,致使破裂压力梯度和地层孔隙压力梯度之间的窗口较窄,容易发生井漏等复杂情况。在深水钻井作业中,将套管鞋深度尽可能设置得深的努力往往由于孔隙压力梯度与破裂压力梯度之间狭小的作业窗口而放弃。结果,深水区域的井所需的套管柱层数,常比有着相同钻进深度的浅水区域的井或陆上的井多。有的井甚至没有可用的套管而没有达到最 终的钻井目的。 3、气体水合物的危害 气体水合物是气体(甲烷、天然气、CO2 、N2 等)和水在一定条件(高温、高压)下形成的类似于冰物质。气体水合物在深水钻井作业中常常会遇到,通常在超过250m 水深的海域都会形成水合物, 一旦形成很难去除。气体水合物是一 种潜在的危害, 生成时结冰堵塞管汇, 气化时生成大量气

国内外海洋工程技术的现状及发展趋势

国内外海洋工程技术的现状及发展趋势 海洋工程技术是造船界关注的技术领域之一,世界上现代化的一流船厂都把高新技术船舶与大型海洋工程结构物作为其纲领性产品。海洋工程技术涉及的领域很广,包括海洋发电技术、海洋钻探技术、海水淡化技术、海洋油矿开采技术、海岸风力发电技术、海层探测技术、海洋物质分离技术、海水提炼技术、海洋建筑设计等。海洋发电技术包括:海水发电、海洋风力发电、潮汐发电、温差发电等。海洋钻探技术包括:海洋油井开发、海洋矿石开采等、海水淡化技术包括:太阳能净水、工业净水等。海洋物质分离技术包括:海水金属分离、轻水物质提炼等。能源开发、资源开采等领域海洋工程技术数目众多,未来人类利用和保护海洋是个新新话题。 随着近年来海洋开发“热”的升温,特别是专属经济区资源勘探和开发的实施,海洋工程技术得到了迅猛发展。 ——在潜水器技术方面。目前世界上建造的载人潜水器超过160艘,无人潜水器超过1000艘。日本继1989年建成深海6500 米载人潜水器“SHINKAI6500”以后,于1993年又建成了世界上第一艘潜深10000米的无人潜水器,用于深海矿产资源和海洋生物资源的调查研究。经过“七五”和“八五”的工作,我国的潜水器技术有了很大的发展。在无人潜水器方面,某些项目已经达到国际水平;在载人潜水器方面,潜深600米的“7 1 03”深潜救生艇是我国第一艘载人潜水器,还有300米工作水深的“QSZ—II型双功能单人常压潜水装具系统”、潜深150米的鱼鹰I号和双功能的鱼鹰II。综合国内从事潜水器开发的各院校、研究院和研究所的力量,我国已具有开发深海载人潜水器的技术能力。

——在海底管线埋设、检测和维修技术方面。我国海底电缆的铺设已有几十年的历史,第一条国际通讯电缆于1976年完成,1993年成功研制出MG一1型海缆埋设犁,并于同年成功完成中日光缆的埋设任务。上世纪80年代开始,英国SMD(Soil Machine Dynamics Ltd.)公司和Land& Marine Eng.公司建造了不少拖曳式埋设系统。而美国的海洋系统工程公司为AT&T研制的SCA- B号埋设机是一种ROV型(水中航行型)的埋设机。可在1850米深用喷水的方式埋设电缆至地下0.6米,可以取出埋深在1.2米以内的电缆,埋设电缆直径为300毫米。履带爬行自走式、带有不同功能挖掘机构的埋设机是海底管道及电缆的埋设技术的发展趋势。在这种履带车载体上通过更换不同的挖沟机械,装备各种探测设备后,既能在沙泥底中进行埋设作业,也能在软岩底中进行埋设作业;既能铺设又能跟踪、挖掘、检修、复埋;既能在水下,也能在浅滩或滩涂工作。目前,这种自走式埋设机已有20多台。 作为开发海洋资源的一种活动,海洋空间利用已有相当长的历史,最早利用海面空间是两千多年前的海上交通运输。然而直到20世纪60年代,由于海洋工程等技术的逐步提高,以及城市化、工业化的迅速发展,导致陆上用地日趋紧张,使人们更加重视海洋空间的利用。海洋空间资源的开发利用可分为几个方面。第一、生活和生产空间;第二、海洋交通运输;第三、储藏和倾废空间;第四、海底军事基地。 解决海洋空间利用的工程技术问题也是近年来海洋工程界研究的热点。 国外研究现状 (1)超大型浮式海洋结构的研究。 在这方面,目前进行最广泛和深入的是日本和美国。日本于1999年8月4 日在神奈川县横须贺港海面上建成—个海上浮动机场。这个浮动机场于1995年开始研制,它由6块长380米、

深水钻井液技术现状与发展趋势

深水钻井液技术现状与发展趋势 文/邱正松赵欣,中国石油大学 引言 深水已成为国际油气勘探开发的重点区域。深水钻井液技术作为深水油气开发的关键技术之一,需解决深水复杂地层井壁失稳、低温流变性调控、天然气水合物的生成等技术问题。由于深水钻井液技术难度大,风险高,目前主要由国外技术服务公司垄断。中国深水钻井液技术尚处于起步阶段,与国外先进水平存在很大差距。笔者对深水钻井液面临的技术问题及对策进行全面分析,总结深水钻井液体系研究与应用进展以及中国深水钻井液技术研究现状,并对深水钻井液技术的发展趋势进行了展望,以期把握先进深水钻井液技术动向,对中国深水钻井液技术的发展起到一定的参考与借鉴作用。 1 深水钻井液面临的主要技术问题及对策 与陆地和浅水相比,深水钻井液面临着许多特殊的技术问题,包括深水地质条件的复杂性、钻井液低温流变性调控、天然气水合物的生成、井眼清洗问题及环保问题。 1.1 深水地质条件的复杂性 1.1.1 海底疏松地层井壁失稳与井漏问题 由于深水沉积过程中部分上覆岩层由海水代替,造成地层欠压实,孔隙压力大,胶结性差,海底泥页岩易膨胀、分散。欠压实作用下地层破裂压力低,导致钻井液的安全密度窗口变窄,易出现井漏等问题。 海底浅部地层通常存在数百米厚的硅质软泥,含水量为50%~70%,其物理性质类似于牙膏,剪切强度低,地层承载力差,易引发井壁失稳。 1.1.2 天然气水合物地层分解问题 由于天然气水合物可稳定存在于深水高压低温环境中,钻井过程中不可避免地钻遇赋存天然气水合物地层。由于钻具的机械扰动以及钻井液的侵入和传热作用等因素,井壁周围地层压力和温度的变化导致地层中的水合物分解,地层强度降低,引发井壁坍塌。此外,水合物分解释放大量气体和少量的水,增加了井壁地层的含水量和地层孔隙压力,引发井壁失稳;而大量的气体进入井筒易引起井涌或井控问题。 1.1.3 深水厚盐岩层井壁失稳问题

深水石油钻井技术现状及发展趋势

文章编号:1000-7393(2008)02-0010-04 深水石油钻井技术现状及发展趋势3 杨 进1 曹式敬2 (1.中国石油大学石油工程教育部重点实验室,北京 102249; 2.中国海洋油田服务股份有限公司钻井事业部,北京 101149) 摘要:随着世界深水油气资源不断发现,近几年来深水钻探工作量越来越大。随着水深的增加和复杂的海况环境条件,对钻井工程提出了更高的挑战,钻井技术的难度越来越大。从目前国内外深水钻井实践出发,对深水的钻井设备、定位系统、井身结构设计、双梯度钻井技术、喷射下导管技术、动态压井钻井技术、随钻环空压力监测、钻井液和固井工艺技术和钻井隔水管及防喷器系统等关键技术进行了阐述,对深水的钻井设计和施工进一步向深水钻井领域发展具有重要导向作用。 关键词:深水钻井;钻井设备;关键技术 中图分类号:TE21;TE24 文献标识码:A Curren t situa ti on and develop i n g trend of petroleu m dr illi n g technolog i es i n deep wa ter Y ANG Jin1,CAO Shijing2 (1.MO E Key Laboratory of Petroleum Engineering in China U niversity of Petroleum,B eijing102249,China; 2.D rilling D epart m ent of China O ffshore O ilfield Services L i m ited,CNOOC,B eijing101149,China) Abstract:A s more and more oil and gas res ources are discovered in deepwater world wide,the deep water drilling has become more and more in recent years.It requires more on drilling engineering and drilling technol ogies due t o the increased water dep th and comp licated marine conditi ons.Based on the p ractice in deep water drilling both at home and abr oad,s ome key technol ogies are dis2 cussed in this paper,including the drilling equi pment,the positi oning syste m,the casing p r ogra m design,the dual-gradient drilling technol ogy,the technol ogy of jetting and l ower circuit,the dyna m ic killing and drilling technol ogy,the technol ogy of annulus p ressure detecti on while drilling,the technol ogy of drilling fluid and ce menting,the drilling raiser technol ogy,and the bl owout p reventer sys2 te m.A ll the technol ogies p lay an i m portant r ole in enabling drilling design and constructi on t o expand int o deep water. Key words:deep water drilling;drilling equi pment;key technol ogy 全世界未发现的海上油气储量有90%潜伏在水深超过1000m以下的地层,所以深水钻井技术水平关系着深海油气勘探开发的步伐。对于海洋深水钻井工程而言,钻井环境条件随水深的增加变得更加复杂,容易出现常规的钻井工程难以克服的技术难题,因此深水钻井技术的发展是影响未来石油发展的重要因素。 1 国内外深水油气勘探形势 全球海洋油气资源丰富。据估计,海洋石油资源量约占全球石油资源总量的34%,累计获探明储量约400×108t,探明率30%左右,尚处于勘探早期阶段。据美国地质调查局(USGS)评估,世界(不含美国)海洋待发现石油资源量(含凝析油)548×108 t,待发现天然气资源量7815×1012m3,分别占世界待发现资源量的47%和46%。因此,全球海洋油气资源潜力巨大,勘探前景良好,为今后世界油气勘探开发的重要领域。 随着海洋钻探和开发工程技术的不断进步,深水的概念和范围不断扩大。目前,大于500m为深水,大于1500m则为超深水。据估计,世界海上44%的油气资源位于300m以下的水域,其中,墨西哥湾深水油气资源量高达(400~500)×108桶油当量,约占墨西哥湾大陆架油气资源量的40%以上, 第30卷第2期 石油钻采工艺 Vol.30No.2 2008年4月 O I L DR I L L I N G&PRODUCTI O N TECHNOLOGY Ap r.2008  3作者简介:杨进,1966年生。1989年毕业于石油大学(华东)钻井工程专业,现从事油气钻井工程研究工作,教授,本刊编委。电话:010 -89733204。

钻井液技术新进展

钻井液技术新进展 摘要:钻井液技术的革新对加强石油勘探开发,提高石油采收率具有重要作用。本文介绍了国外钻井液技术的新进展,包括井壁稳定、防漏堵漏、抗高温钻井液、提高机械钻速的钻井液、低密度钻井液流体、储层保护等技术,同时介绍了国内钻井液技术的相关进展,通过分析比较,指出开发新型钻井液技术的关键在于研发新的处理剂,为钻井液技术的发展指明了方向。 关键词:水基钻井液;油基钻井液;钻井液处理剂;纳米技术 油气井工作液指在钻井、完井、增产等作业过程中所使用的工作流体,包括钻井液、钻井完井液、水泥浆、射孔液、隔离液、封隔液、砾石充填液、修井液、压裂液、酸液及驱替液等。近年来,钻井液在保障钻井井下安全、稳定井壁、提高钻速、保护储层等方面的作用日益突出,随着当前复杂地层深井、超深井及特殊工艺井越来越多,对钻井液技术提出了更高的要求。为此,国内外对应用基础理论和新技术方面进行了广泛的研究,取得了一系列的研究成果和应用技术,有效的解决了钻井过程中迫切的难题,并为钻井液技术的进一步发展奠定了基础指明了方向。本文在调研近几年国内外钻井液新技术的基础上,对国外和国内钻井液技术的新进展分别进行阐述[1-3]。 1国外钻井液技术新进展 1.1井壁稳定技术 1.1.1高性能水基钻井液技术 国外各大钻井液公司均研发了一种在性能、费用及环境保护方面能替代油基与合成基钻井液的高性能水基钻井液(HPWM)代表性技术有M-I公司的ULTRADRIL体系、哈利伯顿白劳德公司的HYDRO-GUADRTM体系[4-5]。该钻井液体系中,聚胺盐的胺基易被黏土优先吸附,促使黏土晶层间脱水,减小水化膨胀;铝酸盐络合物进入泥页岩内部后能形成沉淀,与地层矿物基质结合,增强井壁稳定性;钻速提高剂能覆盖在钻屑和金属表面,防止钻头泥包;可变形聚合物封堵剂能与泥页岩微孔隙相匹配,形成紧密填充[6]。 在墨西哥湾、美国大陆、巴西、澳大利亚及中国的冀东、南海等地的现场应用效果表明,高性能水基钻井液具备抑制性强、能提高机械钻速、高温稳定、保护储层及保护环境的特点[7-8]。 1.1.2成膜水基钻井液技术 通过在水基钻井液中加入成膜剂,使钻井液在泥页岩井壁表面形成较高质量的膜,以阻止钻井液滤液进入地层,从而在保护储层和稳定井壁方面发挥类似油基钻井液的作用。

国外高性能水基钻井液技术发展现状

文章编号:100125620(2007)0320074204 国外高性能水基钻井液技术发展现状 张启根 陈馥 刘彝 熊颖 (西南石油大学化学化工学院,四川成都) 摘要 介绍了贝克休斯公司开发的高性能水基钻井液的基本组成、优良性能以及在世界部分油田的现场应用情况。该钻井液具有油基钻井液的各种性能,可有效稳定页岩、提高岩屑整体性和机械钻速、减小扭矩和阻力,且有利于环保,已被广泛应用于各种钻井。从应用效果看,无论是PDC 钻头还是牙轮钻头,机械钻速都达到了27.4 m/h ,实现了较低的稀释率和较高的固相清除率,其摩擦系数与油基钻井液相同,最大程度地减少了钻头泥包和聚 结现象。与油基钻井液相比,可大幅度节省钻井期间的完井时间,解决了高性能钻井与环保要求的协调问题。 关键词 高性能水基钻井液 钻井液性能 钻速 井眼稳定 综述中图分类号:TE254.3 文献标识码:A 随着全世界各油田的开发逐渐进入中后期,钻井作业的难度和油气井开发成本都在急剧地增加。典型的高难度井有超深井、高温井、高压井、大位移井和深水井,在多数情况下,井身剖面设计越复杂,在钻井中遇到的井下复杂情况也越多,经常遇到的问题有扭矩过大、起下钻遇阻、卡钻、机械钻速低、井眼失稳、井漏和地层伤害等。在国外,解决这些问题的传统方法是采用油基和合成基钻井液。但是,随着环保部门对钻井液和钻屑毒性的控制日益严格,油基和合成基钻井液的使用受到了很大程度的限制。因此各国石油工作者做了大量的工作,研制出了一系列的功能独特的新型环保钻井液,它们在解决世界各油田的复杂钻井过程中发挥了各自的作用。其中具有代表性的是美国贝克休斯公司近期开发出的高性能水基钻井液,其性能与油基钻井液相似,且具有环保和低成本的特点。 1 高性能水基钻井液介绍 贝克休斯公司的研究人员从考察油基逆乳化钻井液所具有的特性入手,研究了油基逆乳化钻井液的作用机理,做了大量的基础试验、处理剂的筛选试验、体系配伍性试验,采用了一系列来自于非石油行业领域的技术,研制、筛选、改性以及复配了各种新型处理剂,并使用了一些独特的专利产品,最终开发出了这种高性能水基钻井液。该体系的设计思路采 取了“总体抑制”理念,即在保证页岩、黏土和钻屑稳定性的同时,改善一些关键性能,如提高机械钻速、防止钻具泥包及降低扭矩、起下钻遇阻现象等。开发出的高性能钻井液基本配方为[2]: 25.7kg/m 3膨润土+4.3kg/m 3P HPA +10.0kg/m 3铝络合物+14.3kg/m 3聚胺+3.1kg/m 3 低黏度PAC +2.0kg/m 3常规PAC +11.4kg/m 3沥青颗粒 该体系已在世界范围内得到广泛应用,其应用效果已在墨西哥湾、巴西、利比亚、澳大利亚和沙特阿拉伯等地区的现场试验中得到证实。在中东钻井时测得的钻井液性能[2]如下。 <444.5mm 井眼:密度为1.28g/cm 3,塑性黏度为24mPa ?s ,动切力为104.3Pa ,胶凝强度为28.7Pa/71.8Pa/86.2Pa ,滤失量为4.8mL ,p H 值为10.8,高温高压滤失量为15.0mL ,膨润土含量为64.2g/L ,L GS (低密度固相)为7.49%(V /V )。 <311.1mm 井眼:密度为1.88g/cm 3,塑性黏度为36mPa ?s ,动切力为119.7Pa ,胶凝强度为38.3Pa/71.8Pa/91.0Pa ,滤失量为4.0mL ,p H 值为10.7,高温高压滤失量为12.5mL ,膨润土含量为57.1g/L ,L GS 为6.20%(V /V )。 从以上数据可以看出,高性能钻井液的组成与常规水基钻井液有较大的区别,其性能与油基钻井液相差很小,是性能优良又环保的新型水基钻井液。 第一作者简介:张启根,1981年生,西南石油大学在读研究生,主要从事油田应用化学的研究。地址:四川省成都市西南 石油大学硕05级5班;邮政编码610500;E 2mail :zhangqigen1981@https://www.360docs.net/doc/6815769111.html, 。 第24卷第3期 钻 井 液 与 完 井 液 Vol.24No.32007年5月 DRILL IN G FL U ID &COMPL ETION FL U ID May 2007

国内外石油钻井装备的发展现状分析

国内外石油钻井装备的发展现状分析 摘要:通过对当前国外石油钻机新技术的介绍和国内石油钻机装备的现状及问题的分析,提出了石油钻井装备的发展趋势,并重点介绍了矢量控制全数字变频超深井钻机ZJ70DB。 关键词:石油钻井钻机钻井技术 当前的经济形势使我国油气工业面临着巨大的压力,加之跨国石油公司进入我国市场所形成的压力,使得我们必须大力推进技术进步。在这种背景下,我国钻井行业要想和国外钻井承包商及其技术服务公司争夺国内钻井市场,并挤入国际钻井市场,除了保持钻井技术持续高速发展之外,还必须有技术先进的钻机。 一、国外石油钻机新技术 为了适应浅海、海滩、沙漠和丘陵等不同地带油气藏的勘探开发,国外研究改进、开发创新了多种新型石油钻机,涌现了许多新结构、新技术,美、德、法、意、加和罗马尼亚等国先后开发了各种类型的石油钻机。 1.挪威AKER MH公司可编程自动钻井系统(CADS),该公司的第一套可编程管子处理系统己在挪威海上钻井平台上使用 操作该系统时,司钻可以预先依次将起下钻操作步骤程序化,不需要分别操作绞车、顶驱、管子处理装置和卡瓦。钻台上除司钻操作室内的司钻外,不需要其它操作者。该系统总称为可配置自动钻井系统(CADS),根据承包商和操作者的要求,该公司可将各种操作程序化。系统除有一套可编程管子处理系统外,还包括一套先进的防碰系统,用来防止操作间的相互干扰。在司钻操作室内,触摸屏代替了按钮和开关,同时配备有手动操作的备用系统,所有操作都是经过优化的,大大减少了起下钻时间,每小时可以起下55柱立根。 2.Varco公司钻机在线监视与诊断系统 Varco公司的E-Drill是第一套可用于远程监视和诊断世界各地钻机上的Varco监测系统,钻机操作人员可以在1h以内和Varco的技术人员取得联系,各种参数可以直接从置于Varco公司监测系统内的智能系统取得,用于最大限度提高顶驱、排管系统和Varco集成控制和信息系统(V-ICIS)的性能。通过该监测系统,操作人员可以访问由解决方案、事件记录、运行检查、通话记录组成的档案数据库,各钻机数据资源可共享。当遇到故障时,可与Varco公司的E-Drill 技术人员和钻机人员联系,分析故障原因并提出解决方案。 3.RIGSERV钻机集成控制系统 RIGSERV钻机集成控制系统是安装在钻台上司钻控制室内完整和最先进的

国外深水钻井液技术现状

国外深水钻井液技术现状 (一)引言 自1985年以来,随着第一批水深在300 m以上深水油气勘探开发项目的投入建设,国际深水油气勘探开发逐渐增多。最初10年的年平均增长速度为65%,西北欧、巴西、墨西哥湾的勘探开发速度最快,2001年起墨西哥湾深水区的产量已超过浅水区。据统计,截至2000年,水深500 m的深水油气田有162个,遍及世界各海域,其中尤以美洲的墨西哥湾海域、拉丁美洲的巴西海域及西非海域最多,深水油气田探明油气储量为22.6×108t油当量,占海上油气田探明总储量的12%。目前,深水钻井还面临着许多难题,对钻井液技术的要求更高,本文在分析深井钻井存在的主要难题的基础上,详细介绍了国外先进的深水钻井液技术,并对其发展趋势进行了分析。 (二)深水钻井中存在的问题 与浅水区域相比,深水钻井面临的主要问题有:海底页岩的稳定性差、钻井液用量大、井眼清洗难、浅层天然气与形成的气体水合物、低温下钻井液的流变性、地层破裂压力窗口窄等。这些问题给钻井工作带来了诸多困难,同时对钻井液技术提出了更高的要求:在保证钻井安全的前提下,兼顾钻井成本和环境效益。 1.海底页岩的稳定性差 在深水区中,由于沉积速度、压实方式以及含水量的不同,海底页岩的活性大。河水和海水携带细小的沉积物离海岸越来越远,由于缺乏上部压实作用,胶结性较差,易于膨胀、分散,导致过量的固相或细颗粒分散在钻井液中,从而影响钻井液性能。 2.钻井液用量大 在深水环境下的钻井液需求量是很大的。一般隔水管体积就高达159 m3,再加上平台钻井液系统,而且由于井眼直径大,为了钻达设计井深,一般下入的套管也多(常常是4~7层),因此钻井液用量就比其他同样井深的陆上或浅水区的井大得多。 3.井眼清洗难 深水钻井时,由于开孔直径、套管和隔水管的直径都比较大,如果钻井液流速不足就难以达到清洗井眼的目的。因此,对钻井液清洗井眼的能力提出了更高要求。一般采用稠浆清洗、稀浆清洗、联合清洗、增加低剪切速率黏度,以及有规律地短程起下钻等方法,这些方法均有助于清除钻井过程中的钻屑。使用与钻井过程中钻井液黏度不同的清扫液清除钻屑效果较明显,比如使用稀浆钻进,稠浆清洗钻屑。 4.浅层气与气体水合物 深水钻井作业中,气体水合物的形成不仅是一个经济问题,更是一个安全问题。气体水合物类似于冰的结构,主要由气体分子和水分子组成,外观上看起来类似于脏冰,但是它在性质上又不像冰,如果压力足够,它可以在0℃以上形成。海底附近或井中溶解的水合物受到冷却后易在隔水管和压井阻流管线上重新凝结,尤其是在节流管线、钻井隔水导管、防喷器以及海底的井口里,一旦形成气体水合物,就会堵塞气管、导管、隔水管和海底防喷器等,从而造成严重的事故;

钻井液发展

钻井液,呼唤发展的春天 中国石油新闻中心 [ 2011-05-30 09:08 ] 钻井液俗称泥浆,是钻井的血液。作为钻井小专业,泥浆常被忽视。5月24日,集团公司专门召开会议,中国石油内外钻井液专家和技术人员百余人共商泥浆“大计”。泥浆发展再一次引起人们的深思。 “沉默”的泥浆 中国工程院院士罗平亚说,钻井液工作会一别就是20余载。 上次会议要追溯到上个世纪。1983年6月14日,当时石油工业部所属钻井司组织召开了全国第四次泥浆工作会议。 此次参会代表称,20多年来,中国泥浆业务发展脚步没停,但客观地说,对泥浆业务的重视还远远不够。 泥浆的“沉默”有时代的原因。上世纪以来,中国的石油工业发生巨变。1988年,国家撤销石油工业部,组建国家石油公司。接着,中国石油、中国石化和中国海油三大公司重组改制。此后,中国石油工程技术业务持续重组,在集团公司层面历经钻井局、工程技术与市场部、工程技术分公司三个阶段。钻井局设有泥浆处。如今,集团公司泥浆业务管理由工程技术分公司钻井工程处负责。 变革重组不可避免地削弱了泥浆工作的管理力度和职能。发展中,各家对泥浆工作重视程度不一样,水平也参差不齐。 目前,国内相对独立、专业化的钻井液技术服务公司仅长城钻探、渤海钻探和中海油服油田化学事业部三家。作为中国石油钻井液业务专业化最早的长城钻探钻井液公司,发展时间也不过10年,2000年成立以来,它曾一度是中国石油钻井液业务对外的唯一窗口。 进入21世纪,各家钻井液业务虽都有较大进展,但发展的速度和质量不能尽如人意,与国外先进水平相比存在较大差距。 “泥浆的发展已跟不上钻井的要求!”罗平亚的这句话戳到了中国泥浆业务发展的痛处,也敲醒了很多人。 泥浆,不能再“沉默”了。 泥浆的使命 其实,泥浆不曾沉默过。作为钻井的“血液”,泥浆一直在确保井眼安全,提高施工速度,促进勘探开发等方面发挥至关重要的作用。尤其是在集团公司油气业务不断拓展的今天,泥浆肩负的使命

浅谈钻井技术现状及发展趋势

浅谈钻井技术现状及发展趋势 【摘要】随着油田的深入开发,钻井技术有了质的发展,钻井工艺技术研究、破岩机理研究、固控技术研究、钻井仪表技术研究、保护油气层钻井完井液技术研究以及三次采油钻井技术等都取得了科研成果,施工技术逐渐多样化,目前已在水平井、径向水平井、小井眼钻井、套管开窗侧钻井、欠平衡压力钻井等方面获得了突破。一些先进的钻井技术走出国门,走向世界,如:计算机控制下套管技术、套管试压技术、随钻测斜技术、密闭取心技术、固控装备、钻井仪表、钻井液监测技术、MTC固井技术及化学堵漏技术等,本文就国内钻井技术的现状及发展趋势进行分析。 【关键词】钻井技术;发展趋势;油田开发 引言 通过钻井技术及管理人员的不懈努力,钻井硬件设施已经比较完善,很多钻井公司配备了先进的钻井工艺实验室、固控设备实验室、钻井仪表实验室、油田化学实验室、高分子材料试验车间、全尺寸科学实验井等,这些硬件设施满足了各种钻井工程技术开发与应用的需要。钻井技术也有了长足发展,具备了世界先进水平,钻井技术的进步为油田科技事业的发展做出了积极的贡献,并取得了良好的经济效益和社会效益,如TZC系列钻井参数仪作为技术产品曾多次参与

国内重点探井及涉外钻井工程技术服务,并受到外方的认可。多年来,由于不断进行技术攻关研究与新技术的推广应用,水平井钻井技术迅速提高。水平钻进技术是在定向井技术基础上发展起来的一项钻进新技术,其特点是能扩大油气层裸露面积、显著提高油气采收率及单井油气产量。对于薄油层高压低渗油藏以及井间剩余油等特殊油气藏,水平井技术更具有明显的优势。 1、钻井技术发展现状 从世界能源消耗趋势看,还是以油气为主,在未来能源消耗趋势中,天然气的消耗增加较快,但是在我国仍然以石油、煤炭作为主要能源。尽管如此,我国的油气缺口仍然很大,供需矛盾很突出,60%石油需要进口,从钻井的历史看,我国古代钻井创造了辉煌历史,近代钻井由领先沦为落后,现代钻井奋起直追,逐步缩小差距,21世纪钻井技术有希望第二次走向辉煌。随着钻进区域的不断扩大及钻井难度的不断增加,各种新的钻井技术不断出现,目前,水平井钻井技术逐渐成为提高油气勘探开发最有效的手段之一。各种先进的钻井技术在油田开发中显示出了其优越性,新技术、新工艺日益得到重视和推广应用。例如:旋转钻井技术,是目前世界上主要的钻井技术,旋转钻井方式有以下几种:转盘(或顶驱)驱动旋转钻井方式、井下动力与钻柱复合驱动旋转钻井方式(双驱)、井下动力钻具旋转钻井方式、特殊工艺旋

相关文档
最新文档