半导体工艺之离子注入

半导体离子注入工艺

--离子注入

离子注入法掺杂和扩散法掺杂对比来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。当前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。

1.离子注入原理:

离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。

离子注入到wafer中后,会与硅原子碰撞而损失能量,

能量耗尽离子就会停在wafer中某位置。离子通过与硅原子

的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒

子,新入射离子又会与其它硅原子碰撞,形成连锁反应。

杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。

2.离子射程

离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。入射离子能量越高,射程就会越长。

投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。

3.离子注入剂量

注入剂量是单位面积wafer表面注入的离子数,可通过

下面的公式计算得出 ,式中,Q 是剂量;I 是束流, 单位是安培;t 是注入时间,单位是秒;e 是电子电荷,1.6×10-19C ;n 是电荷数量;A 是注入面积,单位是 。

4.离子注入设备

离子注入机体积庞大,结构非常复杂。根据它所能提供

的离子束流大小和能量可分为高电流和中电流离子注入机以 及高能量、中能量和低能量离子注入机。

离子注入机的主要部件有:离子源、质量分析器、加速器、聚焦器、扫描系统以及工艺室等。

(1)离子源

离子源的任务是提供所需的杂质离子。在合适的气压

下,使含有杂质的气体受到电子碰撞而电离,最常用的杂质

源有

和 等, (2)离子束吸取电极

吸取电极将离子源产生的离子收集起来形成离子束。电

极由抑制电极和接地电极构成,电极上加了很高的电压,离

子受到弧光反应室侧壁的排斥作用和抑制电极的吸引作用,被分离出来形成离子束向吸取电极运动。

3)质量分析器

反应气体中可能会夹杂少量其它气体,这样,从离子源

吸取的离子中除了需要杂质离子外,还会有其它离子。因

此,需对从离子源出来的离子进行筛选,质量分析器就是来

enA

It

Q 62H B 3PH

完成这项任务的。

质量分析器的核心部件是磁分析器,在相同的磁场作用下,不同荷质比的离子会以不同的曲率半径做圆弧运动,选择合适曲率半径,就可以筛选出需要的离子。荷质比较大的

离子偏转角度太小、荷质比较小的离子偏转角度太大,都无法从磁分析器的出口通过,只有具有合适荷质比的离子才能顺利通过磁分析器,最终注入到wafer中。

(4)加速器

为了保证注入的离子能够进入wafer,并且具有一定的射程,离子的能量必须满足一定的要求,所以,离子还需要进行电场加速。完成加速任务的是由一系列被介质隔离的加速电极组成管状加速器。离子束进入加速器后,经过这些电极的连续加速,能量增大很多。

与加速器连接的还有聚焦器,聚焦器就是电磁透镜,它

的任务是将离子束聚集起来,使得在传输离子时能有较高的效益,聚焦好的离子束才能确保注入剂量的均匀性。

(5)扫描器

离子束是一条直径约1~3的线状高速离子流,必须通过

扫描覆盖整个注入区。扫描方式有:固定wafer,移动离子

束;固定离子束,移动wafer。离子注入机的扫描系统有电

子扫描、机械扫描、混合扫描以及平行扫描系统,目前最常

用的是静电扫描系统。

静电扫描系统由两组平行的静电偏转板组成,一组完成

横向偏转,另一组完成纵向偏转。在平行电极板上施加电场,正离子就会向电压较低的电极板一侧偏转,改变电压大小就可以改变离子束的偏转角度。静电扫描系统使离

子流每秒钟横向移动15000多次,纵向移动移动1200次。

静电扫描过程中,wafer固定不动,大大降低了污染几率,而且由于带负电的电子和中性离子不会发生同样的偏转,这样就可以避免被掺入到wafer当中。

6)终端系统

终端系统就是wafer接受离子注入的地方,系统需要

完成Wafer的承载与冷却、正离子的中和、离子束流量检

测等功能。

离子轰击导致wafer温度升高,冷却系统要对其进行

降温,防止出现由于高温而引起的问题,有气体冷却和橡胶

冷却两种技术。冷却系统集成在Wafer载具上,wafer载

具有多片型和单片型两种。

离子注入的是带正电荷的离子,注入时部分正电荷会聚

集在wafer表面,对注入离子产生排斥作用,使离子束的入

射方向偏转、离子束流半径增大,导致掺杂不均匀,难以控

制;电荷积累还会损害表面氧化层,使栅绝缘绝缘能力降

低,甚至击穿。解决的办法是用电子簇射器向wafer表面发

射电子,或用等离子体来中和掉积累的正电荷。

离子束流量检测及剂量控制是通过法拉第杯来完成的。

然而离子束会与电流感应器反应产生二次电子,这会正常测量偏差。在法拉第杯杯口附加一个负偏压电极以防止二次电子的逸出,获

得精确的测量值。电流从法拉第杯传输到积分仪,积分仪将离子束电流累加起来,结合电流总量和注入时间,就可计算出掺入一定剂量的杂质需要的时间。

4.离子注入工艺

(1)沟道效应

入射离子与wafer之间有不同的相互作用方式,若离子

能量够高,则多数被注入到wafer内部;反之,则大部分离

子被反射而远离wafer。注入内部的原子会与晶格原子发生

不同程度的碰撞,离子运动过程中若未与任何粒子碰撞,它

就可到达wafer内部相当深的地方,这就是沟道效应。

沟道效应将使离子注入的可控性降低,甚至使得器件失效。因此,在离子注入时需要抑制这种沟道效应。在wafer表面淀积一层非晶格结构材料或事先破坏掉wafer

表面较薄的一层结晶层等都可降低沟道效应。2)退火

离子注入会对晶格造成损伤,注入剂量较大时,wafer

将会由单晶变成非晶,通过退火能修复晶格缺陷。

缺陷修复需要500℃的温度,杂质的激活需要950℃

的高温,有高温炉退火和快速热退化两种方法。高温炉退火

是在800~1000℃的高温下加热30分钟,因会导致杂质再

分布,不常采用;快速热退火采用快速升温并在1000℃的

高温下保持很短的时间,可达到最佳效果。

(3)颗粒污染

离子注入对颗粒污染非常敏感,wafer表面的颗粒会阻碍离子束的注入,大电流的注入会产生更多颗粒,必要时需

采取纠正措施。

(4)离子注入工艺有以下特点:

注入的离子经过质量分析器的分析,纯度很高、能量单一。而且注入环境清洁、干燥,大大降低了杂质污染。

注入剂量可精确控制,杂质均匀度高达±1%;

注入在中低温度下进行,二氧化硅、光刻胶、氮化硅等都可以作为注入时的掩蔽层。衬底温度低,就避免了高温扩散所引起的热缺陷;

离子注入是一个非平衡过程,不受杂质在衬底中的固溶

度限制;

对于化合物半导体采用离子注入技术,可不该变组分而

达到掺杂的目的;

离子注入的横向掺杂效应比扩散大大减少了;

离子注入最大的缺点就是高能离子轰击wafer对晶格结

构造成的损伤;

(5)离子注入工艺的应用

改变导电类型,形成PN结,如形成源、漏以及阱等;

改变起决定作用的载流子浓度,以调整器件工作条件;改变衬底结构;合成化合物。

5.离子注入质量检测

离子注入层的检查与扩散层的检测项目、检测方法基本

相同。

(1)颗粒污染

测量检测wafer表面的颗粒数,颗粒会造成掺杂的空

洞。颗粒的可能来源有:电极放电;机械移动过程中的外包

装;注入机未清洁干净;温度过高造成光刻胶脱落;背面的

冷却橡胶;wafer处理过程产生的颗粒。

(2)剂量控制

掺杂剂量不合适导致方块电阻偏高或偏低。掺杂剂量不

合适的原因有:工艺流程错误;离子束电流检测不够精确;

离子束中混入电子,造成计数器计算离子数量的错误,导致

掺杂剂量过大;退火问题。

(3)超浅结结深

掺杂剖面不正确,高温会造成杂质再分布,增加结深以

及横向掺杂效应;沟道效应影响离子的分布。

总结:通过一周的半导体的实习,给我印象最深的是半导体工艺的离子注入工序,离子注入听起来简单但是做起来相当的麻烦,而且离子注入机也是非常的昂贵,而且一台机器只能注入一种离子,比如P离子,而不能注入B离子,大剂量和小剂量用的机器也是不同的,大剂量的机器可以注入小剂量,但小剂量的机器不能注入大剂量,在做片的时候要调整好磁分析器,把想要的离子挑出来,调好加速电压,灯丝电流,最重要的是束流,也就是离子的电流大小,这直接关系到注入的时间,相同剂量束流越大,注入时间越短。

半导体工艺与制造技术习题答案(第四章 离子注入)

第四章 离子注入与快速热处理 1.下图为一个典型的离子注入系统。 (1)给出1-6数字标识部分的名称,简述其作用。 (2)阐述部件2的工作原理。 答:(1)1:离子源,用于产生注入用的离子; 2:分析磁块,用于将分选所需的离子; 3:加速器,使离子获得所需能量; 4:中性束闸与中性束阱,使中性原子束因直线前进不能达到靶室; 5:X & Y 扫描板,使离子在整个靶片上均匀注入; 6:法拉第杯,收集束流测量注入剂量。 (2)由离子源引出的离子流含有各种成分,其中大多数是电离的,离子束进入一个低压腔体内,该腔体内的磁场方向垂直于离子束的速度方向,利用磁场对荷质比不同的离子产生的偏转作用大小不同,偏转半径由公式: 决定。最后在特定半径位置采用一个狭缝,可以将所需的离子分离出来。 2.离子在靶内运动时,损失能量可分为核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具体有何关系? 答:核阻滞即核碰撞,是注入离子与靶原子核之间的相互碰撞。因两者质量是同一数量级,一次碰撞可以损失很多能量,且可能发生大角度散射,使靶原子核离开原来的晶格位置,留下空位,形成缺陷。 电子阻滞即电子碰撞,是注入离子与靶内自由电子以及束缚电子之间的相互碰撞。因离子质量比电子质量大很多,每次碰撞损失的能量很少,且都是小角度散射,且方向随机,故经多次散射,离子运动方向基本不变。 在一级近似下,核阻滞本领与能量无关;电子阻滞本领与能量的平方根成正比。 1 2 3 4 5 6

3.什么是离子注入横向效应?同等能量注入时,As和B哪种横向效应更大?为什么? 答:离子注入的横向效应是指,注入过程中,除了垂直方向外,离子还向横向掩膜下部分进行移动,导致实际注入区域大于掩膜窗口的效应。 B的横向效应更大,因为在能量一定的情况下,轻离子比重离子的射程要深且标准差更大。 4.热退火用于消除离子注入造成的损伤,温度要低于杂质热扩散的温度,然而,杂质纵向分布仍会出现高斯展宽与拖尾现象,解释其原因。 答:离子注入后会对晶格造成简单晶格损伤和非晶层形成;损伤晶体空位密度要大于非损伤晶体,且存在大量间隙原子核其他缺陷,使扩散系数增大,扩散效应增强;故虽然热退火温度低于热扩散温度,但杂质的扩散也是非常明显的,出现高斯展宽与拖尾现象。 5.什么是离子注入中常发生的沟道效应(Channeling)和临界角?怎样避免沟道效应? 答:沟道效应,即当离子入射方向平行于主晶轴时,将很少受到核碰撞,离子将沿沟道运动,注入深度很深。由于沟道效应,使注入离子浓度的分布产生很长的拖尾;对于轻原子注入到重原子靶内是,拖尾效应尤其明显。 临界角是用来衡量注入是否会发生沟道效应的一个阈值量,当离子的速度矢量与主要晶轴方向的夹角比临界角大得多的时候,则很少发生沟道效应。临界角可用下式表示: 6.什么是固相外延(SPE)及固相外延中存在的问题? 答:固相外延是指半导体单晶上的非晶层在低于该材料的熔点或共晶点温度下外延再结晶的过程。热退火的过程就是一个固相外延的过程。 高剂量注入会导致稳定的位错环,非晶区在经过热退火固相外延后,位错环的最大浓度会位于非晶和晶体硅的界面处,这样的界面缺陷称为射程末端缺陷。若位错环位于PN结耗尽区附近,会产生大的漏电流,位错环与金属杂质结合时更严重。因此,选择的退火过程应当能够产生足够的杂质扩散,使位错环处于高掺杂区,同时又被阻挡在器件工作时的耗尽区之外。 7.离子注入在半导体工艺中有哪些常见应用? 答:阱注入、VT调整注入,轻掺杂漏极(LDD),源漏离子注入,形成SOI结构。 8.简述RTP设备的工作原理,相对于传统高温炉管它有什么优势? 答:RTP设备是利用加热灯管通过热辐射的方式选择性加热硅片,使得硅片在极短的时间内达到目标温度并稳定维持一段时间。相对于传统高温炉管,RTP设备热处理时间短,热预算小,冷壁工艺减少硅片污染。 9.简述RTP在集成电路制造中的常见应用。 答:RTP常用于退火后损失修复、杂质的快速热激活、介质的快速热加工、硅化物和接触的形成等。 10.采用无定形掩膜的情况下进行注入,若掩膜/衬底界面的杂质浓度减少至峰值

离子注入和快速退火工艺处理

离子注入和快速退火工艺 离子注入是一种将带电的且具有能量的粒子注入衬底硅的过程。注入能量介于1keV到1MeV之间,注入深度平均可达10nm~10um,离子剂量变动范围从用于阈值电压调整的1012/cm3到形成绝缘层的1018/cm3。相对于扩散工艺,离子注入的主要好处在于能更准确地控制杂质掺杂、可重复性和较低的工艺温度。 高能的离子由于与衬底中电子和原子核的碰撞而失去能量,最后停在晶格内某一深度。平均深度由于调整加速能量来控制。杂质剂量可由注入时监控离子电流来控制。主要副作用是离子碰撞引起的半导体晶格断裂或损伤。因此,后续的退化处理用来去除这些损伤。 1 离子分布 一个离子在停止前所经过的总距离,称为射程R。此距离在入射轴方向上的

投影称为投影射程Rp。投影射程的统计涨落称为投影偏差σp。沿着入射轴的垂直的方向上亦有一统计涨落,称为横向偏差σ┷。 下图显示了离子分布,沿着入射轴所注入的杂质分布可以用一个高斯分布函数来近似: S为单位面积的离子注入剂量,此式等同于恒定掺杂总量扩散关系式。沿x 轴移动了一个Rp。回忆公式: 对于扩散,最大浓度为x=0;对于离子注入,位于Rp处。在(x-Rp)=±σp处,离子浓度比其峰值降低了40%。在±2σp处则将为10%。在±3σp处为1%。在±4σp处将为0.001%。沿着垂直于入射轴的方向上,其分布亦为高斯分布,可用: 表示。因为这种形式的分布也会参数某些横向注入。 2 离子中止 使荷能离子进入半导体衬底后静止有两种机制。 一是离子能量传给衬底原子核,是入射离子偏转,也使原子核从格点移出。设E是离子位于其运动路径上某点x处的能量,定义核原子中止能力:

半导体工艺讲解

半导体工艺讲解(1)--掩模和光刻(上) 概述 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于 10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning ) ?光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 ? 光刻工艺过程 一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。 ?1、硅片清洗烘干(Cleaning and Pre-Baking) 方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMDS-〉六甲基二硅胺烷)。 2、涂底(Priming) 方法:a、气相成底膜的热板涂底。HMDS蒸气淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;? ?b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS用量大。 目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 3、旋转涂胶(Spin-on PR Coating) 方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%);

芯片制造-半导体工艺教程

芯片制造-半导体工艺教程 Microchip Fabrication ----A Practical Guide to Semicondutor Processing 目录: 第一章:半导体工业[1][2][3] 第二章:半导体材料和工艺化学品[1][2][3][4][5]第三章:晶圆制备[1][2][3] 第四章:芯片制造概述[1][2][3] 第五章:污染控制[1][2][3][4][5][6] 第六章:工艺良品率[1][2] 第七章:氧化 第八章:基本光刻工艺流程-从表面准备到曝光 第九章:基本光刻工艺流程-从曝光到最终检验 第十章:高级光刻工艺 第十一章:掺杂 第十二章:淀积 第十三章:金属淀积 第十四章:工艺和器件评估 第十五章:晶圆加工中的商务因素 第十六章:半导体器件和集成电路的形成 第十七章:集成电路的类型 第十八章:封装 附录:术语表

#1 第一章半导体工业--1 芯片制造-半导体工艺教程点击查看章节目录 by r53858 概述 本章通过历史简介,在世界经济中的重要性以及纵览重大技术的发展和其成为世界领导工业的发展趋势来介绍半导体工业。并将按照产品类型介绍主要生产阶段和解释晶体管结构与集成度水平。 目的 完成本章后您将能够: 1. 描述分立器件和集成电路的区别。 2. 说明术语“固态,” “平面工艺”,““N””型和“P”型半导体材料。 3. 列举出四个主要半导体工艺步骤。 4. 解释集成度和不同集成水平电路的工艺的含义。 5. 列举出半导体制造的主要工艺和器件发展趋势。 一个工业的诞生 电信号处理工业始于由Lee Deforest 在1906年发现的真空三极管。1真空三极管使得收音机, 电视和其它消费电子产品成为可能。它也是世界上第一台电子计算机的大脑,这台被称为电子数字集成器和计算器(ENIAC)的计算机于1947年在宾西法尼亚的摩尔工程学院进行首次演示。 这台电子计算机和现代的计算机大相径庭。它占据约1500平方英尺,重30吨,工作时产生大量的热,并需要一个小型发电站来供电,花费了1940年时的400, 000美元。ENIAC的制造用了19000个真空管和数千个电阻及电容器。 真空管有三个元件,由一个栅极和两个被其栅极分开的电极在玻璃密封的空间中构成(图1.2)。密封空间内部为真空,以防止元件烧毁并易于电子的====移动。 真空管有两个重要的电子功能,开关和放大。开关是指电子器件可接通和切断电流;放大则较为复杂,它是指电子器件可把接收到的信号放大,并保持信号原有特征的功能。 真空管有一系列的缺点。体积大,连接处易于变松导致真空泄漏、易碎、要求相对较多的电能来运行,并且元件老化很快。ENIAC 和其它基于真空管的计算机的主要缺点是由于真空管的烧毁而导致运行时间有限。 这些问题成为许多实验室寻找真空管替代品的动力,这个努力在1947年12月23曰得以实现。贝尔实验室的三位科学家演示了由半导体材料锗制成的电子放大器。

半导体工艺流程

1、清洗 集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水;且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即采用无机酸将其氧化去除,最后用超纯水进行清洗,如图1 —6所示。 图1—6硅片清洗工艺示意图 工具的清洗基本米用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250C高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作 为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为:

Si + O2f SiO2 3、扩散 扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B2H6)作为N —源和磷烷(PH3)作为P+源。工艺生产过程中通常 分为沉积源和驱赶两步,典型的化学反应为: 2PH3 f 2P + 3H2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上 形成了沟槽。 光刻胶 基片------------ ?涂胶后基片 1 1 1 1 ~ 显影后基片V------------- 曝光后基片 6、湿法腐蚀和等离子刻蚀

半导体工艺讲解

半导体工艺讲解(1)--掩模和光刻(上)概述 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40?60% 光刻机是生产线上最贵的机台,5?15百万美元/台。主要是贵在成像系统 (由15?20个直径为200?300mm勺透镜组成)和定位系统(定位精度小于10nm。其折旧速度非常快,大约3?9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker ),用于涂胶显影;扫描曝光机(Scanning ) 光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性; 准确 地对准;大尺寸硅片的制造;低的缺陷密度。 光刻工艺过程 一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。 1、硅片清洗烘干(Cleaning and Pre-Baking ) 方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150?2500C,1?2分钟, 氮气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);除去水 b、蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是HMD?六 甲基二硅胺烷)。 2、涂底(Priming) 方法:a、气相成底膜的热板涂底。HMD蒸气淀积,200?2500C,30秒钟; 优点:涂底均匀、避免颗粒污染;b、旋转涂底。缺点:颗粒污染、涂底不 均匀、HMD用量大。 目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 3、旋转涂胶(Spin-on PR Coati ng ) 方法:a、静态涂胶(Static )。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65?85%旋涂后约占10?20% ; b、动态 (Dynamic)。低速旋转 (500rpm_rotation per minute )、滴胶、加速旋转(3000rpm)、甩胶、挥发溶剂。

瓦利安-离子注入机工作原理01解析

第三部分原理 瓦利安半导体设备有限公司 VIISta HCS 目录 章节章节编号 原理介绍…………………………………………………………………E82291210 控制原理………………………………………………---………………E82291220 离子注入操作原理………………………………………………………E82291230 第1页

介绍 第1页

VIISta HCS型高束流离子注入机是高自动化的生产工具。此离子注入机可以将单一离子类别掺杂剂的离子束注入到硅片中。 首先利用Varian 控制系统(VCS)产生工艺配方,在配方的基础上制定产生离子束的确切标准。工艺配方的设计目的包括:控制掺杂剂种类的选择,控制剂量、控制离子束的能量、注入角度等以及工艺步骤等等。 在阅读本章之前,请阅读第二章安全方面内容。 一、系统单元组成 VIISta HCS 可以分为三个有用的重要的单元:离子源单元、离子束线单元、工作站单元。 1、离子源单元 离子源子单元包括产生,吸出、偏转、控制,和聚焦,离子是有间接加热的阴极产生再由吸极取出(由D1电源与吸级装置构成),在取出工艺过程中,为了得到离子束更好的传输和低的离子束密度,离子束将被垂直聚焦。被取出的离子束通过一个四极的透镜,在进入90度离子束磁分析器之前离子束被聚焦,在磁分析器中,绝大多数不需要的离子将被分离出去。 离子源模块的主要结构,包括离子源围栏内部分和安全系统,支持分布各处的主要动力组件。还有离子源控制模块,源初始泵抽,涡轮分子泵抽,工艺气体柜,离子源和(套)管路。离子源围栏与安全系统要互锁,这是为了防止在正常注入操作过程中有人员接近。如果任何一扇门打开,或者任何维护、伺服面板被移动,高压电源和有害气体流就会通过互锁系统关闭。VIISts HCS 系统使用的不是高压工艺气体,就是需要安全输送系统的工艺气体。VSEA提供的标准工艺气体有三氟硼烷、砷烷和磷烷。 2、离子束线控制单元 离子束线控制子系统包括从90度磁偏转区域到70度磁偏转区域,在这些区域,离子束将会被减速、聚焦、分析、测量以及被修正为平行、均匀的离子束。从90度磁偏转区域到70度磁偏转区域中,离子束先被增速,再被减速。离子源与控制离子束线的四极透镜,协同D1、D1抑制极,D2、D2抑制极动力一起,提供水平与垂直聚焦控制。90度磁偏转协同判决光圈一起实现对离子的筛选分析。预设法拉第杯测量离子束强度。最终,离子束在70度偏转磁场中,协同多组磁极和顶部和底部的磁棒,被调整为方向平行,分布均匀的离子束。 离子束离开离子源模块之后进入离子束线模块。离子束首先通过离子源四极透镜(源四极透镜,Q1)调整离子束使其竖直方向 第1页

半导体的生产工艺流程

半导体的生产工艺流程 微机电制作技术,尤其是最大宗以硅半导体为基础的微细加工技术 (silicon-basedmicromachining),原本就肇源于半导体组件的制程技术,所以必须先介绍清楚这类制程,以免沦于夏虫语冰的窘态。 一、洁净室 一般的机械加工是不需要洁净室(cleanroom)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型 鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统 中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆 放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(airshower)的程序,将表面粉尘 先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人 员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。)当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DIwater,de-ionizedwater)。 一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS)晶体管结构之带电载子信道(carrierchannel),影响半导体组件的工作特性。去离子水以电阻率(resistivity)来定义好坏,一般要求至 17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与 UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使 用氮气(98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔

A1半导体工艺生产流程

A1半导体工艺生产流程 半导体的生产工艺流程,做工艺 一、洁净室 一般的机械加工是不需要洁净室(clean room) 的,因为加工分辨率在数十微米以上,远比日常环境的微尘 颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。 为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的 洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5 微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵(参见图2-1)。 为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只岀不进。所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位 外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。)当然,化 妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。一则防止水中粉粒污 染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS)晶体管结构之带电载子信道(carrier channel),影响半导体组件的工作特性。去离子水以电阻率(resistivity) 来定义好坏,一般要求至17.5M Q -cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡, 才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的 氮气甚至要求99.8% 以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保 问题,再再需要大笔大笔的建造与维护费用!

半导体工艺之离子注入

半导体离子注入工艺 --离子注入 离子注入法掺杂和扩散法掺杂对比来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。当前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。 1.离子注入原理: 离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。 离子注入到wafer中后,会与硅原子碰撞而损失能量, 能量耗尽离子就会停在wafer中某位置。离子通过与硅原子 的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒 子,新入射离子又会与其它硅原子碰撞,形成连锁反应。 杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。 2.离子射程 离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。入射离子能量越高,射程就会越长。 投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。 3.离子注入剂量 注入剂量是单位面积wafer表面注入的离子数,可通过

下面的公式计算得出 ,式中,Q 是剂量;I 是束流, 单位是安培;t 是注入时间,单位是秒;e 是电子电荷,1.6×10-19C ;n 是电荷数量;A 是注入面积,单位是 。 4.离子注入设备 离子注入机体积庞大,结构非常复杂。根据它所能提供 的离子束流大小和能量可分为高电流和中电流离子注入机以 及高能量、中能量和低能量离子注入机。 离子注入机的主要部件有:离子源、质量分析器、加速器、聚焦器、扫描系统以及工艺室等。 (1)离子源 离子源的任务是提供所需的杂质离子。在合适的气压 下,使含有杂质的气体受到电子碰撞而电离,最常用的杂质 源有 和 等, (2)离子束吸取电极 吸取电极将离子源产生的离子收集起来形成离子束。电 极由抑制电极和接地电极构成,电极上加了很高的电压,离 子受到弧光反应室侧壁的排斥作用和抑制电极的吸引作用,被分离出来形成离子束向吸取电极运动。 3)质量分析器 反应气体中可能会夹杂少量其它气体,这样,从离子源 吸取的离子中除了需要杂质离子外,还会有其它离子。因 此,需对从离子源出来的离子进行筛选,质量分析器就是来 enA It Q 62H B 3PH

离子注入技术工艺-中文

离子注入技术工艺 中国科学院半导体研究所离子注入组 我们的离子注入机是中国电子科技集团公司第四十八研究所研制的LC–4 型离子注入机,中国科学院半导体研究所后对该注入机的真空系统、离子源、靶室等设施进行了升级改造,使该注入机在研究方面的性能和功能更加强大。 经过二十多年的运行,我们已为全国一百多家科研院所、大学和企业提供了离子注入技术工艺制作,来我们这里做离子注入工艺的不仅有中科院、北大、清华等众多内地著名单位而且还包括台湾和香港的多所大学;在国际上,美国、德国等西方国家的研究部门也多次来我们这里做离子注入,而我们对国外的收费一直是按照基本上与国际接轨的标准。从国内外的回头客情况看,他们对我们离子注入的质量水平感到满意,特别是,德国Paderborn大学的Wolf Sohler 教授2009年专门来我们这里参观,他说:“我们多次来你们这里做注入,经我们德方的实验测试,你们注入的质量很好”。这说明德国人来我们这里花费得到的技术工艺是物有所值的,也说明我们的离子注入技术经受住了国际方面的检验从而达到国际水平。 有关这台离子注入机的技术指标,其能量在15keV–600keV范围内连续可调,束流强度0.02μA–100μA。注入离子的种类可做铅以下所有离子,现做过的离子包括Al+、As+、Ar+、Ag+、Au+、B+、BF 2 +、Br+、Be+、Bi+ 、Ba+ 、C+、Cr+、Ga+、 Cu+、Ge+、Ca+、Co+、Ce+、Dy+、Eu+、Er+ 、Fe+、Gd+、H+、H 2 +、He+、I+、In+、La+、 Li+、Mg+、Mo+、Mn+、N+、N 2+、Ni+、Nb+、Nd+、Ne+、O+、O 2 +、P+、Pr+、Pt+、Pd+、 S+、Si+、Se+、Sb+、Sm+、SiF 2 +、Te+、Ti+、Tb+、Ta+、Tm+、V+、W+、Xe+、Y+、Yb+、Zr+、Zn+、Zr+等超过60种离子。我们可以实现重叠注入、垂直注入、大偏角或双偏角注入以及冷靶(液氮温度)或热靶(500 ℃以下)注入等,注入样品的形状可以是任意尺寸,最小可以是几个平方毫米,最大可达4英寸直径的圆片。 应用该机已在多种半导体器件、表面物理、半导体材料、金属材料、超导材料、生物材料、医学结构材料、地质矿藏材料、粮食种子改性、微生物品种改良等方面开展了研究,其中在很多方面已取得显著效果。 电子邮件:jml@https://www.360docs.net/doc/6816688256.html,(联系注入需通过发电子邮件网上预约,联系人:李建明) 地址:中国科学院半导体研究所,北京市海淀区清华东路甲35号4号实验楼102室 邮编:100083;电话/传真:(010)82304443

半导体工艺(精)

半导体的生产工艺流程 -------------------------------------------------------------------------------- 一、洁净室 一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。 为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵。 为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴(air shower) 的程序,将表面粉尘先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触(在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。) 当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水(DI water, de-ionized water)。一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半(MOS) 晶体管结构之带电载子信道(carrier channel),影响半导体组件的工作特性。去离子水以电阻率(resistivity) 来定义好坏,一般要求至17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气(98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用! 二、晶圆制作 硅晶圆(silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,显然是经过纯炼与结晶的程序。目前晶体化的制程,大多是采「柴可拉斯基」(Czycrasky) 拉晶法(CZ 法)。拉晶时,将特定晶向(orientation) 的晶种(seed),浸入过饱和的纯硅熔汤(Melt) 中,并同时旋转拉出,硅原子便依照晶种晶向,乖乖地一层层成长上去,而得出所谓的晶棒(ingot)。晶棒的阻值如果太低,代表其中导电杂质(impurity dopant) 太多,还需经过FZ悬浮区熔法法(floating-zone) 的再结晶(re-crystallization),将杂质逐出,提高纯度与阻值。

离子注入实验报告

离子注入实验报告 材料科学与工程 1 实验目的:(1)了解离子注入原理,掌握注入完成后的退火仪器原理及操作。 (2)学会在样品上制作欧姆接触,四探针法测量样品退火前后的薄层电阻;用热电笔法测量退火前后样品的导电类型,熟悉霍尔 测量的原理和装置。 2 离子注入原理: 离子注入是利用某些杂质原子经离化后形成带电杂质离子,离子经过一定的电场加速,直接轰击靶材料实现掺杂或其他作用。一般的说,离子能量在1-5KeV的称为离子镀;0.1-50KeV称作离子溅射;10-几百KeV称为离子注入。离子注入在半导体掺杂领域有很多优点:注入杂质不受把材料固溶度的限制,杂质的面密度和掺杂深度精确可控),横向扩散小,大面积均匀性好,掺杂纯度高,能够穿透一定的掩蔽膜,在化合物半导体工艺中有特殊意义。同时离子注入还可应用于金属改性和加工,生物研究等领域。 3离子注入设备 离子注入设备通常由离子源、分析器、加速聚焦体系统和靶室等组成。如下图所示: 1.离子源:由产生高密度等离子体的腔体和引出部分(吸极)组成。通常使用的有高频等离子源、电子振荡型等离子源(潘宁源)、双等离子源等、双彭源、转荷型负离子源、溅射型负离子源等。

2.加速器:产生强的电场,将离子源出来的离子加速到所需要的能量。 3.分析器:离子分选器。离子源产生的离子束中往往有几种离子。用分析器可以从这些离子中选择出所需要的。 磁分析器:在离子通道上加磁场,离子在磁场中偏转。磁场一定时离子在磁场中的运动半径由离子的荷质比和能量决定。让选中离子的偏转半径正好可以准直地进入管道。 4.偏转扫描 离子注入机中应该保持高真空。实际上其中不可避免的有残留的气体分子,离子在行进过程中可能和其碰撞并且交换电荷变成中性原子。中性原子的能量、电荷属性和离子不同,注入到靶材料上会引起注入不均匀。 偏转扫描是在离子束进入靶室前给其施加电场,电场使其中的离子偏转进入靶室,中性原子则不被偏转而不进入靶室。从而去掉了中性粒子。 5.X,Y扫描器 离子束束斑很小,一般只有微米量级。给离子束施加磁场或电场,使其在X,Y方向扫描。在靶上均匀扫描。 6.靶室 放置、取出样品。可以有给样品加温的装置。 4 实验内容: 由小组四人合作完成以下内容: (a)A角的任务:完成接收样品;用四探针法测量样品退火前后的薄层电阻;用热电笔法测量退火前后样品的导电类型。记录:样品的注入条件;样品退火前后的薄层电阻;退火前后样品的导电类型;上述活动中的现象。 (b)B角的任务:熟悉退火仪器的原理和操作;操作退火装置,完成样品的退火;归置退火装置。B角应该记录:样品的退火条件;退火过程。 (c)C角的任务:练习在硅片上用铟制作欧姆接触,能够在正式样品上制作出合格的欧姆接触。C角应该记录上述活动的过程。 (d)D角的任务:熟悉霍尔测量的原理和装置;负责操作霍尔测量装置测出样品的数据。D角应该记录:样品的薄层电阻;注入层载流子的面密度。 4.1四探针及冷热笔测量 4.1.1实验样品: P型Si衬底上注P。注入条件:E=20keV 、D=3*1014atom/cm2、束流10mA、R P=253、ΔR P=119 4.1.2四探针法测量原理 四探针法是经常采用的一种测量半导体材料电阻率的方法,原理简单,数据处理简便。优点在于探针与半导体样品之间不必要求制备合金电极,这样给测量

半导体工艺(自己总结)

只是想多了解下工艺,因为自己不是学这个的,要补课啊 .... 是不是可以这么理解: 1.PAD oxide :SiO2在LOCOS 和STI 形成时都被用来当作nitride 的衬垫层,如果没有这个SiO2衬垫层作为缓冲之用,LPCVD nitride 的高张力会导致wafer 产生裂缝甚至破裂,同时也作为NITRIDE ETCH 时的STOP LA YER 2.SAC oxide :Sacrificial Oxide 在gate oxidation 之前移除wafer 表面的损伤和缺陷,有助于产生一个零缺陷的wafer 表面以生成高品质的gate oxide;经过HDP 后Pad Oxide 结构已经被破坏了,可能无法阻挡后面Implant 的离子。所以生长一层Sac Oxide ,作为在后面Implant 时对Device 的保护。 3.BPSG 含硼及磷的硅化物 BPSG 乃介于Poly 之上、Metal 之下,可做为上下两层绝缘之用,加硼、磷主要目的在使回流后的Step 较平缓,以防止Metal line 溅镀上去后,造成断线 4.ONO (OXIDE NITRIDE OXIDE ) 氧化层-氮化层-氧化层 半导体组件,常以ONO 三层结构做为介电质(类似电容器),以储存电荷,使得资料得以在此存取。在此氧化层 - 氮化层 – 氧化层三层结构,其中氧化层与基晶的结合较氮化层好,而氮化层居中,则可阻挡缺陷(如pinhole )的延展,故此三层结构可互补所缺. 5.space Oxide RIE Etch:猜想应当是氧化物隔离的反应离子刻蚀(RIE-Reactive Ion Etch ) 反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F 基和CL 基的气体)在高频电场(频率通常为13.56MHz )作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma )。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical )和自由电子(e )。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。 6:IMD Inter-Metal-Dielectric 金属绝缘层...(汗...........) 7:SOG spin-on glass 旋涂玻璃用于平坦化.SOD 是 SPIN-ON DOPANTS?自旋转掺杂剂?,具体作用不甚清楚了.... 至于N-DEPL 我怀疑是否是N 耗尽区的意思,但是不是很清楚CMOS 工艺中是如何实现这样的一个层次的,它是环绕DIFF 区域的一个可选层.莫非是反型的隔离? 外延: 外延生长之所以重要,在于外延层中的杂质浓度可以方便的通过控制反应气流中的杂质含量加以调节,而不依赖于衬底中的杂质种类与掺杂水平。 外延技术可用于解决高频功率器件的击穿电压与集电极串联电阻对集电极电阻率持相反要求的矛盾;掺杂较少的外延层保证了较高的击穿电压,高掺杂的衬底则可以大大降低集电极的串联电阻 CVD 需要高温,反应过程为()+气体4SiCl ()气体22H ()()↑+?气体固体HCl Si 4①,同时存在一竞争反应()()()气体固体气体242SiCl Si SiCl ?+,②因此若四氯化硅的浓度太高,则硅

半导体工艺学

请回答以下问题: 题目:(1)请回答以下几个概念:【20分】 (1)场区、(2)有源区、(3)键合、(4)负载效应、(5)钝化。 题目:(2)集成电路工艺主要分为哪几大部分,每一部分中包括哪些主要工艺、并简述各工艺的主要作用。 【20分】 题目:(3)在离子注入工艺中,有一道工艺是”沟道器件轻掺杂源(漏)区”,其目的是减小电场峰植和热电子效应!请详尽解释其原理!【15分】 题目:(4)在电极形成或布线工艺中,用到金属Ti,请详尽说明金属Ti的特性、金属Ti 的相关工艺、以及金属Ti在电路中的作用!【15分】 题目:(5)在光刻胶工艺中要进行,软烘,曝光后烘焙和坚膜烘焙,请详细说明这三步工艺的目的和条件。【15分】 题目:(6)请对Si(以一种含有Cl元素的刻蚀气体为例)和SiO2(以一种含有F元素的刻蚀气体为例)刻蚀工艺进行描述,并给出主要的化学反应方程式。【15分】 参考答案: 题目一答案: (1) 场区是指一种很厚的氧化层,位于芯片上不做晶体管、电极接触的区域,可以起到隔 离晶体管的作用 (2) 有源区是指硅片上做有源器件的区域,有源区主要针对MOS而言,只要源极,漏极以 及导电沟道所覆盖的区域称为有源区. (3) 键合是指将芯片表面的铝压点和引线框架上或基座上的电极内端(有时称为柱)进 行电连接最常用的方法,常用的键合方法有热压键合、超声键合、热超声键合. (4) 刻蚀过程中去除硅片表面材料的速度称为刻蚀速率,它通常正比于刻蚀剂的浓度, 要刻蚀硅片表面的大面积区域,则会耗尽刻蚀剂浓度使刻蚀速率慢下来;如果刻蚀的面积比较小,则刻蚀就会快些.这称为负载效应. (5) 钝化是使金属表面转化为不易被氧化的状态,而延缓金属的腐蚀速度的方法.热生长SiO2的一个主要优点是可以通过束缚硅的悬挂键,从而降低它的表面态密度,这种效果称为表面钝化,它能防止电性能的退化并减少由潮湿、离子或其它外部沾污物引起的漏电流通路. 题目二答案: 答:集成电路制造就是在硅片上执行一系列复杂的化学或者物理操作。简而言之,这些操作可分为六大基本类:晶片制造、薄膜制作、刻印、刻蚀、掺杂、封装。

《芯片制造-半导体工艺制程实用教程》学习笔记

《芯片制造-半导体工艺制程实用教程》 学习笔记 整理:Anndi 来源:电子胶水学习指南(https://www.360docs.net/doc/6816688256.html,) 本人主要从事IC封装化学材料(电子胶水)工作,为更好的理解IC封装产业的动态和技术,自学了《芯片制造-半导体工艺制程实用教程》,貌似一本不错的教材,在此总结出一些个人的学习笔记和大家分享。此笔记原发在本人的“电子胶水学习指南”博客中,有兴趣的朋友可以前去查看一起探讨之! 前言及序言(点击链接查看之)-----------------------------------1第1章半导体工业-----------------------------------------2—3第2章半导体材料和工艺化学品---------------------------4—5第3章晶圆制备-----------------------------------------------6第4章芯片制造概述---------------------------------------7—8第5章污染控制-------------------------------------------9—10第6章工艺良品率----------------------------------------11—12第7章氧化-----------------------------------------------13—14第8章基本光刻工艺流程—从表面准备到曝光------------15—17第9章基本光刻工艺流程—从曝光到最终检验------------18—20第10章高级光刻工艺-------------------------------------21—23第11章掺杂----------------------------------------------24—26第12章淀积----------------------------------------------27—29第13章金属淀积-----------------------------------------30—31第14章工艺和器件评估----------------------------------32—33第15章晶圆加工中的商务因素---------------------------34—35第16章半导体器件和集成电路的形成-------------------------36第17章集成电路的类型----------------------------------37—38第18章封装----------------------------------------------39—41 个人感慨----------------------------------------------------------41

相关文档
最新文档