基础代数1

基础代数

第零章 集合与整数 基 础 代 数
Basic Algebra
主讲: 张小向 集合, 基数, 序数 1874年, 康托尔在 《克雷尔数学杂志》 上发表了关于 无穷集合论 的第一篇革命性文章. 人们把康托尔于 从1874年到1884年, 1873年12月7日 康托尔的一系列关于 给戴德金的信中最早提出集 集合的文章, 奠定了 合论思想的那一天定为 集合论诞生日. 集合论的基础.
https://www.360docs.net/doc/6816787539.html, z990303@https://www.360docs.net/doc/6816787539.html,
Georg Cantor[德] 1845.3-1918.1
第零章 集合与整数
1. 集合, 基数, 序数
第零章 集合与整数
1. 集合, 基数, 序数
定义 [Cantor] A set S is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole. The objects are called the elements or members of S. 1902年, 英国哲学家罗素(Russell): 罗素悖论 S = {A | A ? A}, S ? S ? 1919年, 理发师悖论
基数的比较 |A| ≤ |B|: ?单射 f: A → B |A| = |B|: ?双射 f: A → B 定理 [Schr?der-Bernstein] |A| ≤ |B|, |A| ≤ |B| ? |A| = |B|. A f → B g → A
第零章 集合与整数
1. 集合, 基数, 序数
第零章 集合与整数
1. 集合, 基数, 序数
基数的比较 |A| ≤ |B|: ?单射 f: A → B |A| = |B|: ?双射 f: A → B 定理 [Schr?der-Bernstein] |A| ≤ |B|, |A| ≤ |B| ? |A| = |B|. Proof. A
A1
基数的比较 |A| ≤ |B|: ?单射 f: A → B |A| = |B|: ?双射 f: A → B |A| < |B|: ?单射 A → B, ?双射 A → B 2A = {S | S ? A}——A的幂集合 定理 [Cantor] |A| < |2A|. 证明. 假设 f: A → 2A 为满射. A1 = {a ∈ A | a ? f(a)} ∈ 2A. ?a1 ∈ A s.t. f(a1) = A1. a1 ∈ A1 ? a ? f(a1) = A1. a1 ? A1 = f(a1) ? a ∈ A1.
g f
B
f(A1)
? = {A0 ? A | A ? gB ? A0, gfA0 ? A0} A1 = ∩?.
1

关系代数运算练习答案

关系代数表达式: 由关系代数运算经有限次复合而成的式子称为关系代数表达式。 这种表达式的运算结果仍然是一个关系。可以用关系代数表达式表示对数据库的查询和更新操作。 关系代数(演算)要求掌握各种语句的应用 1:设教学数据库中有3个关系: 学生关系S(SNO,SNAME,AGE,SEX) 学习关系SC(SNO,CNO,GRADE) 课程关系C(CNO,CNAME,TEACHER) 下面用关系代数表达式表达每个查询语句。 (1) 检索学习课程号为C2的学生学号与成绩。 πSNO,GRADE(σCNO='C2'(SC)) (2) 检索学习课程号为C2的学生学号与姓名 πSNO,SNAME(σCNO='C2'(S SC)) 由于这个查询涉及到两个关系S和SC,因此先对这两个关系进行自然连接,同一位学生的有关的信息,然后再执行选择投影操作。

此查询亦可等价地写成: πSNO,SNAME(S)(πSNO(σCNO='C2'(SC))) 这个表达式中自然连接的右分量为"学了C2课的学生学号的集合"。这个表达式比前一个表达式优化,执行起来要省时间,省空间。 (3)检索选修课程名为MATHS的学生学号与姓名。 πSNO,SANME(σCNAME='MATHS'(S SC C)) (4)检索选修课程号为C2或C4的学生学号。 πSNO(σCNO='C2'∨CNO='C4'(SC)) (5)检索选修课程号为C2和C4的学生学号。 π1(σ1=4∧2='C2'∧5='C4'(SC×SC)) 这里(SC×SC)表示关系SC自身相乘的乘积操作,其中数字1,2,4,5都为它的结果关系中的属性序号。 比较这一题与上一题的差别。 (6)检索不学C2课的学生姓名与年龄。 πSNAME,AGE(S)-πSNAME,AGE(σCNO='C2'(S SC))

现代代数基础复习资料

1 设a ,b 为群G 的元素,设a 为5阶元,且33 a b ba =,证明ab ba =。 证明:因为33a b ba =,所以133b a b a -=,所以1326()b a b a -=,即166 b a b a -=。 又a 为5阶元,所以5a e =,所以1 b ab a -=,即ab ba =。 2 证明对群G 的非空子集H ,若对所有,x y H ∈,1 xy -也属于H ,证明H 是一个子群。 证明:因对,x y H ∈,1xy H -∈,所以11 ,,x H e xx H x xe H --?∈=∈=∈, 1 111 ,,()y H y e y H x y x y H ----?∈=∈=∈,所以H 是G 的子群。 3 证明在任意群G 中,对其任意两个元素a ,b ,ab 与ba 的阶相等。 证明:因为()1 ab a ba a -=,故ab 与ba 共轭。 设ab n =,若()m ba e =,则1[()]m a ba a e -=,即()|m ab e n m =? 所以||||ab ba n ==。 4 置换群4S 中有多少个2阶元? 解:由置换群中每个元素都可表示为不相交的轮换之积,而k 轮换的阶为k 。两不相交轮换的阶为k 轮换的最小公倍数。故二阶元有9个,为: (1 2),(1 3),(1 4), (2 3), (2 4),(3 4),(1 2)(3 4),(1 3)(2 4),(1 4)(2 3)。 5证明群G 的自同构的集合以映射的合成为乘法构成一个群。 证明::AutG G =群的所有自同构的集合,恒等映射,id AutG AutG ∈≠?故 由G 上的所有双射显然构成一个群,关于映射的乘法,下证AutG 为其子群 (1)AutG 对于映射的合成封闭: ,(),()A u t G a b G a b G στττ?∈?∈?∈,, 故()(())(()())(())(())()()ab ab a b a b a b στστσττστστστστ==== 故AutG στ∈。 (2)下证1 AutG AutG σσ -?∈?∈ '''''1'1,,,,(),()(),()AutG a b G a b G a a b b a a b b σσσσσ--∈?∈?∈====使即 则1 1 ' ' 1 '' 1 '' '' 1 1 ()(()())(())()()()ab a b a b a b a b a b σσσσσσσσσσ------===== 所以1AutG σ -∈。 故AutG 关于映射合成的乘法构成一个群。 6 设G 是一个群。证明由()n x x φ=定义的映射:G G φ→是G 到自身的同态。

关系代数习题3.26

1. 下面的选项不是关系数据库基本特征的是()。 A.不同的列应有不同的数据类型 B.不同的列应有不同的列名 C.与行的次序无关 D.与列的次序无关 2. 一个关系只有一个()。 A.候选码 B. 外码 C. 超码 D. 主码 3. 关系模型中,一个码是()。 A.可以由多个任意属性组成 B.至多由一个属性组成 C.可有多个或者一个其值能够唯一表示该关系模式中任何元组的属性组成 D.以上都不是 4. 现有如下关系: 患者(患者编号,患者姓名,性别,出生日起,所在单位) 医疗(患者编号,患者姓名,医生编号,医生姓名,诊断日期,诊断结果) 其中,医疗关系中的外码是()。 A. 患者编号 B. 患者姓名 C. 患者编号和患者姓名 D. 医生编号和患者编号 5. 现有一个关系:借阅(书号,书名,库存数,读者号,借期,还期),假如同一本书允许一个读者多次借阅,但不能同时对一种书借多本,则该关系模式的外码是()。 A. 书号 B. 读者号 C. 书号+读者号 D. 书号+读者号+借期 6. 关系模型中实现实体间N:M 联系是通过增加一个()。

A.关系实现 B. 属性实现 C. 关系或一个属性实现 D. 关系和一个属性实现 7. 关系代数运算是以()为基础的运算。 A. 关系运算 B. 谓词演算 C. 集合运算 D. 代数运算 8. 关系数据库管理系统应能实现的专门关系运算包括()。 A. 排序、索引、统计 B. 选择、投影、连接 C. 关联、更新、排序 D. 显示、打印、制表 9. 五种基本关系代数运算是()。 A.∪-× σ π B.∪-σ π C.∪∩× σ π D.∪∩σ π 11. 关系数据库中的投影操作是指从关系中()。 A.抽出特定记录 B. 抽出特定字段 C.建立相应的影像 D. 建立相应的图形 12. 从一个数据库文件中取出满足某个条件的所有记录形成一个新的数据库文件的操作是()操作。 A.投影 B. 联接 C. 选择 D. 复制 13. 关系代数中的联接操作是由()操作组合而成。 A.选择和投影 B. 选择和笛卡尔积 C.投影、选择、笛卡尔积 D. 投影和笛卡尔积 14. 自然联接是构成新关系的有效方法。一般情况下,当对关系R和S是用自然联接时,要求R和S含有一个或者多个共有的()。 A.记录 B. 行 C. 属性 D. 元组 15. 假设有关系R和S,在下列的关系运算中,()运算不要求:“R 和S具有相同的元数,且它们的对应属性的数据类型也相同” 。

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数与线性代数都称为经典代数(Classical algebra),它的研究对象主要就是代数方程与线性方程组)。近世代数(modern algebra)又称为抽象代数(abstract algebra),它的研究对象就是代数系,所谓代数系,就是由一个集合与定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论与域论等几个方面的理论,其中群论就是基础。下面,我们首先简要回顾一下集合、映射与整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算与整数 3.1.1 集合 集合就是指一些对象的总体,这些对象称为集合的元或元素。“元素a 就是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不就是集合A 的元”。 设有两个集合A 与B,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 就是B 的子集,记作B A ?。若B A ?且A B ?,即A 与B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 就是B 的真子集,或称B 真包含A,记作B A ?。 不含任何元素的集合叫空集,空集就是任何一个集合的子集。 集合的表示方法通常有两种:一种就是直接列出所有的元素,另一种就是规定元素所具有的性质。例如: {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{}Λ,3,2,1,0±±±=Z ; 非零整数集合{}{}Λ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{}Λ,3,2,1=+Z ; 有理数集合Q,实数集合R,复数集合C 等。 一个集合A 的元素个数用A 表示。当A 中有有限个元素时,称为有限集,否则称为无限集。用∞=A 表示A 就是无限集,∞

§8.5 逻辑代数公式化简习题2 - 2017-9-10

第8章 §8.5 逻辑代数公式化简习题2 1 第8章 §8.5 逻辑代数公式化简习题2 (一)考核内容 1、第8章掌握逻辑运算和逻辑门;掌握复合逻辑运算和复合逻辑门;掌握逻辑函数的表示方法;掌握逻辑代数的基本定理和常用公式;掌握逻辑函数的化简方法。 8.6 逻辑函数的化简 8.6. 1 化简的意义 1、所谓化简就是使逻辑函数中所包含的乘积项最少,而且每个乘积项所包含的变量因子最少,从而得到逻辑函数的最简与–或逻辑表达式。 逻辑函数化简通常有以下两种方法: (1)公式化简法 又称代数法,利用逻辑代数公式进行化简。它可以化简任意逻辑函数,但取决于经验、技巧、洞察力和对公式的熟练程度。 (2)卡诺图法 又称图解法。卡诺图化简比较直观、方便,但对于5变量以上的逻辑函数就失去直观性。 2、逻辑函数的最简形式 同一逻辑关系的逻辑函数不是唯一的,它可以有几种不同表达式,异或、与或、与或非—非、与非—与非、或与非、与或非、或非—或非。 一个逻辑函数的表达式可以有与或表达式、或与表达式、与非-与非表达式、或非-或非表达式、与或非表达式5种表示形式。 (1)与或表达式:AC B A Y += (2)或与表达式:Y ))((C A B A ++= (3)与非-与非表达式:Y AC B ?= (4)或非-或非表达式:Y C A B A +++= (5)与或非表达式:Y C A B A += 3、公式化简法 (1)、并项法:利用公式A B A AB =+,把两个乘积项合并起来,消去一个变量。 例题1: B B A A B =+= (2)、吸收法:利用公式 A A B A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++= B A E B D A B A +=+++= (3)、消去法:利用公式B A B A A +=+,消去乘积项中多余的因子。 例题3:AC AB Y += C B A A C B A ++=++= (4)、配项消项法:利用公式C A AB BC C A AB +=++,在函数与或表达式中加上多余的项— —冗余项,以消去更多的乘积项,从而获得最简与或式。 例题4: B A C AB ABC Y ++=

关系代数讲解与例题

关系代数 关系代数是关系数据库系统查询语言的理论基础。 关系代数的9种操作: 并、交、差、乘、选择、投影、联接、除、自然联接运算。 五个基本操作: 并(∪) 差(-) 笛卡尔积(×)投影(σ) 选择(π) 四个组合操作: 交(∩) 联接(等值联接)自然联接(RS) 除法(÷) 关系代数表达式: 由关系代数运算经有限次复合而成的式子称为关系代数表达式。这种表达式的运算结果仍然是一个关系。可以用关系代数表达式表示对数据库的查询和更新操作。 关系代数(演算)要求掌握各种语句的应用,多做书中的例题可以帮助自己熟能生巧。 关系代数表达式举例 用关系代数表示数据查询的典型例子 [例]设教学数据库中有3个关系: 学生关系S(SNO,SNAME,AGE,SEX) 学习关系SC(SNO,CNO,GRADE) 课程关系C(CNO,CNAME,TEACHER) 下面用关系代数表达式表达每个查询语句。 (1) 检索学习课程号为C2的学生学号与成绩。 πSNO,GRADE(σCNO='C2'(SC)) (2) 检索学习课程号为C2的学生学号与姓名 πSNO,SNAME(σCNO='C2'(SSC)) 由于这个查询涉及到两个关系S和SC,因此先对这两个关系进行自然连接,同一位学生的有关的信息,然后再执行选择投影操作。 此查询亦可等价地写成: πSNO,SNAME(S)(πSNO(σCNO='C2'(SC))) 这个表达式中自然连接的右分量为"学了C2课的学生学号的集合"。这个表达式比前一个表达式优化,执行起来要省时间,省空间。 (3)检索选修课程名为MATHS的学生学号与姓名。 πSNO,SANME(σCNAME='MATHS'(SSCC)) (4)检索选修课程号为C2或C4的学生学号。 πSNO(σCNO='C2'∨CNO='C4'(SC)) (5)检索至少选修课程号为C2或C4的学生学号。 π1(σ1=4∧2='C2'∧5='C4'(SC×SC)) 这里(SC×SC)表示关系SC自身相乘的乘积操作,其中数字1,2,4,5都为它的结果

逻辑代数基础习题

《逻辑代数基础》练习题及答案 [1.1]将下列二进制数转为等值的十六进制数的等值的十进制数。 (1)(10010111)2 ;(2)(1101101)2 ;(3)(0.01011111)2 ;(4)(11.001)2 。 [解] (1)(10010111)2 = (97)16 = (151)10,(2)(11011101)2 = (6D)16 = (109)10(3)(0.01011111)2 = (0.5F)16 = (0.37109375)10,(4)(11.001)2 = (3.2)16 = (3.125)10 [1.2]将下列十六进制数化为等值的二进制数和等值的十进制数。 (1)(8C)16 ;(2)(3D.BE)16;(3)(8F.FF)16 ;(4)(10.00)16 [解] (1)(8C)16 = (10001100)2 = (140)10 (2)(3D·BE)16 = (111101.1011111)2 = (61.7421875)10 (3)(8F·FF)16 = (10001111.11111111)2 = (143.99609375)10 (4)(10.00)16 = (10000.00000000)2 = (16.00000000)10 [1.3]将下列十进制数转换成等效的二进制数和等效的十进制数。要求二进制数保留小数点以后4位有效数字。 (1)(17)10 ;(2)(127 )10 ;(3)(0.39)10 ;(4)(25.7)10 [解] (1)(17)10 =(10001)2 =(11)16 ;(2)(127)10 = (1111111)2 = (7F)16 (3)(0.39)10 = (0.0110)2 = (0.6)16;(4)(25.7)10 = (11001.1011)2 = (19.B)16 [1.4]写出下列二进制数的原码和补码。 (1)(+1011)2 ;(2)(+00110)2 ;(3)(-1101)2 ;(4)(-00101)2 。 [解] (1)(+1011)2的原码和补码都是01011(最高位的0是符号位)。 (2)(+00110)2的原码和补码都是000110(最高位的0是符号位)。 (3)(-1101)2的原码是11101(最高位的1是符号位),补码是10011。 (4)(-00101)2的原码是100101(最高位的1是符号位),补码是111011。 [1.5]试总结并说出 (1)从真值表写逻辑函数式的方法;(2)从函数式列真值表的方法; (3)从逻辑图写逻辑函数式的方法;(4)从逻辑函数式画逻辑图的方法。 [解] (1)首先找出真值表中所有使函数值等于1的那些输入变量组合。然后写出每一组变量组合对应的一个乘积项,取值为1的在乘积项中写为原变量,取值为0的在乘积项中写为反变量。最后,将这些乘积项相加,就得到所求的逻辑函数式。 (2)将输入变量取值的所有状态组合逐一代入逻辑函数式,求出相应的函数值。然后把输入变量取值与函数值对应地列成表,就得到了函数的真值表。 (3)将逻辑图中每个逻辑图形符号所代表逻辑运算式按信号传输方向逐级写出,即可得到所求的逻辑函数式。 (4)用逻辑图形符号代替函数式中的所有逻辑运算符号,就可得到由逻辑图形符号连接成的逻辑图了。 [1.6]已知逻辑函数的真值表如表P1.6(a)、(b),试写出对应的逻辑函数式。 表P1.6(a)表P1.6(b)

初中代数基础知识

初中代数基础知识(初二)测试 一、 选择题(本题30分,每小题3分): 1.下列各式是代数式的是( ) (A )S =πr (B )5>3 (C )3x -2 (D )a <b +c 2.一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数可以表示为( ) (A )abc (B )100a +10b +c (C )100abc (D )100c +10b +a 3.下列二次根式中,与3是同类二次根式的有( ) (A)18 (B)30 (C)03.0 (D)300 4.一个有理数与它的相反数的乘积( ) A 、一定是正数 B 、一定是负数 C 、一定不大于0 D 、一定不小于0 5.计算18(-)8÷2的结果是( ) (A)21 (B)2 (C)22 (D)42 6.+-=-+-)()(c a d c b a ( ) A. b d - B.d b -- C.d b - D. d b + 7.下列实数2π,722 ,0.1414,39 ,21 中,无理数的个数是( ) (A)2个 (B)3个 (C)4个 (D)5个 8.已知方程组5354x y ax y +=??+=?和25 51x y x by -=??+=?有相同的解,则a ,b 的值为 ( ) A.12a b =??=? B.4 6a b =-??=-? C.6 2a b =-??=? D.14 2 a b =??=? 9. 若不等式组???>-+>-0504a x x a 无解,那么a 的取值范围是( ) (A) a >1; (B )a <1; (C )a =1; (D) a ≤1. 10.已知方程组5354x y ax y +=??+=?和25 51 x y x by -=??+=?有相同的解,则a ,b 的值为 ( ) A.12a b =??=? B.46a b =-??=-? C.62a b =-??=? D. 14 2 a b =??=? 二、 填空题(本题24分,每小题3分) 11.一个数等于它倒数的4倍,这个数是__________. 12.已知:| x | = 3,| y | = 2,且 xy <0,那么 x + y =__________.

关系代数

第二章关系代数 教学目的: 本章实际上研究的是关系的运算。 学习目的: 关系运算是设计关系数据库操作语言的基础,因为其中的每一个询问往往表示成一个关系运算表达式,在我们的课程中,数据及联系都是用关系表示的,所以实现数据间的联系也可以用关系运算来完成。 通过本章学习,应重点掌握: (1)关系数据库的基本概念; (2)如何用关系代数表达式来表达实际查询问题; (3)如何用元组演算表达式来表达实际查询问题; (4)如何用域演算表达式来表达实际查询问题; (5)如何将关系代数表达式转换为元组演算表达式或转换为域演算表达式。 了解和掌握关系数据结构中涉及到的域、笛卡儿积、关系模式等有关内容的含义; 掌握关系的实体完整性和参照完整性的定义; 掌握关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。 教学重点: 关系的实体完整性和参照完整性的定义; 关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。 教学难点:关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。 教学方法:实例法 教学内容:如下: 关系模型 关系模型是一种简单的二维表格结构,每个二维表称做一个关系,一个二维表的表头,即所有列的标题称为一个元组,每一列数据称为一个属性,列标题称估属性名。同一个关系中不允许出现重复元组和相同属性名的属性。 1.关系模型组成 关系模型由关系数据结构、关系操作集合和关系完整性约束三部分组成。关系操作分为两大部分如图所示。

2.关系操作的特点 关系操作的特点是操作对象和操作结果都是集合。而非关系数据模型的数据操作方式则为一次一个记录的方式。 关系数据语言分为三类: (1)关系代数语言:如ISBL ; (2)关系演算语言:分为元组关系演算语言(如Alpha ,Quel)、域关系演算语言(如QBE); (3)具有关系代数和关系演算双重特点的语言:如SQL 。 3.关系数据结构及其形式化定义 (1)域 定义 域是一组具有相同数据类型的值的集合。 (2)笛卡尔积 定义 设D 1,D 2,D 3,…,D n ,为任意集合,定义D l ,D 2,D 3,…,D n 的笛卡尔积为 D 1×D 2×D 3×…×D n ={(d1,d2,d3,…dn)[di ∈Di ,i =1,2,3…,n] 其中每一个元素(dl ,d2,d3,…,dn ,)叫做一个n 元组(n 一tuple)或简称为元组(Tuple),每一个值di 叫做一个分量(Component),若Di(i =l ,2,…n)为有限集,其基数(Cardinal number)为mi(i=l ,2,3,…,n), 则D 1×D 2×D 3×…×D n 的基数M 为 M = ∏=n i 1 mi

逻辑代数入门基础

第2章逻辑代数基础 2.1 概述 一、算术运算和逻辑运算 在数字电路中,二进制数码不仅可以表示数值的大小,而且可以表示事物的状态,当两个二进制数码表示两个数值大小时,它们之间可进行数值运算,即算术运算。 当两个二进制数码表示不同逻辑状态时,它们之间的因果关系可进行逻辑运算。算术运算与逻辑运算有本质的差别,下面重点介绍逻辑运算的各种规则。 二、几个基本概念 1、逻辑状态表示法 一种状态高电位有真是美生 1 0 另一种状态低电位无假非丑死0 1 2、两种逻辑体制 1 高电位低电位 0 低电位高电位 正逻辑负逻辑 3、高低电平的规定 正逻辑负逻辑 2.2 逻辑代数中的三种基本运算 1、与逻辑(与运算)(逻辑乘) 与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足时,事件(Y)才能发生。表达式为: Y=ABC 开关A,B串联控制灯泡Y

2、或逻辑(或运算) 或逻辑的定义:当决定事件(Y)发生的各种条件(A,B,C,…)中,只要有一个或多个条件具备,事件(Y)就发生。表达式为: Y=A+B+C+… 开关A,B并联控制灯泡Y A、B都断开,灯不亮。A断开、B接通,灯亮。 A接通、B断开,灯亮。A、B都接通,灯亮。

两个开关只要有一个接通,灯就会亮。逻辑表达式为: Y=A+B 功能表 真 值 表 非逻辑指的是逻辑的否定。当决定事件(Y )发生的条件(A )满足时,事件不发生;条件不满足,事件反而发生。表达式为: 开关A 控制灯泡Y A 断开,灯亮。 A 接通,灯灭。 功 能 表 真 值 表 Y =A +B Y=A

4(1)与非运算:逻辑表达式为: ( ((4)异或运算:逻辑表达式为: 2.3 逻辑代数的基本公式和常用公式 一. 定理 二 .常用恒等式 2.4 逻辑运算的基本定理 1、代入定理:任何一个含有变量A 的等式,如果将所有出现A 的位置都用同一个逻辑函数代替,则等式仍然成立。这个规则称为代入定理。 例如,已知等式 ,用函数Y =AC 代替等式中

逻辑代数的基本公式和常用公式

逻辑代数的基本公式和常用公式 一.基本定义与运算 代数是以字母代替数,称因变量为自变量的函数,函数有定义域和值域。——这些都是大家耳熟能详的概念。如 或; 当自变量的取值(定义域)只有0和1(非0即1)函数的取值也只有0和1(非0即1)两个数——这种代数就是逻辑代数,这种变量就是逻辑变量,这种函数就是逻辑函数。 逻辑代数,亦称布尔代数,是英国数学家乔治布尔(George Boole)于1849年创立的。在当时,这种代数纯粹是一种数学游戏,自然没有物理意义,也没有现实意义。在其诞生100多年后才发现其应用和价值。其规定: 1.所有可能出现的数只有0和1两个。 2.基本运算只有“与”、“或”、“非”三种。 与运算(逻辑与、逻辑乘)定义为(为与运算符,后用代替) 00=0 01=0 10=0 11=1 或 00=0 01=0 10=0 11=1 或运算(逻辑或、逻辑加)定义为(为或运算符,后用+代替) 00=0 01=1 10=1 11=1 或 0+0=0 0+1=1 1+0=1 1+1=1 非运算(取反)定义为:

至此布尔代数宣告诞生。 二、基本公式 如果用字母来代替数(字母的取值非0即1),根据布尔定义的三种基本运算,我们马上可推出下列基本公式: A A=A A+A=A A0=0 A+0=A A1=A A+1=1 =+= 上述公式的证明可用穷举法。如果对字母变量所有可能的取值,等式两边始终相等,该公 式即告成立。现以=+为例进行证明。对A、B两个逻辑变量,其所有可能的取值为00、01、10、11四种(不可能有第五种情况)列表如下:

由此可知: =+ 成立。 用上述方法读者很容易证明: 三、常用公式 1. 左边==右边 2. 左边==右边 例题:将下列函数化为最简与或表达式。 (公式1:) = (公式2:) ()

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算和整数 3.1.1 集合 集合是指一些对象的总体,这些对象称为集合的元或元素。“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不是集合A 的元”。 设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 是B 的子集,记作B A ?。若B A ?且A B ?,即A 和B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ?。 不含任何元素的集合叫空集,空集是任何一个集合的子集。 集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。例如: {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ; 非零整数集合{}{} ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ; 有理数集合Q ,实数集合R ,复数集合C 等。 一个集合A 的元素个数用A 表示。当A 中有有限个元素时,称为有限集,否则称为无限集。用∞=A 表示A 是无限集,∞

第三章 逻辑代数基础 作业题(参考答案)

第三章逻辑代数基础 (Basis of Logic Algebra) 1.知识要点 逻辑代数(Logic Algebra)的公理、定理及其在逻辑代数化简时的作用;逻辑函数的表达形式及相互转换;最小项(Minterm)和最大项(Maxterm)的基本概念和性质;利用卡诺图(Karnaugh Maps)化简逻辑函数的方法。 重点: 1.逻辑代数的公理(Axioms)、定理(Theorems),正负逻辑(Positive Logic, Negative Logic)的概念与对偶关系(Duality Theorems)、反演关系(Complement Theorems)、香农展开定理,及其在逻辑代数化简时的作用; 2.逻辑函数的表达形式:积之和与和之积标准型、真值表(Truth Table)、卡诺图(Karnaugh Maps)、最小逻辑表达式之间的关系及相互转换; 3.最小项(Minterm)和最大项(Maxterm)的基本概念和性质; 4.利用卡诺图化简逻辑函数的方法。 难点: 利用卡诺图对逻辑函数进行化简与运算的方法 (1)正逻辑(Positive Logic)、负逻辑(Negative Logic)的概念以及两者之间的关系。 数字电路中用电压的高低表示逻辑值1和0,将代数中低电压(一般为参考地0V)附近的信号称为低电平,将代数中高电压(一般为电源电压)附近的信号称为高电平。以高电平表示1,低电平表示0,实现的逻辑关系称为正逻辑(Positive Logic),相反,以高电平表示0,低电平表示1,实现的逻辑关系称为负逻辑(Negative Logic),两者之间的逻辑关系为对偶关系。 (2)逻辑函数的标准表达式 积之和标准形式(又称为标准和、最小项和式):每个与项都是最小项的与或表达式。 和之积标准形式(又称为标准积、最大项积式):每个或项都是最大项的或与表达式。 逻辑函数的表达形式具有多样性,但标准形式是唯一的,它们和真值表之间有严格的对应关系。 由真值表得到标准和的具体方法是:找出真值表中函数值为1的变量取值组合,每一组变量组合对应一个最小项(变量值为1的对应原变量,变量值为0的对应反变量),将这些最小项相或,即得到标准和表达式。 由真值表得到标准积的具体方法是:找出真值表中函数值为0的变量取值组合,每一组变量组合对应一个最大项(变量值为1的对应反变量,变量值为0的对应原变量),将这些最大项相与,即得到标准积表达式。

关系代数运算习题

一、选择题 1关系代数运算可以分为两类:传统的集合运算和专门的关系运算?下面列出的操作符中,属于传统的集合运算是( A ) I .n(交)n .u(并)『x(广义笛卡儿积)w?一(差)v.n(投影)w选择) A)I、n、川和w B)川、w、V和w C)I、川、V和w D)都是 2、关系数据库管理系统能实现的专门关系操作包括(B) A、显来,打印和制表 B、选择,投影和连接 C、关联、更新和排序 D、排序、索引和统计 3、在关系数据基本操作中,从表中选项出满足某种条件的记录的操作称为( A ) A、选择 B、投影 C、连接 D、扫描 4、元组的集合在关系数据库中称为关系,一般来说,表示元组的属性或者最小属性组称为D A、字段 B、索引 C、标记 D、主键 5、在下面3个关系中 学生S (SNO , SNAME , SEX, AGE )课程 C (CNO , CNAME , CREDIT )学生选课SC (SNO, CNO , GRADE ) 要查找选修“数据库”课程的女学生的姓名,将涉及到关系(D) A、S B、C, SC C、S, SC DS, C, SC 6、对于关系数据库来讲,下面(C)说法是错误的。 A、每一列的分量是同一种类型数据,来自同一个域 B、不同列的数据可以出自同一个域 C、行的顺序可以任意交换,但列的顺序不能任意交换 关系中的任意两个元组不能完全相同 7、关系数据库中有3种基本操作,从表中取出满足条件的属性的操作是(A) A、选择 B、投影 C、连接 D、扫描 8、关系数据库在有3种基本操作,将具有共同属性的两个关系中的元组连接到一起,构成新表的操作称为(C ) A、选择 B、投影 C、连接 D、扫描 9 若D1={a1,a2,a3} , D2={b1,b2,b3},贝U D1*D2 集合中共有元组(C)个 A、 6 B、8 C、9 D、12 10下列(C)运算不是专门的关系运算 A、选择 B、投影 C、笛卡尔积 D、连接 11、如下两个关系R1和R2,它们进行运算后得到R3。(D ) R1 R2 B D E 1M I 2N J A__M R3 A 1 X M I D 1 Y M I

逻辑代数基础习题

第二章逻辑代数基础 [题] 选择题 以下表达式中符合逻辑运算法则的是。 ·C=C2+1=10 C.0<1 +1=1 2. 逻辑变量的取值1和0可以表示:。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n个变量时,共有个变量取值组合。 A. n B. 2n C. n2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 5.在输入情况下,“与非”运算的结果是逻辑0。 A.全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 6.在输入情况下,“或非”运算的结果是逻辑0。 A.全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 7.求一个逻辑函数F的对偶式,可将F中的。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8. 在同一逻辑函数式中,下标号相同的最小项和最大项是 关系。 A.互补 B.相等 C.没有关系 9. F=A +BD+CDE+ D= 。 A. A B. A+D C. D D. A+BD 10.A+BC= 。 A .A+ B + C C.(A+B)(A+C) +C 11.逻辑函数F== 。 C. D. [题]判断题(正确打√,错误的打×) 1.逻辑变量的取值,1比0大。() 2.异或函数与同或函数在逻辑上互为反函数。()3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。()

4.因为逻辑表达式A+B+AB=A+B成立,所以AB=0成立。()5.若两个函数具有不同的真值表,则两个逻辑函数必然不相等。()6.若两个函数具有不同的逻辑函数式,则两个逻辑函数必然不相等。()7.逻辑函数两次求反则还原,逻辑函数的对偶式再作对偶变换也还原为它本 身。 ( )8.逻辑函数Y=A + B+ C+C 已是最简与或表达式。()9.对逻辑函数Y=A + B+ C+B 利用代入规则,令A=BC代入,得Y= BC + B+ C+B = C+B 成立。() [题] 填空题 1. 逻辑代数又称为代数。最基本的逻辑关系有、、三种。常用的几种导出的逻辑运算为、、、、。 2. 逻辑函数的常用表示方法有、、。 3. 逻辑代数中与普通代数相似的定律有、、。摩根定律又称为。 4. 逻辑代数的三个重要规则是、、。 5.逻辑函数化简的方法主要有化简法和化简法两种。 6.利用卡诺图化简法化简逻辑函数时,两个相邻项合并,消去一个变量,四个相邻项合并,消去个变量等。一般来说,2n 个相邻一方格合并时,可消去个变量。 7. 和统称为无关项。 8.逻辑函数F= B+ D的反函数 = 。 9.逻辑函数F=A(B+C)·1的对偶函数是。 10.添加项公式AB+ C+BC=AB+ C的对偶式为。 11.逻辑函数F=+A+B+C+D= 。 12.逻辑函数F== 。 13.已知函数的对偶式为+,则它的原函数为。 [题] 将下列各函数式化成最小项表达式。 (1) (2) (3) [题] 利用公式法化简下列逻辑函数。 (1)

计算机二级:关系代数运算

公共基础专题探究——关系代数运算 1 自然连接:一种特殊的等值连接,它要求两个关系中进行比较的分量必须 是相同的属性组,并且在结果中把重复的属性列去掉 自然连接满足下面的条件: ①两关系间有公共域;②通过公共域的等值进行连接, 例1:一般情况下,当对关系R和S进行自然连接时,要求R和S含有一个或者多个共有的(属性) 例2:有三个关系R、S和T如下: 由关系R和S通过运算得到关系T,则所使用的运算为(自然连接)。 例3:有三个关系R、S和T如下: 则关系R和关系S得到关系T的操作是(自然连接) 例4:有三个关系R、S和T如下:

则由关系R和S得到关系T的操作是(自然连接)。 2 差的运算:关系T中的元组是R关系中有而S关系中没有的元组的集合。 例1:有三个关系R、S和T如下: 则由关系R和S得到关系T的操作是(差)。 例2:由关系R和S得到关系T的操作是(差) 3

则由关系R和S得到关系T的操作是(交)。 5 投影:指对于关系内的域指定可引入新的运算。S是在原有关系R的内部 进行的,是由R中原有的那些域的列所组成的关系 例:有两个关系R,S如下: 由关系R通过运算得到关系S,则所使用的运算为(投影)。 【注】本题中S是在原有关系R的内部进行的,是由R中原有的那些域的列所组成的关系。 6 选择:关系S是关系R的一部分,是通过选择之后的结果,从关系中找出 满足给定条件的元组的操作。 例:有两个关系R和S如下: 则由关系R得到关系S的操作是(选择) 7

例:有三个关系R、S和T如下 则由关系R和S得到T的操作是(并) 8 除运算:如果S=T/R,则S称为T除以R的商。在除运算中S的域由T 中那些不出现在R中的域所组成,对于S中的任一有序组,由它与关系R 中每个有序组所构成的有序组均出现在关系T中。 例1:有三个关系R、S和T如下: 则由关系R和S得到关系T的操作是(除)。 例2:有三个关系R、S和T如下: 则由关系R和S得到关系T的操作是(除)。 9 等值连接:

张禾瑞 近世代数基础(复习要点·定理)

定理 同态满射保持运算律(包括结合律、交换律) P21 左右逆元的统一性 P33-34 左右逆元的唯一性 P36 (由此可称为幺元而省掉“左右”) 群的两个定义的等价性 P33 群满足消去律(由逆元的存在性) P38 仅限有限集合的群判定:封闭+结合律+消去律 P39 群的几个分类标准: 1、 有限 / 无限 ——元素个数 2、 交换 / 非交换 ——运算是否满足交换律 3、 循环 / 非循环 ——是否有一元可以遍历其他元 P35 n a : 次n n a aa a ≡ n 是正整数 (由结合律知其有意义) a 的阶: 对群G 中的元a ,若存在最小正整数m ,使得e a =m , 则m 称为 a 的阶;否则我们称a 是无限阶的 P37 群中幂形式的元的运算法则: 若规定:e a =0, n n a a )(1--= 则对任意整数m,n 有:m n m n a a a +=, nm m n a a =)( (由结合律易得) 两种循环群: 整数加群 与 剩余类加群 同构定理: 任何一个群 有一个变换群与之同构 任何一个有限群 有一个置换群与之同构 任何一个无限循环群 与整数加群同构 任何一个有限循环群 与剩余类加群同构 子群的左陪集和右陪集的个数,或都为无限,或相等 P68

子群陪集(左或右算一边)的个数叫做子群的指数 群的阶: 群中元素的个数 对有限群G 而言: G 的子群的阶,与子群陪集的个数(指数),其乘积即为群G 的阶 (即都整除群G 的阶) G 中任意元的阶,都整除群G 的阶(因为任意元可生成循环子群) 子群充要条件: H ab H b a ∈?∈?-1, P63 定理2 子群正规充要条件: N ana N n G a ∈?∈∈?-1, P72 定理2 (首先N 须得是一个子群,然后再有…)

数字逻辑电路复习题逻辑代数基础

逻辑代数基础 一、选择题(多项选择) 1. 以下表达式中符合逻辑运算法则的是 。 ·C =C 2 +1=10 C.0<1 +1=1 2. 逻辑变量的取值1和0可以表示: 。 A.开关的闭合、断开 B.电位的高、低 C.真与假 D.电流的有、无 3. 当逻辑函数有n 个变量时,共有 个变量取值组合? A. n B. 2n C. n 2 D. 2n 4. 逻辑函数的表示方法中具有唯一性的是 。 A .真值表 B.表达式 C.逻辑图 D.卡诺图 =A B +BD+CDE+A D= 。(加一个盈余项AD ) A.D B A + B.D B A )(+ C.))((D B D A ++ D.))((D B D A ++ 6.逻辑函数F=)(B A A ⊕⊕ = 。 C.B A ⊕ D. B A ⊕ 7.求一个逻辑函数F 的对偶式,可将F 中的 。 A .“·”换成“+”,“+”换成“·” B.原变量换成反变量,反变量换成原变量 C.变量不变 D.常数中“0”换成“1”,“1”换成“0” E.常数不变 8.A+BC= 。 A .A + B + C C.(A +B )(A +C ) +C 9.在何种输入情况下,“与非”运算的结果是逻辑0。 D A .全部输入是0 B.任一输入是0 C.仅一输入是0 D.全部输入是1 10.在何种输入情况下,“或非”运算的结果是逻辑0。 A .全部输入是0 B.全部输入是1 C.任一输入为0,其他输入为1 D.任一输入为1 二、判断题(正确打√,错误的打×) 1. 逻辑变量的取值,1比0大。( × )。 2. 异或函数与同或函数在逻辑上互为反函数。( √ )。 3.若两个函数具有相同的真值表,则两个逻辑函数必然相等。( × )。

相关文档
最新文档