经典不等式(讲义)

经典不等式(讲义)
经典不等式(讲义)

经典不等式(讲义)

知识点睛

一、 绝对值三角不等式

定理1:若a ,b 为实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 几何背景:用向量a ,b 分别替换a ,b 时,可得|a +b |≤

|a |+|b |,

当且仅当a ,b 同向时,等号成立.

几何意义:三角形两边之和大于第三边.

定理推广:

若a ,b 为实数,则||||||||||||a b a b a b a b ----+≤≤≤.

定理2:若a ,b ,c 为实数,则|a -c |≤|a -b |+|b -c |,当且仅当

(a -b )(b -c )≥0时,等号成立.

应用要领:

“一变”:对所求式子进行变形(拆项、重组、改变符号等),在形式上确定a ,b ;

“二定”:应用绝对值三角不等式,使其出现定值;

“三相等”:务必验证等号能否取到.

二、 基本不等式

定理1:若a ,b ∈R ,则222a b ab +≥,当且仅当a =b 时,等号成立.

常见变形:若a ,b ∈R ,则222()22a b a b ab ++≥≥,当且仅当 a =b 时,等号成立.

定理2(基本不等式):若a ,b >0

,则

2

a b +,当且仅当 a =b 时,等号成立. (1)常见变形:若a >0,b >0

,则2

a b + 当且仅当a =b 时,等号成立.

(2)若a ,b >0,则2

a b +为a ,b

a ,

b 的几何平均数.

定理表述:两个正数的算术平均不小于它们的几何平均.

(3)应用要领:

“一正”:各项均是正数;

“二定”:和或者积是定值;

“三相等”:务必验证等号能否取到.

定理3:若a ,b ,c >0

,则3

a b c ++,当且仅当a =b =c 时,等号成立.

(1)定理表述:三个正数的算术平均不小于它们的几何平均.

(2)推广:对于n 个正数a 1,a 2,a 3,…,a n ,它们的算术平均不小于它们

的几何平均,即12n a a a n

+++…123n a a a a ====…时,等号成立.

三、 柯西不等式

定理1:(二维形式的柯西不等式)

若a ,b ,c ,d 都是实数,则22222()()()a b c d ac bd +++≥,当且仅当ad =bc 时,等号成立.

应用要领:

“一变”:对所求式子进行变形(拆项、重组等),使之形式上符合左边或右边;

“二定”:应用柯西不等式,使其出现定值;

“三相等”:务必验证等号能否取到.

定理2:(柯西不等式的向量形式)

若α,β是两个向量,则||||||αβαβ?≤,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立.

定理3:(二维形式的三角不等式)若x 1,x 2,y 1,y 2∈R ,则

定理4:(一般形式的柯西不等式)

设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则

222222212121122()()()n n n n a a a b b b a b a b a b +++++++++≥………,

当且仅当b i =0(i =1,2,…,n )或存在实数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.

柯西不等式的常用结构:

①22222221212()(111)()n n a a a a a a +++++++++≥……… ②222221222212111()()(111)n n

a a a n a a a +++++++++=≥………

精讲精练

1. 对?x ,y ∈R ,|1||||1||1|x x y y -++-++的最小值为_______.

2. 以下三个命题:

①若||1a b -<,则||||1a b <+;

②若 R a b ∈,,则||2||||a b a a b +--≤; ③|||22|x y x y +-++≤.

其中,正确命题的序号是____________.

3. 已知关于x 的不等式|1||2|x x a +--<.

(1)若该不等式有实数解,则实数a 的取值范围为

_______

_______________________.

(2)若该不等式对任意实数x 恒成立,则实数a 的取值范

围为_____________________________.

4. 已知||2m

A a -<,||2m

B b -<,求证:

(1)|()()|A B a b m +-+<;

(2)3|(2)(2)|2m

A B a b ---<.

5. 若a >0,b >0,且a +b =2,则下列不等式对一切满足条件的 a b ,恒成立的是

___________(写出所有正确命题的编号).

①ab ≤1222a b +≥;④333a b +≥; ⑤

112a b

+≥.

6. 已知x y +∈,R ,18

xy =. (1)2x y +的最小值为_______.

(2)2x y --的最大值为___________.

(3)若 0m n >,,则mx ny +的最小值为________.

7. 已知x y +∈,R ,41x y +=.

(1)xy 的最大值为__________,此时x =______,y =_______.

(2)2xy -的最小值为__________.

(3)若0m >,则mxy 的最大值为________.

8. 已知x >0,y >0,231x y

+=. (1)x y +的最小值为_______,此时x =______,y =_______.

(2)2x y --的最大值为____________.

(3)若 0m n >,,则mx ny +的最小值为___________.

,,是不全相等的正数,求证:

9.设a b c

++>

(1)a b c

(2)222

++++>.

a b c a b c abc

()()9

10.已知342

+=.

x y

(1)22

+的最小值是______,此时x=______,y=_____.x y

(2)22

+的最小值是________.

x y

916

(3)若0

mn≠,则2222

+的最小值是_________.

m x n y

11. 已知224936x y +=.

(1)2x y +的最大值是_______.

(2)34x y -的最大值是_______.

(3)若0mn ≠,则mx ny +的最大值是________.

12. 函数y =______,此时x =_____.

13. 设 a b +∈,R ,1a b +=,求证:411a b

+≥.

14. 若 a b c +∈,,R ,且111123a b c

++=,求证:923a b c ++≥.

15. 已知222222121211 n n a a a x x x +++=+++=…,…,

求证:11221n n a x a x a x +++≤….

回顾与思考

________________________________________________________ ________________________________________________________ ________________________________________________________

【参考答案】

1. 3

2. ①②③

3. (1)( 3 )-+∞,;(2)(3 )+∞,

4. 略

5. ①③⑤

6. (1)1;(2)-1;(3

7. (1)116 12 18;(2)18-;(3)16

m

8. (1)5+ 2 3+;(2)8--

(3)23m n ++ 9. 略

10. (1)425

625 825;(2)2;(3)22224169m n m n +

11. (1)5;(23

12.,127 27

13.略

14.略

15.略

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

高中数学奥赛讲义:竞赛中常用的重要不等式

不等式是数学竞赛的热点之一。由于不等式的证明难度大,灵活性强,要求很高的技巧,常常使它成为各类数学竞赛中的“高档”试题。而且,不论是几何、数论、函数或组合数学中的许多问题,都可能与不等式有关,这就使得不等式的问题(特别是有关不等式的证明)在数学竞赛中显得尤为重要。证明不等式同大多数高难度的数学竞赛问题一样,没有固定的模式,证法因题而异,灵活多变,技巧性强。但它也有一些基本的常用方法,要熟练掌握不等式的证明技巧,必须从学习这些基本的常用方法开始。 竞赛中常用的重要不等式 【内容综述】 本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用 【要点讲解】 目录§1 柯西不等式 §2 排序不等式 §3 切比雪夫不等式 ★ ★ ★ §1。柯西不等式 定理1 对任意实数组恒有不等式“积和方不大于方和积”,即 等式当且仅当时成立。 本不等式称为柯西不等式。 思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。 证明1 ∴右-左= 当且仅当定值时,等式成立。 思路2 注意到时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。

证明2 当时等式成立;当时,注意到 =1 故 当且仅当 且 (两次放缩等式成立条件要一致)

即同号且常数, 亦即 思路3 根据柯西不等式结构,也可利用构造二次函数来证明。 证明3 构造函数 。 由于恒非负,故其判别式 即有 等式当且仅当常数时成立。 若柯西不等式显然成立。 例1 证明均值不等式链: 调和平均数≤算术平均数≤均方平均数。 证设本题即是欲证: 本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法 (1)先证① 注意到欲证①,即需证 ② 此即 由柯西不等式,易知②成立,从而①真

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

完整word版,一元一次不等式典型例题

一元一次不等式典型例题 类型一:一元一次不等式的解集问题 1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是. 2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是. 3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________ 4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______类型二:一元一次不等式组无解的情况 1.若关于x的一元一次不等式组无解,则a的取值范围是. 2.已知不等式组无解,则a的取值范围是 3.已知关于x的不等式组无解,则a的取值范围是 类型三:明确一元一次不等式组的解集求范围 1.若不等式的解集为x>3,则a的取值范围是 2.若关于x的不等式的解集为x<2,则a的取值范围是. 3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________ 4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于 5.已知不等式组的解集为﹣1<x<2,则(m+n)2008= 类型四:一元一次不等式组有解求未知数的范围

1.若有解,则a的取值范围是 2.若关于x的不等式组有实数解,则a的取值范围是 3._______ 类型五:一元一次不等式组有整数解求范围 1.不等式组有3个整数解,则m的取值范围是. 2.不等式组有3个整数解,则m的取值范围是. 3.已知关于x的不等式组仅有三个整数解,则a的取值范围是. 4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______ 6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围. 7.已知关于x的不等式组有四个整数解,求实数a的取值范围.

高中数学竞赛均值不等式讲义

均值不等式 1.均值不等式 知识点1: 二元均值不等式可以推广到n 元,即: 设,,, 123 a a a a n 为n 个非负实数,则 12n a a a n ++ + ≥1 23 a a a a n === =). 如何证明? 知识点2: 设,,, 123 a a a a n 为n 个非负实数 ,n Q , 12n n a a a A n ++ += , n G =, 12 111n n n H a a a = ++,则n n n n Q A G H ≥≥≥(等号成立当且仅当 123a a a a n ====) 更一般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=1 1 ( )n i i a n α α =∑,特 别的,我们有: lim ()n f G αα→=,1 1 ()( )n i i a f n α α α==∑为关于α的增函数. 知识点3:重要结论 (1)2 22,,,.a b c R a b c ab bc ac ∈++≥++ (2) ()2 ,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5) ,,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++ (6) 222;2a a a b b a b b -≥-+≥(a,b,c>0) (7) 2222221 ()()3 a b b c c a a b c a b c ++≤++++(a,b,c>0) (8)正实数(1,2,3...)i a i n =,则 21 1 1 n n i i i i a n a ==?≥∑∑ (当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++ 知识点4:加权平均值不等式 已知 12+...1(0,1,2.,,,) n i w w w w i n +=>=,则对任意正实数 12112212........n w w w n n n w a w a w a a a a +++≥.

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

初一一元一次不等式知识点及典型例题

知识点与典型基础例题 一 不等式的概念: 例 判断下列各式是否是一元一次不等式? -x ≥5 2x-y <0 25 43 2-=++ x x x 352≥+x 二 不等式的解 : 三 不等式的解集: 例 判断下列说法是否正确,为什么? X=2是不等式x+3<2的解。 X=2是不等式3x <7的解。 不等式3x <7的解是x <2。 X=3是不等式3x ≥9的解 四 一元一次不等式: 例 判断下列各式是否是一元一次不等式 -x<5 2x-y<0 23 2≥+x x 52+x ≥3x 例 五.不等式的基本性质问题 例1 指出下列各题中不等式的变形依据 1)由3a>2得a>32 2) 由3+7>0得a>-7 3)由-5a<1得a>-51 4)由4a>3a+1得a>1 例2 用>”或<”填空,并说明理由 如果aa x7 5x<1+4x -54 x>-1 2x+5<4x-2 例4 已知实数a/b/c/在数轴上的对应点如图,则下列式子正确的是( ) A cb>ab B ac>ab C cb

不等式证明方法讲义.doc

学习必备欢迎下载 不等式的证明方法 一、比较法 1. 求证: x2 + 3 > 3 x 证:∵ (x2 + 3) 3x = x2 3x ( 3 ) 2 ( 3 )2 3 (x 3 ) 2 3 0 2 2 2 4 ∴x2 + 3 > 3 x 2. 已知 a, b, m 都是正数,并且 a < b,求证:a m a b m b a m a b(a m) a( b m) m(b a) 证: m b b(b m) b(b m) b ∵ a,b,m 都是正数,并且a 0 , b a > 0 ∴ m(b a) 0 即:a m a b(b m) b m b 变式:若 a > b,结果会怎样?若没有“ a < b”这个条件,应如何判断? 3. 已知 a, b 都是正数,并且 a b,求证: a5 + b5 > a2 b3 + a3b2 证: (a5 + b5 ) (a2b3 + a3b2) = ( a5 a3b2) + ( b5 a2b3 ) = a3 (a2 b2 ) b3 (a2 b2 ) = ( a2 b2 ) (a3 b3) 2 2 2 = ( a + b)(a b) (a + ab + b ) ∵a, b 都是正数,∴ a + b, a2 + ab + b2 > 0 又∵ a b,∴ (a b)2 > 0 ∴ (a + b)(a b)2(a2 + ab + b2) > 0 即: a5 + b5 > a2b3 + a3b2 4. 甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度 n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果 m n,问:甲乙两人谁先到达指定地点? 解:设从出发地到指定地点的路程为S, 甲乙两人走完全程所需时间分别是t1, t2, t1 t1 n S S 2S , t 2 S( m n) 则:m S, t2 可得: t1 2mn 2 2 2m 2n m n ∴ t1 t2 2S S(m n) S[ 4mn (m n)2 ] S(m n)2 2mn 2(m n)mn 2mn( m n) m n ∵ S, m, n 都是正数,且 m n,∴ t1 t2 < 0 即: t 1 < t2 从而:甲先到到达指定地点。 变式:若m = n,结果会怎样?

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5.121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ +< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b ==++++,证明:312n T <<

例4.已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6.数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

列不等式经典练习题

祖π数学新人教七年级下册之高分速成 1 【题型1】列不等式用不等式表示: (1)x的2 3 与5的差小于1: ;(2)y的9倍与b的 1 3 的和是负数: . (3)x的1 7 与9的倒数的和大于y的15%:____________________________. (4)a的30%与a的和大于a的2倍与10的差:_____________________________. 【变式训练】 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 3.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 4.用不等式表示 (1)x的2倍与5的差不大于1 ; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5 ; (4)a的20%与a的和大于a的3倍 . 5.用不等式表示 (1)a比6小__________; (2)x与1的和大于2___________; (3)a的2倍小于b__________; (4)m的相反数是正数___________; (5)x的4倍与7的差大于3___________; (6)a、b两数的平方和大于4__________; (7) m不大于-5 ; (8) x的4倍大于3 . 6.设“●”、“▲”表示两种不同的物体,现用天平称(如图),若用x、?y分别表示“●”、“▲”的重量,写出符合题意的不等式是_________.

人教A版高中数学必修五讲义及题型归纳:基本不等式

基本不等式 1.均值定理:如果a , b +∈R (+R 表示正实数),那么 2 a b +,当且仅当a b =时,有等号成立. 此结论又称均值不等式或基本不等式. 2 2a b +2 a b +需要前提条件,a b +∈R . 2 a b +叫做a ,b a ,b 3.可以认为基本元素为ab ,a b +,22a b +;其中任意一个为定值,都可以求其它两个的最值. 考点1:常规基本不等式问题 例1.(1)已知0x >,则1 82x x +的最小值为( ) A .2 B .3 C .4 D .5 【解答】解:0x >Q ,1842x x ∴+=… 当且仅当1 82x x =即14x =时取等号, 故选:C . (2)已知3 05 x <<,则(35)x x -取最大值时x 的值为( ) A . 310 B .910 C . 95 D . 12 【解答】解:305 x << Q , 则2115359 (35)5(35)()5 5220 x x x x x x +--=?-?= ?, 当且仅当535x x =-即3 10 x =时取最大值 故选:A . (3)已知函数9 4(1)1 y x x x =-+>-+,当x a =时,y 取得最小值b ,则23a b +等于( ) A .9 B .7 C .5 D .3 【解答】解:1x >-Q ,10x ∴+>,

99 41511 y x x x x ∴=-+ =++-++ 5… 1=, 当且仅当9 11 x x += +,即2x =时取等号, y ∴取得最小值1b =,此时2x a ==, 237a b ∴+=. 故选:B . (4)已知0a >,0b >,且22a b +=,则ab 的最大值为( ) A . 12 B C .1 D 【解答】解:0a >Q ,0b >,且22a b +=, 则21 121(2)()2 222 a b ab a b +=??=g ? , 当且仅当2a b =且22a b +=即12a =,1b =时取得最大值1 2 . 故选:A . 考点2:基本不等式易错点 例2.(1)已知1x y +=,0y >,0x ≠,则1||2||1 x x y ++的最小值是( ) A . 1 2 B . 14 C . 34 D . 54 【解答】解:由1x y +=,0y >得10y x =->, 解得1x <且0x ≠, ①当01x <<时,1||12||121 x x x y x y +=+++, 122242x x x x x x x x +-=+=+ --, 12115()2442424 x x x x -= +++?=-…, 当且仅当 242x x x x -= -即23x =时取等号; ②当0x <时, 1||1()2||121 x x x y x y +=-+++,

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

一元一次不等式练习题(经典版)

一元一次不等式 1、下列不等式中,是一元一次不等式的是 ( ) A 012>-x ; B 21<-; C 123-≤-y x ; D 532 >+y ; 2.下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5 D. 1 x -3x ≥0 3. 下列各式中,是一元一次不等式的是( ) (1)2x”或“<”号填空. 若a>b,且 c ,则: (1)a+3______b+3; (2)a-5_____b-5; (3)3a____3b; (4)c-a_____c-b (5); (6) 5.若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 二、填空题(每题4分,共20分) 1、不等式 122x >的解集是: ;不等式1 33 x ->的解集是: ; 2、不等式组?? ?-+0 501>>x x 的解集为 . 不等式组30 50x x -?的解集为 . 三. 解下列不等式,并在数轴上表示出它们的解集. (1) 8223-<+x x 2. x x 4923+≥- (3). )1(5)32(2+<+x x (4). 0)7(319≤+-x (5) 31222+≥+x x (6) 2 2 3125+<-+x x (7) 7)1(68)2(5+-<+-x x (8))2(3)]2(2[3-->--x x x x (9) 1215312≤+--x x (10) 2 1 5329323+≤---x x x

高中数学讲义 均值不等式

微专题45 利用均值不等式求最值 一、基础知识: 1、高中阶段涉及的几个平均数:设()01,2,,i a i n >=L (1)调和平均数:12111n n n H a a a = +++L (2)几何平均数:12n n n G a a a =L (3)代数平均数:12n n a a a A n +++= L (4)平方平均数:222 12n n a a a Q n +++=L 2、均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===L 特别的,当2n =时,22G A ≤?2 a b ab +≤ 即基本不等式 3、基本不等式的几个变形: (1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况 (2)2 2a b ab +?? ≤ ??? :多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况 (3)2 2 2a b ab +≥,本公式虽然可由基本不等式推出,但本身化成完全平方式也可证明,要注意此不等式的适用范围,a b R ∈ 4、利用均值不等式求最值遵循的原则:“一正二定三等” (1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0,x >求 23y x x =+ 的最小值。此时若直接使用均值不等式,则2 324y x x x =+≥右侧依然含有x ,则无法找到最值。 ① 求和的式子→乘积为定值。例如:上式中2 4y x x =+ 为了乘积消掉x ,则要将3 x 拆为两个2x ,则2223 342222334y x x x x x x x x =+=++≥??=

基本不等式经典例题学生用

基本不等式 知识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11 1 22-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2 a b a b a b b a b a b a +≥+≥+≤即或 ( 当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(2 2 2b a b a +≤+(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+1 2x 2 (2)y =x +1 x 技巧一:凑项 例 已知5 4x <,求函数1 4245y x x =-+-的最大值。 技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。 变式:设23 0<-+的值域。 技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a f x x x =+的单调性。 例:求函数224y x =+的值域。

七年级数学下册《不等式与不等式组》经典例题分析

不等式与不等式组经典例题分析 【例1】满 足的x 的值中,绝对值不超过11的那些整数之和等于 。 【例2】 如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程 的解,那么( ). 【例3】 如果,2+c>2,那么( ). A. a-c>a+c B. c-a>c+a C. ac>-ac D. 3a>2a 【例4】 四个连续整数的和为S ,S 满足不等式 ,这四个数中最大数与最小数 的平方差等于 . 由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏. 【例5】解不等式 |x-5|-|2x+3|<1. 【例6】关于x 的不等式组?????≤+≥+b x a a b x 23 223的解集为25≤≤-x ,求a 、b 的值。 【例7】若不等式? ??>+<1-2m x 1m x 无解,则m 的取值范围是 . 【例8】若不等式组???<<+<<-5 321x a x a 的解集为23+<+<+1159m x x x 的解集是x >2,则m 的取值范围是

【例11】不等式组x +9﹤5x+1 x﹤m+1 的解集是x>2,则m的取值范围是 解:解原不等式组得:x>2 x﹤m+1 由不等式组解集为x>2所以m的范围为空集,无解。 注意:一个不等式组中有解的情况下,两个不等式都是大大、小小都有解,一大一小时,取值范围为空集(如例11形式)。 【例12】如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的 整数a、b的有序数对(a,b)共有多少个?请说明理由。 分析解答:把原不等式组化为最简形式,得 由于不等式组有解,解集必为 又由于它的整数解仅为1,2,3,所以 从而 于是,整数a取1~9共9个整数,整数b取25~32共8个整数。 故有序数对(a,b)共有9×8即72对。 【例13】若不等式组有五个整数解,则a=_________ 分析解答:把原不等式化为最简形式,得 由于不等式组有解,解集必有 又它有五个整数解,这五个整数解只能是-3,-2,-1,0,1 故a的取值范围是 【例14】若不等式组的解集为,则的值为_______。 分析解答:把原不等式组化为最简形式,得 由于,所以

高考数学讲义不等式.知识框架

不等式 要求层次 重难点 基本不等式: 2 a b ab +≥(,0a b ≥) C 用基本不等式解决简单的最大(小)值 问题 不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 版块一.不等式的性质 1.用不等号()<>≠,,≤,≥,表示不等关系的式子叫做不等式. 2.对于任意两个实数a 和b ,在,,a b a b a b =><三种关系中,有且仅有一种关系成立. 知识内容 高考要求 模块框架 不等式

3.两个实数的大小比较: 对于任意两个实数,a b ,对应数轴上的两点,右边的点对应的实数比左边点对应的实数大. 作差比较法:0a b a b ->?>;0a b a b -,那么b a <;如果b a <,那么a b >. 性质2:(传递性)如果a b >,且b c >,则a c >. 性质3:如果a b >,则a c b c +>+. 推论1:(移项法则)不等式中的任意一项都可以把它的符号变成相反的符号后,从不等 式的一边移到另一边. 推论2:如果,a b c d >>,则a c b d +>+. 我们把a b >和c d >(或a b <和c d <)这类不等号方向相同的不等式,叫做同向不等式. 推论2说明:同向不等式的两边可以分别相加,所得的不等式与原不等式同向. 推广:几个同向不等式的两边分别相加,所得到的不等式与原不等式同向. 性质4:如果a b >,0c >,则ac bc >;如果a b >,0c <,则ac bc <. 实数大小的作商比较法:当0b ≠时,若1a b >,且0b >,则a b >;若1a b >,且0b <, 则a b <. 推论1:如果0,0a b c d >>>>,则ac bd >. 推广:几个两边都是正数的同向不等式的两边分别相乘,所得到的不等式与原不等式同向. 推论2:如果0a b >>,则(,1)n n a b n n +>∈>N . 推论3:如果0a b >>,1)n n +>∈>N <教师备案>1. 对于任意两个实数,a b ,有0a b a b ->?>;0a b a b -

相关文档
最新文档