功率测量中的时钟——同步源原理解析

功率测量中的时钟——同步源原理解析
功率测量中的时钟——同步源原理解析

功率测量中的时钟——同步源原理解析

摘要:一般而言石英表精确度比机械表较高,瑞士标准是月误差在15秒之内。有些精准的机芯更是可以达到年误差几秒之内,但是即使最名贵的瑞士手表,时间走时都会有误差,这是什么原因呢?

一般而言石英表精确度比机械表较高,瑞士标准是月误差在15秒之内。有些精准的机芯更是可以达到年误差几秒之内,但是即使最名贵的瑞士手表,时间走时都会有误差,这是什么原因呢?

手表中机芯很重要就跟人的心脏一样,在石英钟表中,使用32.768kHz的晶振产生振荡信号,经过15分频得到1Hz信号,每个周期驱动秒钟走一下。晶振频率的精度和稳定性决定了手表走时的精确度。晶振最为重要的一个参数就是PPM,一个PPM等于百万分之一。普通的石英表使用的晶振精度为20个PPM,最名贵的瑞士手表使用的晶振精度可以高达5个PPM。

在功率测量中,同样需要一个时钟,PA6000功率分析仪使用的恒温晶振频率为100MHz,而精度达到1个PPM以下。对比手表中使用的32.768kHz、20个PPM高出几个数量级,这有什么卵用?

一、为什么功率测量需要时钟?

光伏逆变器、变频器、UPS等各类电源的功率转换效率已经高达98%,未来将进入长期而缓慢提升的阶段,0.2%的效率差距足以影响客户的选择。功率测量是计算电源效率的基础,下文为您一一解析高精度同步时钟在功率测量中的作用。

根据交流电的使用场合,对其有效值计算可选用4种常用模式:真有效值、整流平均值、校准平均值、基波有效值,保证电压、电流测量的准确性,然而,电压、电流仅是功率测量基础,不同通道间的同步误差控制是功率测量的关键点。

根据有功功率计算公式:P=U*I*cosφ,在电源在高效率工作时φ非常接近0,在测量50Hz的信号是,假如电压、电流通道存在1ms的同步误差,计算得到cosφ ≈ 0.95,电压、电流通道间1ms的延时引起的有功功率偏差竟然达到5%!

由此可见,保证电压、电流通道同步性是准确测量电功率的核心,而引起通道同步误差的主要因素有:

1)电压、电流通道特征阻抗的差异,电流通道比电压通道增加一个分流器,而分流器的特征阻抗会影响高频信号的传输延时,限制仪器带宽;

2)三相交流电通过不同的功率板卡输入,板卡之间存在同步误差;

3)同步采样时钟存在温漂,影响电流、功率积分数据的精度;

为了保证精确测量,PA6000功率分析仪采用全新的硬件架构,从根源上保证了电压、电流通道间的同步误差达到业界最小的10ns。

电流通道分流器:普通采样电阻具有较大杂散电感,PA6000采用开尔文无感分流器,杂散电感小于5nH,保证最佳的高频性能以及极小的传输延时,保证电压、电流通道间对信号传送延时的一致性;

通道间100MHz的同步时钟:传统的功率分析仪采用1-10MHz的普通晶振作为同步时钟,同步误差达到1us,而且频率稳定性容易受晶振温漂的影响。PA系列采用高稳定度温度补偿的 100M 同步时钟,避免温度变化带来时钟漂移所引入的测量误差。同时保证任一个通道ADC的采样相位同步,误差在10ns以内。

二、同步源又是什么?

对于直流电功率的测量,电压、电流的数值比较稳定,使用电压表和电流表读取的数字相乘即可得到功率。对于交流电,由于电压、电流存在正负交变,其瞬时功率也随之波动。对于电功率的计算一般需要截取整周期的波形,以截取区间的平均功率来标准功率值。

同步源就是截取电压、电流波形时参考的信号,根据同步源的过零点截取电压电流波形。所以要求同步源具有明显的过零点,频率与被测信号相同。

对于逆变器、UPS源,一般选择电压为同步源,而逆变器测试一般选择电流作为同步源。

依靠开尔文无感分流器、100MHz同步时钟、10ns的同步误差,PA6000为您提供高精度功率测试解决方案。

IEEE1588精密时钟同步协议测试技术

1引言 以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。40GE,100GE正式产品也将于2009年推出。 以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP (NetworkTimeProtocol),简单网络时间协议SNTP(SimpleNetwork Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。 2IEEE1588PTP介绍 IEEE1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE1588Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。 IEEE1588将整个网络内的时钟分为两种,即普通时钟(OrdinaryClock,OC)和边界时钟(BoundaryClock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。其中,边界时钟通常用在确定性较差的网络设备(如交换机和路由器)上。从通信关系上又可把时钟分为主时钟和从时钟,理论上任何时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等特性,由最佳主时钟算法(Best Master Clock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持同步。图1所示的是一个典型的主时钟、从时钟关系示意。

硬盘录像机服务器时间同步方法

PC、硬盘录像机时间同步设置 一.原理:利用NTP服务实现。NTP服务器【Network Time Protocol(NTP)】是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS 等等)做同步化,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒,W AN 上几十毫秒),且可介由加密确认的方式来防止恶毒的协议攻击。 二.如何使局域网内的电脑时钟同步 首先要在互联网上寻找一台或几台专门提供时间服务的电脑(以下称为“主时间服务器”),在百度和Google里搜索一下,时间服务器还是很多的,笔者推荐pool.ntp.org这个地址。其次设置局域网时钟服务器。选择单位中能上外网的一台电脑,让它与主时间服务器同步,然后把它设为局域网内部的时间服务器(以下称为时间服务器),以后局域网内所有电脑依它为准进行时间校对。 最后设置客户端。如果客户机为win2000、XP或Linux系统,不需要安装任何软件。如客户机为Win98系统时要根据时间服务器类型的不同而区别对待:如果时间服务器选用SNTP协议进行时钟同步,则Win98机上需安装一个sntp客户端软件,如时间服务器由Windows电脑通过netbios协议提供,则Win98上也不需要安装任何软件。 三.如何设置时间服务器 以下分Win2000、XP分别介绍,而且只介绍sntp服务的架设。 1.Windows2000、XP做时间服务器 第一步:指定主时间服务器。在DOS里输入“net time /setsntp:pool.ntp.org”,这里我们指定pool.ntp.org是主时间服务器。 第二步:与主时间服务器同步。先关闭windows time服务,再开启该服务。在DOS里输入“net stop w32time”、“net start w32time”。 第三步:设置电脑的Windows time服务的启动方式为自动,在“管理工具”的“服务”界面下完成(xp系统默认是自动)。 注意:这台windows主机不能加入任何域,否则无法启动windows time服务。此时,这台windows电脑已经是互联上主时间服务器的客户了,以后每次电脑启动时,都会自动与主时间服务器校对时间。如果网络不通,电脑也会过45分钟后再次自动校对时间。需要提醒的是电脑的时钟与标准时间误差不能超过12个小时,否则不能自动校对,只有手动校正了。

时间同步系统的要求

4.3.12时间同步系统的要求 4.3.12.1总的要求 4.3.12.1.1 时间同步系统的构成 1)时间同步系统由一级主时钟和时钟扩展装置组成。 2)一级主时钟用于接收卫星或上游时间基准信号,并为各时间扩展装置提供时间信号。3)一级主时钟与时钟扩展装置均配置时间保持单元,保证在输入信号中断的情况下,依然不间断地提供高精度的输出信号。 4.3.12.1.2时间同步系统的布置 根据本期工程情况,将配置1面主时钟装置屏和2面时钟扩展装置屏。主时钟本体装置屏安装在集控楼内,主时钟屏配置的2台主时钟为整个时间同步系统提供2路冗余的时间基准信号输出。机组保护室和网络继电器室各设1面时钟扩展装置屏,主时钟装置与时钟扩展装置之间采用光纤连接。时间同步系统天线安装在集控楼楼顶上。 4.3.12.1.3时间同步系统的运行条件 1)电源要求 同步时钟装置(一级主时钟和二级扩展)采用两路AC220V电源供电,投标方应配置双电源自动切换装置(美国ASCO 7000系列产品)实现双电源自动切换。 2)工作环境 工作温度: -10~+55℃ 贮存温度: -40~+55℃ 湿度: 5%~95%(不结露)。 所有设备均可放置在无屏蔽、无防静电措施的机房内。 4.3.12.1.4 时间同步系统的电磁兼容性 时间同步系统在集控楼的电磁场环境下能正常工作,符合“GB/T13926-1992 工业过程测量和控制装置的电磁兼容性”中有关规定的要求,并达到Ш级及以上标准。 4.3.12.2功能要求 4.3.12.2.1 时间同步系统配置的主时钟及时间同步信号扩展装置对厂内DCS、SIS、电气控制装置及其他需要时钟同步的设备进行时间同步,并应能提供满足这些设备需要的各种时间同步信号及接口(含接口装置、通讯电缆等设备)。 4.3.12.2.2时间同步系统两台主时钟的时间信号接收单元应能独立接收GPS卫星和我国北斗卫星发送的无线时间信号作为主外部时间基准信号。当某一主时钟的时间接收单元发生故

中国南方电网同步相量测量装置(PMU)配置和运行管理规定(试行)

附件: 中国南方电网同步相量测量装置(PMU) 配置和运行管理规定 (试行) 1范围 本规定适用于中国南方电网PMU装置的配置和运行管理。南方电网公司各相关部门和单位、南方电网各并网发电企业,均应遵守本规定;有关单位在南方电网开展PMU装置的设计、施工、制造、运行维护等工作时,也应遵守本规定。 2总则 2.1为保证南方电网“广域测量系统”(以下简称“WAMS系统”)的安全、可靠运行,为电网运行提供准确的动态数据和故障信息,依据《电力系统安全稳定导则》(DL755-2001)、《电网运行准则》(DL/T 1040-2007)、《电网运行规则(试行)》(电监会22号令)、《中国南方电网电力调度管理规程》(Q/CSG 2 1003-2008)等有关规程规定,结合南方电网实际情况,特制定本规定。 3规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

IEEE C37.118- 2005 电力系统同步相量标准 ANSI/IEEE C37.111-1991 电力系统暂态数据交换通用格式 DL/T 478-2001 静态继电保护及安全自动装置通用技术条件 GB/T 14285-2006 继电保护和安全自动装置技术规程 国家电力监管委员会5号令电力二次系统安全防护规定 南方电网电力二次系统安全防护技术实施规范 DL 476-1992 电力系统实时数据通信应用层协议 DL/T 995-2006 继电保护和电网安全自动装置检验规程 DL/T 553-1994 220kV~500kV电力系统故障动态记录技术准则DL/T 663-1999 220kV~500kV电力系统故障动态记录装置检测要求 4术语和定义 4.1相量 phasor 正弦量的复数表示形式。相量的模代表正弦量的有效值,相量的幅角代表正弦量的相角。 4.2同步相量 synchrophasor 对信号以标准时间为基准进行同步采样并转换而得的相量称为同步相量。电网同步相量之间的相位关系反映了电网相应交流电气量的实际相位关系。 4.3相量测量装置 phasor measurement unit (PMU) 用于进行同步相量的测量、记录和输出的装置。PMU的核心功能包括基于标准时钟信号的同步相量测量功能、失去标准时钟信号的守时功能、与主站之间实时通信功能。 4.4广域测量系统 wide area measurement system (WAMS)

时钟同步技术概述

作为数字通信网的基础支撑技术,时钟同步技术的发展演进始终受到通信网技术发展的驱动。在网络方面,通信网从模拟发展到数字,从TDM网络为主发展到以分组网络为主;在业务方面,从以TDM话音业务为主发展到以分组业务为主的多业务模式,从固定话音业务为主发展到以固定和移动话音业务并重,从窄带业务发展到宽带业务等等。在与同步网相关性非常紧密的传输技术方面,从同轴传输发展到PDH,SDH,WDM和DWDM,以及最新的OTN和PTN技术。随着通信新业务和新技术的不断发展,其同步要求越来越高,包括钟源、锁相环等基本时钟技术经历了多次更新换代,同步技术也在不断地推陈出新,时间同步技术更是当前业界关注的焦点。 2、时钟技术发展历程 时钟同步涉及的最基本技术包括钟源技术和锁相环技术,随着应 用需求的不断提高,技术、工艺的不断改进,钟源技术和锁相环 技术也得到了快速的演进和发展。 (1) 钟源技术

时钟振荡器是所有数字通信设备的基本部件,按照应用时间的先后,钟源技术可分为普通晶体钟、具有恒温槽的高稳晶振、原子钟、芯片级原子钟。 一般晶体振荡器精度在nE-5~nE-7之间,由于具有价格便宜、尺寸小、功耗低等诸多优点,晶体振荡器在各个行业和领域中得到广泛应用。然而,普通晶体钟一般受环境温度影响非常大,因此,后来出现了具有恒温槽的晶体钟,甚至具有双恒温槽的高稳晶体钟,其性能得到很大改善。随着通信技术的不断发展,对时钟精度和稳定性提出了更高的要求,晶体钟源已经难以满足要求,原子钟技术开始得到应用,铷钟和铯钟是其中最有代表性的原子钟。一般来说,铷钟的精度能达到或优于nE-10的量级,而铯钟则能达到或优于1E-12的量级。 然而,由于尺寸大、功耗高、寿命短,限制了原子钟在一些领域的应用,芯片级原子钟有望解决这个难题。目前民用的芯片级原子钟基本上处于试验阶段,其尺寸只有立方厘米量级,耗电只有百毫瓦量级,不消耗原子,延长了使用寿命,时钟精度在nE-10量级以上,具有很好的稳定性。芯片级原子钟将在通信、交通、电力、金融、国防、航空航天以及精密测量等领域有着广泛的应用前景。 (2) 锁相环技术 锁相环技术是一种使输出信号在频率和相位上与输入信号同步的电路技术,即当系统利用锁相环技术进入锁定状态或同步状态后,系统的震荡器输出信号与输入信号之间相差为零,或者保持为常数。锁相环路技术是时钟同步的核心技术,它经历了模拟锁相环

时钟同步系统施工方案

时钟同步系统施工方案

施工方案审批表 审核单位:审核意见:审核人: 日期:监理单位:监理意见:监理人: 日期:批准单位:审批意见:审批人: 日期:

目录 一、施工方案综述............................................................................................... - 3 - 二、工程概况及特点........................................................................................... - 4 - 三、施工步骤....................................................................................................... - 5 - 四、风险分析..................................................................................................... - 14 - 五、生产安全及文明施工................................................................................. - 14 - 一、施工方案综述 根据中韩(武汉)石油化工有限公司PLC系统的改造技术要求和我公司对改造要求的理解来编制施工方案。

FPGA的时钟频率同步原理研究与设计实现

FPGA的时钟频率同步原理研究与设计实现 引言 网络化运动控制是未来运动控制的发展趋势,随着高速加工技术的发展,对网络节点间的时间同步精度提出了更高的要求。如造纸机械,运行速度为1 500~1 800m/min,同步运行的电机之间1μs的时间同步误差将造成30 μm的运动误差。高速加工中心中加工速度为120 m/min 时,伺服电机之间1μs的时间同步误差,将造成2 μm的加工误差,影响了加工精度的提高。 分布式网络中节点的时钟通常是采用晶振+计数器的方式来实现,由于 晶振本身的精度以及稳定性问题,造成了时间运行的误差。时钟同步通常是选 定一个节点时钟作为主时钟,其他节点时钟作为从时钟。主节点周期性地通过 报文将主时钟时间发送给从节点,从节点接收到报文后,以主时钟为基准进行 延迟补偿,然后将计算出的新时钟值赋给从时钟。这种同步方法造成了从时钟 计数值的不连续,即会出现重复(从时钟晶振频率快于主时钟)或跳跃(从时钟晶 振频率慢于主时钟),而且这种方法并没有从根本上解决时钟频率的不同步问题,因此要进一步提高同步精度很困难。本文研究了一种可对频率进行动态调整的 时钟,通过对时钟频率的动态修正,实现主从时钟频率的同步,进而实现时间 同步。 1 时钟同步原理 要实现两个时钟的同步,一是时钟的计数值要相同,二是计数增长速率 要相同。如图1 所示,设主时钟的频率为f,从时钟频率在Nn-1 到Nn 时间段 为fn-1,在Nn 到Nn+1 为fn,SyncDelay 为同步报文从主站到从站的延迟时间,可以通过延时测量帧采用往返法测量得到,从时钟要在Nn+1 时刻达到与主时 钟相等,那么有:

NTP服务时间同步设置

一、市局集中端服务器上搭建NTP服务的服务端 1、在市局集中端服务器上,通过开始菜单,输入regedit命令后打开注册表设定画面。 2、修改以下选项的键值 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\ NtpServer内的「Enabled」设定为1,打开NTP服务器功能

3、修改以下键值 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config\ AnnounceFlags设定为5,该设定强制主机将它自身宣布为可靠的时间源,从而使用内置的互补金属氧化物半导体(CMOS) 时钟。 4、在dos命令行执行以下命令,确保以上修改起作用 net stop w32time net start w32time 那么为了避免服务器和internet上的ntp同步,最好追加以下配置: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\

NtpClient的「enable」设定为0 以防止作为客户端自动同步外界的时间服务 二、硬盘录像机设置NTP服务的客户端 (注:只有新版型号的硬盘录像机才有NTP的功能) 1、在市局服务器IE浏览器地址栏输入硬盘录像机IP地址,进入到登陆界面,输入用户名:admin 密码:12345 端口号:8000 登陆后选择菜单“配置”, 2、在“配置”页面左边选择“远程配置”,出来“远程参数配置”页面,在“远程参数配置”页面里选择“网络参数”→“NTP设置”,“启用NTP”打上钩,“服务器地址”统一为市局集中端服务器地址,“NTP端口号”为123,校时间隔:4320(统一设置为三天,这里的单位是分钟),选择时区: ,点儿“保存”按钮。

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

南方电网相量测量装置(PMU)技术规范全解

Q/CSG 中国南方电网有限责任公司企业标准 南方电网相量测量装置(PMU)技术规范Specification for Synchronized Phasor Measurement Unit 中国南方电网有限责任公司发布

目次 1范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4配置原则及接入量要求 (2) 5装置基本功能 (2) 6装置技术性能 (4) 7装置运行条件 (5) 8命名规范 (7) 附录A (8) I

前言 相量测量装置和广域测量系统是电力系统安全稳定监测的重要手段。 为了规范南方电网相量测量装置的技术性能,提高南方电网相量测量装置和广域测量系统的应用水平,制定本标准。 本标准规定了南方电网相量测量装置的配置要求、基本功能、技术性能、运行条件、命名规范等方面的内容。 本标准由南方电网公司系统运行部提出、归口并负责解释。 本标准的主要起草单位:中国南方电网有限责任公司系统运行部 本标准的主要起草人:余畅、苏寅生、徐光虎、张勇、侯君。 II

南方电网相量测量装置(PMU)技术规范 1 范围 1.1 本规范规定了南方电网区域内的电力系统同步相量测量装置(以下简称相量测量装置)的配置要求、基本功能、技术性能、运行条件、命名规范。 1.2 本规范适用于南方电网。南方电网各级基建部门、工程建设单位、设备运行维护单位应遵守本规范。 2 规范性引用文件 下列文件中的条款通过本规定的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,凡是不注日期的引用文件,其最新版本适用于本标准。 IEEE C37.118-2005 《电力系统同步相量标准》 ANSI/IEEE C37.111-2001 《电力系统暂态数据交换通用格式》 GB/T 2887-2000 《电子计算机场地通用规范》 GB/T 9361-1998 《计算站厂地安全要求》 GB/T 15153.1-1998 《远动设备及系统》第2部分:工作条件第1篇:电源和电磁兼容性GB/T 15153.2-2000 《远动设备及系统》第2部分:工作条件第2篇:环境条件(气候、机械和其他非电影响因素) GB/T 17626.2-2006 《电磁兼容》试验和测量技术静电放电抗扰动试验 GB/T 17626.3-2006 《电磁兼容》试验和测量技术射频电磁场辐射抗扰动试验 GB/T 17626.4-1998 《电磁兼容》试验和测量技术电快速瞬变脉冲群抗扰动试验 GB/T 17626.5-1999 《电磁兼容》试验和测量技术浪涌(冲击)抗扰动试验 GB/T 17626.6-1998 《电磁兼容》试验和测量技术射频场感应的传导骚扰抗扰动试验GB/T 17626.8-2006 《电磁兼容》试验和测量技术工频磁场抗扰动试验 GB/T 17626.12-1998 《电磁兼容》试验和测量技术振荡波抗扰动试验 GB/T 11287-2000 《电气继电器》第21部分:度量继电器和保护装置的振动、冲击、碰撞和地震试验第1篇:振动试验(正弦) GB/T 14537-1993 《量度继电器和保护装置的冲击与碰撞试验》 GB/T 3047.4-1986 《高度进制为44.45mm的插箱、插件的基本尺寸系列》 GB 4208-2008 《外壳防护等级(IP代码)》 GB 14598.27-2008 《量度继电器和保护装置第27部分:产品安全要求》 3 术语和定义 3.1 相量 phasor 正弦量的复数表示形式。相量的模代表正弦量的有效值,相量的幅角代表正弦量的相角。 3.2 同步相量 synchrophasor 对信号以协调世界时或世界标准时间(UTC)为基准进行同步采样并转换而得的相量称为同步相量。电网同步相量之间的相位关系反映了电网相应交流电气量的实际相位关系。 3.3 相量测量装置 phasor measurement unit (PMU) 用于进行同步相量的测量和输出以及进行动态记录的装置。PMU的核心特征包括基于标准时钟信号的同步相量测量、失去标准时钟信号的守时能力、PMU与主站之间能够实时通信并遵循有关通信协议。 3.4 广域测量系统 wide area measurement system(WAMS) 1

GPS时钟同步原理简介

GPS时钟同步原理 1.有关时间的一些基本概念 时间(周期)与频率 互为倒数关系,两者密不可分,时间标准的基础是频率标准,所以有人把晶体振荡器叫‘时基振荡器’。钟是由频标加上分频电路和钟面显示装置构成的。 四种实用的时间频率标准源(简称钟) ◆晶体钟 ◆铷原子钟 ◆氢原子钟 ◆铯原子钟 常用的时间坐标系 时间的概念包含时刻(点)和时间间隔(段)。时系(时间坐标系)是由时间起点和时间尺度单位--秒定义(又分地球秒与原子秒)所构成。常用的时间坐标系: ◆世界时(UT) ◆地方时 ◆原子时(AT) ◆协调世界时(UTC) ◆ GPS时 定时、时间同步与守时

◆定时:是指根据参考时间标准对本地钟进行校准的过程);授时(指采用适当的手段 发播标准时间的过程); ◆时间同步:是指在母钟与子钟之间时间一致的过程,又称时间统一或简称时统); ◆守时:是指将本地钟已校准的标准时间保持下去的过程,国内外守时中心一般都采 用由多台铯原子钟和氢原子钟组成的守时钟组来进行守时,守时钟组钟长期运行性能表现最好的一台被定主钟(MC)。 2.GPS时间是怎样建立的 为了得到精密的GPS时间,使它的准确度达到<100ns(相对于UTC(USNO/MC)): ◆每个GPS卫星上都装有铯子钟作星载钟; ◆ GPS全部卫星与地面测控站构成一个闭环的自动修正系统; ◆采用UTC(USNO/MC)为参考基准。 3.GPS定位、定时和校频的原理 GPS定位原理 是基于精确测定GPS信号的传输时延(Δt),以得到GPS卫星到用户间的距离(R)R=C×Δt ----------------------- [1](式中C为光速)同时捕获4颗GPS卫星,解算4个联立方程,可给出用户实时时刻(t)和对应的位置参数(x、y、z)共4个参数。R={(Xs- Xu)2+(Ys-Yu)2+(Zs-Zu)}1/2 ---- [2](式中Xs、Ys、Zs为卫星的位置参数;Xu、Yu、Zu为用户的的位置参数)。 GPS定时原理 基于在用户端精确测定和扣除GPS时间信号的传输时延(Δt),以达到对本地钟的定时与校准。GPS定时准确度取决于信号发射端、信号在传输过程中和接收端所引入的误差,主要误差有:

同步相量测量(PMU)系统改造与应用

龙源期刊网 https://www.360docs.net/doc/6914943099.html, 同步相量测量(PMU)系统改造与应用 作者:李丹 来源:《城市建设理论研究》2013年第28期 摘要:同步相量测量就是在电厂和变电站实时测量相角(包括发电机的功角和母线电压相角)等电气参量,利用全球定位系统(GPS)实现时钟同步,并把打上时标的电气参数利用高速数据通道传输到调度中心的调度自动化系统。使相关运行人员实时监视系统母线电压向量和发电机的功角变化;同时,由于提供了精确实测的电网状态参数,可以使以前只能离线计算的电力系统稳定分析等更准确地用于实时计算,从而实时地进行动态安全分析,对运行的电力系统实现预防性控制、紧急控制。 关键词:同步相量测量;实时测量;GPS;数据传输;动态安全分析 中图分类号:P228.4文献标识码: A 前言 随着电力系统规模的日益壮大, 现代电力系统的结构及运行方式也日趋复杂,为保证电力系统的稳定运行,可靠、动态实时的监控具有十分重要的意义。目前主体的监测手段集中于稳态和局部监控阶段,电网的实时动态同步量测工作,对于系统的运行调度来说缺少有效的监测管理平台。 同步相量测量装置是电力系统实时动态监测系统的基础和核心,它能为电力系统的安全稳定运行提供有力的监测手段,同步相量测量装置利用高精度的GPS卫星同步时钟实现时钟同步,并把打上时标的电气参数利用高速数据通道传输到中调,使相关人员实时监视系统母线电 压向量和发电机的功角变化,极大提高电力系统的监控水平和稳定运行水平。同时通过同步相量装置将有时标的一次调频信息、发电机及励磁系统电气量信号上传到中调,提高电网对各厂站发电机监视功能,有利于电网异常运行情况分析。 一.我厂PMU现状 我厂有四台发电机组,其中1号机和2号机为两台220MW机组,3号机和4号机为两台300MW机组,四台发电机全部采用三级励磁方式。原同步相量测量装置采用河海大学与河南省电力公司共同开发生产同步相量测量装置,于2003年投入运行。原系统主屏安装在#2机电气保护室,配有相量测量装置主机、GPS授时单元和#1机相量测量单元及#2机相量测量单元。辅屛安装在#3机电气保护室,配有#3机相量测量单元和#4机相量测量单元,通过控制电缆与主屏连接传输信号。原装置属早期科研产品,整套装置在技术性能和测量信号数量(测量模拟信号和开关信号)已不满足国网公司2006年颁布的《电力系统同步相量标准》、《电力

PMU(同步相量测量装置)的检测技术 及误差处理措施分析

PMU(同步相量测量装置)的检测技术及误差处理措施分析 摘要:同步相量测量装置是一种新型检测技术,其可以对动态变化的数据参量进行跟踪测量,与传统测量方法不同,同步相量检测是建立在新统计原理下的数据处理方法。从概率统计上看,任何数据都存在一定的不可用性,如果数据呈现多种误差现象,则数据所表现的动态变化信息将会干扰技术人员核算、处理工作。基于此,文章将结合PMU检测、误差处理内容,对其技术措施的应用重点和难点进行系统分析。 关键词:PMU(同步相量测量装置);检测技术;误差处理;措施分析为加强数据对电力系统的动态监测和控制,很多发电厂都会选择安装PMU装置,创建自身的动态监测系统,在这个系统下,发电厂的工作人员可以实时搜集到电力系统中各运行设备的动态,保证其能够安全、稳定的运行。 1PMU装置 1.1PMU装置功能简述 PMU是承载一个运行系统在动态环境下的监测、控制工作的核心装置,其不仅可以准确探测、搜集到每个运营设备的数据信息,还能第一时间将这些信息汇总,输入到数据库中,运用强大的数据处理功能和快捷的通讯能力,将数据传导到人机界面上,供工作人员参考处理。 1.2PMU装置工作原理分析 PMU装置能进行动态测量工作,在高速监测环境下,数据采样仪器和交流采样装置协同运作,在保持高准确度测量效果的同时,增强信息的交互性运用。PMU是以绝对电量和绝对相位角为坐标,电流信号、相量数据、电压信号等多种测量参量为依据的数据处理系统。信号可以同步完成多个信号的交流工作,误差在1μs之内。同时,每个相量数据还会根据调度中心的控制决策,进行电气量分析。如果电力系统的电网层出现断流现象,则该电网的动态变化特征将会以动态数据的形式表现出来。 2PMU装置与传统测量方式的差异 20世纪80~90年代,随着电力系统的供电规模逐渐扩大,电力交流和传送装置咋检测方法、运行模式、管理制度等方面都发生了很大的变化。在此基础上,传统系统设计人员通常会选择直接获取模型参量,通过人工处理的方式,比较数据,分析数据内容。PMU装置则不同,为满足更小波动环境下的数据监测和测量工作,监测装置必须达到短时间内满足测量误差要求,分析变化数据的变动范围。由此可见,PMU装置与传统测量方式在数据获取路径、数据分析方法、监测效果、信息交流等方面都各有不同,具体数据见表1。

时间同步服务器设置

默认情况下,服务器Windows2003 Server是作为时间同步客户端的。你可以双击系统时间,在“Internet时间”属性页里有时间同步的设置,显然系统默认是作为客户端的。所以,必须通过修改设置,使系统作为时间同步的服务端。 1,修改注册表以下项的键值 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServer 内的“Enabled”设置为“1”,打开时间同步服务功能。 2,修改以下键值HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config里的“AnnounceFlags”设置为“5”,表示强制主机将它自身宣布为可靠的时间源,从而使用CMOS时钟。如果设置为“a”,则表示为采用外面的时间服务器。 3,重启Win32Time服务执行如下命令:net stop w32time && net start w32time 客户端设置: 1,客户端的设定更改注册表即可。 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpClient里的“SpecialPollInterval”时间间隔(单位为秒,43200为12小时);“SpecialPollTimeRemaining”时间同步的服务器,格式为:“IP address,0”,例如:192.168.1.1,0。 2,重启win32time服务net stop w32time && net start w32time这样,设置完成了,无需重启电脑。如果想立刻时间的变化,可以把时间设置成1、2秒。

GPS时钟系统(GPS同步时钟)技术方案(1)

GPS 时钟系统(GPS 同步时钟技术方案 技术分类:通信 | 2010-11-08 维库 在电力系统、 CDMA2000、 DVB 、 DMB 等系统中 , 高精度的 GPS 时钟系统(GPS 同步时钟对维持系统正常运转有至关重要的意义。 那如何利用 GPS OEM来进行二次开发 , 产生高精度时钟发生器是一个研究的热点问题。如在 DVB-T 单频网 (SFN中 , 对于时间同步的要求 , 同步精度达到几十个 ns, 对于这样高精度高稳定性的系统 , 如何进行商业级设计 ? 一、引言 在电力系统的许多领域,诸如时间顺序记录、继电保护、故障测距、电能计费、实时信息采集等等都需要有一个统一的、高精度的时间基准。利用 GPS 卫星信号进行对时是常用的方法之一。 目前, 市场上各种类型的 GPS-OEM 板很多, 价格适中, 具有实用化的条件。利用 GPS-OEM 板进行二次开发,可以精确获得 GPS 时间信息的 GPS时钟系统 (GPS 同步时钟。本文就是以加拿大马可尼公司生产的 SUPERSTAR GPS OEM板为例介绍如何开发应用于电力系统的的 GPS 时钟系统(GPS 同步时钟。 二、 GPS 授时模块 GPS 时钟系统 (GPS 同步时钟采用 SUPERSTAR GPS OEM 板作为 GPS 接受模块, SUPERSTAR GPS OEM 板为并行 12跟踪通道,全视野 GPS 接受模块。 OEM 板具有可充电锂电池。 L1频率为 1575.42MHz ,提供伪距及载波相位观测值的输出和 1PPS (1 PULSE PER SECOND脉冲输出。 OEM 板提供两个输入输出串行口,一个用作主通信口,可通过此串行口对 OEM 板进行设置,也可从此串口读取国际标准时间、日期、所处方位等信息。另一个串行口用于 RTCM 格式的差分数据的输出,当无差分信号或仅用于 GPS 授时,此串行口可不用。 1PPS 脉冲是标准的 TTL 逻辑

SSM553同步相量测量装置调试报告

SSM553同步相量测量装置 调试报告 被检设备名称: SSM553同步相量测量装置 安装地点:风电场110kV升压站 产品编号: 9246000009/201311001400 直流电压: DC220V 交流电压: 57.7V 交流电流: 1A 校验类型:整组试验 制造单位:公司 检测依据: GB/T7261-2000《继电器及装置基本试验方法》 DL/T663-1999《电力系统故障动态记录装置检测要求》 检测日期:

检测结果 一、外观检查:良好 二、设备接地及绝缘测试:设备接地良好、绝缘≥500MΩ 三、电源检查:正常 四、精度校验: 1、电压通道(V) 相别UAⅠUBⅠUCⅠ3U0ⅠUL UAⅡUBⅡUCⅡ3U0ⅡUL 额定值57.0 57.0 57.0 10.0 10.0 57.0 57.0 57.0 10.0 10.0 实测值56.3 56.6 56.7 9.9 9.8 56.8 56.9 56.7 9.6 9.5 2、电流通道(A) 相别I1A I1B I1C 3I01 I2A I2B I2C 3I02 I3A I3B I3C 3I03 额定值 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 实测值0.98 0.97 0.97 1.01 0.99 0.98 0.99 0.99 0.97 0.98 1.01 0.97 相别I4A I4B I4C 3I04 I5A I5B I5C 3I05 I6A I6B I6C 3I06 额定值 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 实测值0.98 0.99 0.98 0.99 1.01 0.97 0.98 0.99 1.01 0.97 0.98 0.99 五、开关量的变位启动试验:所有开关量变位及启动正常 六、打印检查:正常 七、模拟量启动精度检测试验 电压量: 名称外加量整定值(V)显示值(V) 电压1路Ua1 57.70 57.77 Ub1 57.70 57.74 Uc1 57.70 57.78 电压2路Ua2 57.70 57.76 Ub2 57.70 57.73 Uc2 57.70 57.74

同步时钟系统

同步时钟系统 1.公司简介 南瑞集团公司是国家电网公司直属单位,是中国最大的电力系统自动化、水利水电自动化、轨道交通监控技术、设备和服务供应商。主要从事电力系统二次设备、信息通信、智能化中低压电气设备、发电及水利自动化设备、工业自动化设备、非晶合金变压器及电线电缆的研发、设计、制造、销售、工程服务与工程总承包业务。 南瑞集团通信与用电技术分公司(以下简称“通信用电分公司”)成立于2010年1月,是南瑞集团公司信息通信产业板块的核心单位、国内领先的高端智能用电产品及整体解决方案提供商,为国家电网公司提供各类智能芯片产品。 通信用电分公司充分把握智能用电产业发展的重大历史机遇,以服务坚强智能电网建设为主旨,以做专做精做大做强“智能用电产业”为目标,积极贯彻落实国家电网公司直属产业规划部署,确立了“1+5”发展战略,打造“1”个产业支撑平台,支撑“智能芯片、智能终端、智能传感、电力通信和智能服务”5项业务协同发展,形成从应用系统层、终端设备层和芯片器件层相互支撑的业务发展格局,致力于成为以芯片为核心支撑的高端综合解决方案提供商,已形成了信息管理、通信系统及通信设备、智能芯片、用电自动化及终端设备、电力物联网等5个产品线,拥有17个子产品线。随着生产业务的拓展,通信用电分公司已经取得一批具有自主知识产权的产品及成果,包括:“国网芯”系列芯片及与之配套的芯片发行系统、密钥管理系统;基于“国网芯”技术的智能用电产品及终端模块、电力线载波通信及配用电专用光通信产品;基于智能量测技术的智能防窃电系统、省级计量中心计量生产调度平台、智能感知互动综合服务平台等,并积极拓展节能服务、能效及智能传感等新型营销业务。 通信用电分公司成立3年来,各项经营业绩指标均保持迅猛增长,已承担多项重点科研和产业化项目,申请专利及软件著作权145项(其中发明专利66项),申请国际专利4项,截至2013年6月底,人员规模已从成立之初的83人

传输系统中的时钟同步技术

传输系统中的时钟同步技术同步模块是每个系统的心脏,它为系统中的其他每个模块馈送正确的时钟信号。因此需要对同步模块的设计和实现给予特别关注。本文对影响系统设计的时钟特性进行了考察,并对信号恶化的原因进行了评估。本文还分析了同步恶化的影响,并对标准化组织为确保传输质量和各种传输设备的互操作性而制定的标准要求进行了探讨。摘要:网络同步和时钟产生是高速传输系统设计的重要方面。为了通过降低发射和接收错误来提高网络效率,必须使系统的各个阶段都要使用的时钟的质量保持特定的等级。网络标准定义同步网络的体系结构及其在标准接口上的预期性能,以保证传输质量和传输设备的无缝集成。有大量的同步问题,系统设计人员在建立系统体系结构时必须十分清楚。本文论述了时钟恶化的各种来源,如抖动和漂移。本文还讨论了传输系统中时钟恶化的原因和影响,并分析了标准要求,提出了各种实现技巧。基本概念:抖动和漂移抖动的一般定义可以是“一个事件对其理想出现的短暂偏离”。在数字传输系统中,抖动被定义为数字信号的重要时刻在时间上偏离其理想位置的短暂变动。重要时刻可以是一个周期为 T1 的位流的最佳采样时刻。虽然希望各个位在 T 的整数倍位置出现,但实际上会有所不同。这种脉冲位置调制被认为是一种抖动。这也被称为数字信号的相位噪声。在下图中,实际信号边沿在理想信号边沿附近作周期性移动,演示了周期性抖动的概念。图 1.抖动示意抖动,不同于相位噪声,它以单位间隔 (UI) 为单位来表示。一个单位间隔相当于一个信号周期 (T),等于 360 度。假设事件为 E,第 n 次出现表示为 tE[n] 。则瞬时抖动可以表示为:一组包括 N 个抖动测量的峰到峰抖动值使用最小和最大瞬时抖动测量计算如下:漂移是低频抖动。两者之间的典型划分点为 10 Hz。抖动和漂移所导致的影响会显现在传输系统的不同但特定的区域。抖动类型根据产生原因,抖动可分成两种主要类型:随机抖动和确定性抖动。随机抖动,正如其名,是不可预测的,由随机的噪声影响如热噪声等引起。随机抖动通常发生在数字信号的边沿转换期间,造成随机的区间交叉。毫无疑问,随机抖动具有高斯概率密度函数 (PDF),由其均值 (μ) 和均方根值 (rms) (σ) 决定。由于高斯函数的尾在均值的两侧无限延伸,瞬时抖动和峰到峰抖动可以是无限值。因此随机抖动通常采用其均方根值来表示和测量。图 2.以高斯概率密度函数表示的随机抖动对抖动余量来讲,峰到峰抖动比均方根抖动更为有用,因此需要把随机抖动的均方根值转换成峰到峰值。为将均方根抖动转换成峰到峰抖动,定义了随机抖动高斯函数的任意极限 (arbitrary limit)。误码率 (BER) 是这种转换中的一个有用参数,其假设高斯函数中的瞬时抖动一旦落在其强制极限之外即出现误码。通过下面两个公式,就可以得到均方根抖动到峰到峰抖动的换算。 3[!--empirenews.page--] 由公式可得到下表,表中峰到峰抖动对应不同的 BER 值。确定性抖动是有界的,因此可以预测,且具有确定的幅度极限。考虑集成电路 (IC) 系统,有大量的工艺、器件和系统级因素将会影响确定性抖动。占空比失真 (DCD) 和脉冲宽度失真(PWD) 会造成数字信号的失真,使过零区间偏离理想位置,向上或向下移动。这些失真通常是由信号的上升沿和下降沿之间时序不同而造成。如果非平衡系统中存在地电位漂移、差分输入之间存在电压偏移、信号的上升和下降时间出现变化等,也可能造成这种失真。图 3,总抖动的双模表示数据相关抖动 (DDJ) 和符号间干扰 (ISI) 致使信号具有不同的过零区间电平,导致每种唯一的位型出现不同的信号转换。这也称为模式相关抖动 (PDJ)。信号路径的低频截止点和高频带宽将影响 DDJ。当信号路径的带宽可与信号的带宽进行比较时,位就会延伸到相邻位时间内,造成符号间干扰 (ISI)。低频截止点会使低频器件的信号出现失真,而系统的高频带宽限制将使高频器件性能下降。7 正弦抖动以正弦模式调制信号边沿。这可能是由于供给整个系统的电源或者甚至系统中的其他振荡造成。接地反弹和其他电源变动也可能造成正弦抖动。正弦抖动广泛用于抖动环境的测试和仿真。不相关抖动可能由电源噪声或串扰和其他电磁干扰造成。考虑抖动对数字信号的影响时,需要将整个确定性抖动和随机抖动考虑在内。确定性抖动和随机抖动的总计结果将产生另外一种概率分布

相关文档
最新文档