浙江海洋学院船舶静水力性能及稳性计算

浙江海洋学院船舶静水力性能及稳性计算
浙江海洋学院船舶静水力性能及稳性计算

课程设计成果说明书题目:船舶静水力性能及稳性计算

学生姓名:

学号:

学院:船舶与建筑工程学院

班级:

指导教师:

浙江海洋学院教务处

2012年 12月 25 日

浙江海洋学院课程设计成绩评定表

2012 —2013学年第一学期

《船舶静力学》课程设计指导书

一、设计目的

《船舶静力学》是船舶与海洋工程专业的一门重要专业课,在课程中学习船体几何形体的表达方法;学习船舶安全漂浮水面保持一定稳性和浮态的基本原理和计算方法以及抗沉性能的研究。根据教学大纲要求的重点内容,本课程设计包括两方面内容★:一是运用所学基本方法和知识完成某一条船的静水力性能计算并绘制出静水力曲线图,使学生在了解和掌握基本原理的前提下实践计算流程;二是采用变排水量法计算并完成某一条船的静、动稳性曲线绘制。通过该课程设计环节达到对课程重点内容的消化和吸收,提高学生的工程技术素养,为后续课程学习和今后从事船舶设计、建造和开发等科研工作打下结实的理论基础。

注★:第一部分内容大部分学生完成,第二部分内容指定学生完成。

1班10,2班12

二、内容

1、静水力性能计算。依据提供的船型图纸资料,完成以下设计任务:

选取合适方法计算并绘制浮性和稳性曲线包括:

(1) 型排水体积曲线

(2) 排水量曲线

(3) 浮心纵向坐标x B曲线

(4) 浮心垂向坐标z B(或KB)曲线

(5) 水线面面积Aw曲线

(6) 漂心纵向坐标x F曲线(7) 每厘米吃水吨数TPC曲线

(8) 横稳心半径BM曲线

(9) 纵稳心半径BM L曲线

(10) 每厘米纵倾力矩MTC曲线

(11) 水线面系数C wP曲线

(12) 中横剖面系数C M曲线

(13) 方形系数C B曲线

(14) 棱形系数C P曲线

2、依据提供的船型图纸资料,完成以下设计任务:

采用变排水量计算法计算并绘制设计排水量时对应的静、动稳性曲线,计算后得出稳性衡准数K值。

三、要求

1.静水力性能采用excel 电子表格计算,静水力曲线图用AUTOCAD在计算机上完成。2.采用电子表格进行变排水量法计算,乞氏剖面及水线、横截曲线、稳性曲线均用AUTOCAD 在计算机上完成。

3.设计结果要求输出打印,按规定格式,以A4幅面整理成设计说明书。内容包括船型和14条静水力曲线数据的直接计算表格及所绘制静水力曲线图;横截曲线、稳性曲线的直接计算表格及所绘制曲线;设计后的总结与感想等。文本书写工整划一,言语规范,绘图标准。4.所有设计相关计算表格及数据、曲线汇总于课程设计电子稿版本中与设计说明书一并提交。

四、时间

1周(2012-12-17到2012-12-21),各班班长于21日下午17:00前收齐上交。

五、型船资料

设计船型线图、总布置图等

六、其他

如发现设计数据、图纸存在雷同,设计作废并重新就其他船舶完成相关设计,课程设计成绩计算基准减半。

以下为成果说明书基本格式,正文字体:宋体,字号:小四,行间距:18磅。内容见推荐目录。

摘要静水力图全面表达了船舶在静止正浮状态下浮性和稳性要素随吃水而变化的规律。静、动稳性曲线是为了反映船舶在大倾角的状态下受到的力矩,以及倾斜力矩所做的功。这两张图反映了船舶的性能以及安全性,是非常重要的两张图。

关键词:静水力图、曲线

目录:(参考)

一、封面 (1)

二、浙江海洋学院课程设计成绩评定表 (2)

三、任务书 (3)

四、摘要 (5)

五、目录 (6)

六、正文

(一)静水力计算

1、船型、主尺度及计算方法 (7)

2、计算列表汇总 (7)

3、曲线绘制 (8)

(二)稳性校核

1、船型、主尺度及计算方法 (9)

2、剖面定位及计算列表汇总 (9)

3、稳性横截曲线 (10)

4、静稳性曲线 (10)

5、动稳性曲线 (11)

(三)设计总结分析 (12)

(四)参考文献 (13)

绘制静水力曲线的船,其垂线间长为92.3m,船体型宽为15.8m,型深7.4米,设计吃水5.9m,排水量7089.92t,方形系数0.796。

首先,通过读取船的型值表,得到500WL,1000WL,1500WL,2000WL,3000WL,4000WL,5000WL,6000WL,7000WL。这些水线在各站线上的型值,将它们填入excel表格,通过梯形法计算出各水线面的面积Aw,并注意进行端点修正。在表格中,通过公式,我们可以得到水线面面积对船中的静矩,通过各水线面对中站的静矩除以水线面面积便得到各水线面的漂心Xf。通过静矩的值,可以得到船体水线面对通过船中的横轴的纵向惯性矩,减去Xf2×Aw的积便得到水线面对于通过漂心的横向轴的纵向惯性矩IL。通过半宽,求横向惯性矩It。

然后,由于知道各水线面面积以及各水线之间的间距,通过表格中相邻水线面面积的成对和的自上至下的和与水线之间的间距的积求出各水线面下的排水体积,并求得排水量。在知道漂心位置Xf和水线面面积Aw后,我们通过各水线的Xf与Aw的乘积的成对和的自上至下的和与水线之间的间距的积求出各各水线面下的排水体积的浮心纵向坐标Xb。而浮心的垂向坐标Zb我们可以通过各水线面对基平面的静矩值利用与计算浮心纵坐标相同的方法求得。

在上面计算中,已得到IL和It和排水体积,我们便可以通过公式得到各水线面的纵、横惯性矩除以各水线下的排水体积得到横、纵稳心半径BM和BML。最后利用水线面每厘米纵倾力矩MTC,水线面系数Cwp,每厘米吃水吨数TPC,方形系数Cb,棱形系数Cp,中横剖面系数Cm的公式求得这些系数值。

有关公式:

L

=δd/2(V)

W

)

L

3

/(LBd)

横剖面站号水线半

宽(m)

面矩

乘数

惯矩

乘数

面矩函数

(Ⅱ)×(

Ⅲ)

惯矩函数(Ⅱ)

×(Ⅳ)

水线半宽立方

(m3)

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ 0 -0.1 -10 100 1 -10 -0.001 1 0.204 -9 81 -1.836 16.524 0.008 2 0.546 -8 64 -4.368 34.944 0.163 3 1.369 -7 49 -9.583 67.081 2.566 4 3.3 -6 36 -19.8 118.8 35.937 5 5.575 -5 25 -27.875 139.375 173.274 6 6.656 -4 16 -26.624 106.496 294.876 7 6.74 -3 9 -20.22 60.66 306.182 8 6.74 -2 4 -13.48 26.96 306.182 9 6.74 -1 1 -6.74 6.74 306.182

10 6.74 0 0 0 0 306.182 11 6.74 1 1 6.74 6.74 306.182 12 6.74 2 4 13.48 26.96 306.182 13 6.74 3 9 20.22 60.66 306.182 14 6.74 4 16 26.96 107.84 306.182 15 6.74 5 25 33.7 168.5 306.182 16 6.255 6 36 37.53 225.18 244.727 17 4.818 7 49 33.726 236.082 111.841 18 2.701 8 64 21.608 172.864 19.705 19 0.55 9 81 4.95 44.55 0.166 20 -0.415 10

100

-4.15

-41.5

-0.071

总和Σ’ 92.119 0

770.000

64.238 1575.456 3638.830

修正值ε -0.258 修正后Σ 92.377 计算公式 Aw=2δL ΣⅡ(㎡)

计算结果 852.635

0.585 3.209 300925.758 11196.679

船舶原理公式

船舶原理公式汇总 第一章 船型系数: 水线面系数C WP =A W /LB 中横剖面系数C M =A M /Bd 方形系数C B =排水体积/LBd 菱形系数C P =排水体积/A M L=排水体积/C M BdL=C B /CM 垂向菱形系数C VP =排水体积\A W d=排水体积/C WP LBd=C B /C WP 排水体积符号▽ 尺度比: 长宽比L/B :与船的快速性有关 船宽吃水比B/d:与船的稳性、快速性和航向稳定性有关 型深吃水比D/d :与船的稳性、抗沉性、船体的坚固性以及船体的容积有关 船长吃水比L/d :与船的回转性有关,比值越小,船越短小,回转越灵活 梯形法:A=?b a ydx A=l ?b ydx 0 =l(∑=n i yi 0 -(y 0+y 3)/2)注(y 0+y n )/2为首尾修正项 辛氏法:一法,A=1/3l(y 1+4y 2+y 3)二法,A=3l/8(y 1+3y 2+3y 3+y 4) 计算漂心X F =M oy /A W =? -2/2 /L L xydx /? -2 /2 /l l ydx 其中A W =2L δ∑yi ' M oy =2(L δ)2∑kiyi '所以X f =L δ∑kiyi '/∑yi ' 计算横剖面面积型心的垂向坐标Z a =M oy /A s =?d zydz 0 /?d ydz 0 其中横剖面面积As=2?d ydz 0 Moy=2?d zydz 0 又可以表达为As=2d δ∑yi '(注意首位修正) Moy=2(l δ)2∑kiyi '所以可以表达为za=d δ∑kiyi '/∑yi ' 第二章 浮心的计算dM yoz =x F A w d z dM xoy =zA w d z x F 为A w 的漂心纵向坐标 排水体积对中站面yoz 的静距M yoz =?d xfAwdz 0 浮心纵向坐标x B =M yoz /▽=? d xfAwdz 0 /?d Awdz 0 同理可以得排水体积对基平面xoy 的静距和浮心垂向坐标Mxoy=?d zAwdz 0 Zb=Mxoy/▽=?d zAwdz 0/?d Awdz 0 同理根据横剖面计算排水体积和浮心位置 dM yoz =x F A s d x dM xoy =z a A s d x 浮心纵向坐标Myoz=? -2/2 /l l xAsdx X B =Myoz/▽=? -2 /2 /l l xAsdx /? -2 /2 /l l Asdx

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

船舶静力学总结复习资料

第一章船体形状及近似计算 1.型尺度(也称模尺度):量到船体的型表面(或模表面)的尺度,用于船型的 研究和船舶原理的各种计算。钢船的型表面是外壳板的内表面,木船和钢丝网水泥船由于外板厚度较大,因而型表面一般取外壳板的外表面。 2.尾垂线:一般在舵柱的后缘,如无舵柱,则取在舵杆的中心线上。 3.干舷(F—Freeboard):自设计水线至上甲板边板上表面的垂直距离。 4.长宽比L/B:与船的快速性有关。例如高速船这比值越大,船越细长,在水中 航行时所受的阻力越小。 5.宽度吃水比B/d:与稳性、快速性、耐波性和操纵性都有关。 6.型深吃水比D/d:与船的稳性、抗沉性、船体强度及船体的容积有密切的关系。 7.长深比L/D:与船体总强度有关,长深比小,船短而高,强度好。 8.梯形法基本原理:用若干直线段组成的折线近似地代替曲线,即以若干梯形面 积之和来代替被积函数曲线下所包围的面积。 9.辛浦生法:用抛物线段来近似代替实际曲线。用二次抛物线来近似代替实际曲 线—辛氏第一法则;用三次抛物线来近似代替实际曲线—辛氏第二法则。10.乞贝雪夫法的原理:用高次(n次)抛物线来代替曲线,并取不等间距的n个 纵坐标,计算抛物线下的面积代替实际曲线下的面积。面积S是用不等间距的n个纵坐标之和乘以一个共同的系数p,p值为曲线底边长除以纵坐标数目n,即p=L/n。 11.乞贝雪夫法不适用于变限积分的计算,但在手工计算大倾角稳性用。 12.提高计算精度的方法:增加中间坐标、端点修正坐标。 13.曲线的端点较凸修正方法: 1)过A点作直线AB,并使阴影线部分的面积相等,所得OB即为修正坐标 '0y; 2)曲线端点未达到所规定的等间距站号:过B点作直线BD使两阴影线部分 的面积相等,然后连接OB,并过D点作DE//OB,则OE为修正到新站号 的坐标y0’(为负值)。 3)曲线的端点超出了所规定的等间距站号:过D点作直线DE使两阴影线部 分的面积相等,然后连接AD,再从E点作EF//AD,则DF即为坐标修正 值y0’,计算中用y0’代替y0可得到较精确的结果。 第二章浮性 1.浮性:是指在一定装载情况下,船舶具有漂浮在水面(或浸没水中)保持平衡 位置的能力。 2.阿基米德原理:物体水中所受到的浮力等于该物体所排开的水的重量Δ=ω*?。 3.淡水ω= 1.0 t /m3 海水ω= 1.025 t /m3 4.船舶漂浮的平衡条件:重力和浮力大小相等,且方向相反,即:W =ω?;重 心G和浮心B在同一铅垂线上。 5.为描述浮态,通常选用固定在船上的直角坐标系。 6.浮态:船舶浮于静水的平衡状态。 7.三种典型浮态:正浮、横倾、纵倾。 8.重心坐标: 9.船上各项重量:1、固定重量(空船重量),重量和重心固定不变;2、变动重 量(载重量),包括旅客、货物、燃料、润滑油、淡水、粮食及弹药等。 10.船舶排水量:空船重量与载重量之和。 11.民用船舶排水量定义: 满载排水量:货物和旅客全部装载满额的情况; 空载排水量:货物和旅客全部没有的情况。 12.通常所谓满载排水量,如无特殊说明,就是指满载出港的排水量,也是民用船 的最大排水量。 13.军用舰艇排水量定义:空载、标准、正常、满载、最大。 14.进行设计时,民用船舶以满载排水量为设计排水量。军用舰艇以正常排水量为 设计排水量。 15.计算静矩时:X F是离基平面z处的水线面面积形心(称为漂心)的纵向坐标。 16.浮心纵坐标:

保证船舶具有适当的吃水差模拟题

第四章保证船舶具有适当的吃水差模拟题 2011-3-13第一节航行船舶对吃水差和吃水的要求 1.船舶纵倾后浮心向()移动。 A.船中 B.中前 C.中后 D.倾斜方向 2.根据经验,万吨级货船在满载时适宜的吃水差为尾倾()m。 A.~ B.~ C.~ D.~ 3.从最佳纵倾的角度确定吃水差,目的是使船舶的()。 A.所受阻力最小 B.装货量最大 C.燃油消耗率最小 D.吃水最合适 4.某万吨货轮某航次轻载出港时吃水差t=-0.5m,则根据经验将会对船舶产生()影响。 A.航速减低 B.舵效变差 C.操纵性变差 D.A、B、C均有可能 5.某万吨货船某航次满载出港时吃水差t=-2.3m,则根据经验将会对船舶产生()影响。 A.船首部底板易受波浪拍击 B.甲板上浪 C.操纵性变差 D.A和C均有可能 6.某万吨货轮某航次半载出港时吃水差t=-0.7m,则根据经验将会对船舶产生()影响。 A.提高航速 B.提高船舶舵效 C.减少甲板上浪

D.A、B、C均有可能 7.普通船舶首倾航行时,可能会产生下述()影响。 A.首部甲板易上浪,强度易受损 B.出现飞车现象 C.船舶操纵困难,航速降低 D.A、B、C均有可能 8.按我国定义,船舶吃水差是指船舶()。 A.首尾吃水之差 B.装货前后吃水差 C.满载与空载吃水之差 D.左右舷吃水之差 9.船舶在空载航行时必须进行压载的原因是()。 A.稳性较差 B.受风面积大,影响航速 C.螺旋桨的推进效率低 D.A、B、C均是 10.当泊位水深受限时,船舶出港时的吃水差应为()。 A.正值 B.负值 C.0 D.以上均可 11.当船舶装载后其重心纵坐标与正浮时浮心纵坐标不同时,船舶将会()。A.横倾 B.正浮 C.纵倾 D.任意倾斜 12.船舶纵倾后()。 A.重心与浮心共垂线 B.漂心与重心共垂线 C.重心不与正浮时漂心共垂线 D.重心不与浮心共垂线 13.吃水差产生的原因是()。 A.船舶装载后重心不与浮心共垂线 B.船舶装载后漂心不与重心共垂线 C.船舶装载后重心不与正浮时漂心共垂线 D.船舶装载后重心不与正浮时浮心共垂线

第四章 船舶稳性教案.

第四章船舶稳性 (一)课程导入 (二)新授课 第一节、稳性的基本概念 船舶平衡的3种状态: 1.船舶的平衡状态 船舶漂浮于水面上,其重力为W,浮力为△,G为船舶重心,B为船舶初始位置的浮心。在某一性质的外力矩作用下船舶发生倾斜,由于倾斜后水线下排水体积的几何形状改变,浮心由B移至B1点,当外力矩消失后船舶能否恢复到初始平衡位置,取决于它处在何种平衡状态(下图)。 (1)稳定平衡。如图(a)所示,船舶倾斜后在重力W和浮力△作用下产生一稳性力矩,在此力矩作用下,船舶将会恢复到初始平衡位置,称该种船舶初始平衡状态为稳定平衡状态。 (2)随遇平衡。如图2-1所示,船舶倾斜后重力W和浮力△仍然作用在同一垂线上而不产生力矩,因而船舶不能恢复到初始平衡位置,则称该种船舶初始平衡状态为随遇平衡状态。 (3)不稳定平衡。如图2-1(c)所示,船舶倾斜后重力W和浮力△作用下产生一倾覆力矩,在此力矩作用下船舶将继续倾斜,称称该种船舶初始平衡状态为不稳定平衡状态。 2.船舶平衡状态的判别 为对船舶的平衡状态进行判别,将船舶正浮时浮力作用线和倾斜后浮力作用线的交点定义为稳心,以M表示。由于船舶倾斜后的浮心位置或浮力作用线与船舶吃水(或排水量)、船舶倾角有关,稳心位置也随船舶吃水(或排水量)、船舶倾角不同而变化。 进一步分析表明,船舶处于何种平衡状态与重心G和稳心M的相对位置有关。船舶稳定平衡时,重心G位于稳心M之下;船舶不稳定平衡时,重心G位于稳心M

之上;船舶随遇平衡时,重心G 和稳心M 重合。因此,为了使船舶在受到一外力矩作用下具有一定的复原能力从而保证船舶安全,船舶重心必须在相应倾角时的稳心之下。 处于稳定平衡状态的船舶,其复原能力的大小取决于倾斜后产生的稳性力矩或复原力矩s M 的大小。由图(a )可见,该稳性力矩大小为 s M GZ =?? 式中:GZ ──静稳性力臂 (m ),是船舶重心G 至倾斜后浮力作用线的垂直距离,通常简称作稳性力臂或复原力臂。 船舶稳性的分类: 船舶在外力矩作用下偏离其初始平衡位置而倾斜,当外力矩消失后船体能自行恢复到初始平衡状态的能力称为船舶稳性。 船舶稳性通常可按以下方法分类: 1.按船舶倾斜方向分类。可分为横稳性和纵稳性。横稳性指船舶绕纵向轴(x 轴)横倾时的稳性,纵稳性指船舶绕横向轴(y 轴)纵倾时的稳性。由于纵稳性力矩远大于横稳性力矩,故实际营运中不可能因纵稳性不足而导致船舶倾覆。 2.按倾角大小分类。可分为初稳性和大倾角稳性。初稳性(小倾角稳性)指船舶微倾时所具有的稳性,微倾在实际营运中将倾斜角扩大至10°~15°;大倾角稳性指当倾角大于10°~15°时的稳性。 3.按作用力矩的性质分类。可分为静稳性和动稳性。静稳性指船舶在倾斜过程中不计及角加速度和惯性矩时的稳性;动稳性指船舶在倾斜过程中计及角加速度和惯性矩时的稳性。 4.按船舱是否进水分类。可分成完整稳性和破舱稳性。船体在完整状态时的稳性称为完整稳性,而船体破舱进水后所具有的稳性则称为破舱稳性。 第一节 船舶初稳性 船舶初稳性的基本标准: 理论证明:船舶在微倾条件下,倾斜轴过初始水线面的面积中心即初始漂心F ;过初始漂心F 微倾后船舶排水体积不变;当排水量一定时,船舶的稳心M 点为一定点。船舶初稳性是以上述结论为前提进行研究和表述的。 船舶在小倾角条件下,稳性力矩M s 和稳性力臂GZ 可表示为 M s =ΔGM sin θ GZ =GM sin θ 式中:GM ───船舶重心与稳心间的垂直距离,称为初稳性高度(m ); θ───船舶横倾角(°)。 由上式可见,在排水量及倾角一定情况下,静稳性力矩大小取决于重心和稳心的相对位置,即取决于GM 大小。当M 点在G 点之上,GM 为正值,此时船舶具有稳性力矩并与GM 值成正比;当M 点在G 点之下,GM 为负值,此时船舶具有倾覆力矩亦与GM 值成正比;当M 点和G 点重合,GM 为零,此时稳性力矩为零。 由此分析可知,GM 可以作为衡量船舶初稳性大小的基本标志。欲使船舶具有稳性,必须使GM >0。 初稳性高度GM 的计算: 1.由装载排水量查取横稳心距基线高度KM ;

稳性的基本概念

第一节 稳性的基本概念 一、稳性概述 1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行 回复到原来平衡位置的能力。 2. 船舶具有稳性的原因 1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、 船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。 2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心 的相对位置等因素。 S M G Z =?? (9.81)kN m ? 式中: G Z :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。 ◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时, 船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。 3. 横稳心(Metacenter)M : 船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。 4. 船舶的平衡状态 1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。 2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。 3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。 如下图所示

例如: 1)圆锥在桌面上的不同放置方法; 2)悬挂的圆盘 5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具 有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。 6. 稳性大小和船舶航行的关系 1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易 受损、舱内货物容易移位以致危及船舶安全。 2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时 间斜置于水面,航行不力。 二、稳性的分类 1. 按船舶倾斜方向分为:横稳性、纵稳性 2. 按倾角大小分为:初稳性、大倾角稳性 3. 按作用力矩的性质分为:静稳性、动稳性 4. 按船舱是否进水分为:完整稳性、破舱稳性 三、初稳性 1. 初稳性假定条件: 1)船舶微倾前后水线面的交线过原水线面的漂心F; 2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。2.初稳性的基本计算 初稳性方程式:M R = ??GM?sinθ GM = KM - KG

第四章 船舶稳性

第四章船舶稳性 第一节船舶稳性的基本概念 (一)船舶平衡的3种状态 1、稳定平衡 >0 G点在M点之下,GM>0,M R 2、随遇平衡 G点与M点重合,GM=0,M =0 R 3、不稳定平衡 <0 G点在M点之上,GM<0,M R (二)稳性的定义 船舶稳性是指船舶受给定的外力作用后发生倾侧而不致倾覆,当外力消失后仍能回复到原来的平衡位置的能力。 (三)稳性分类 分类方法: 按倾斜方向、倾角大小、倾斜力矩性质、船舱是否进水 ┏破舱稳性 稳性┫┏初稳性(小倾角稳性) ┃┏横稳性┫┏静稳性 ┗完整稳性┫┗大倾角稳性┫ ┗纵稳性┗动稳性 其中,倾角小于等于10-15度称为小倾角,否则称为大倾角。倾斜力矩性质指静力或动力,或者说有无角速度、角加速度。

第二节船舶初稳性(1) (一)船舶初稳性的基本标志 1.稳心M 与稳心距基线高度KM 船舶小倾角横倾前、后其浮力作用线交点称为横稳心,简称稳心。 稳心M距基线的垂向坐标称为稳心距基线高度。 2.初稳性的衡准指标 稳心M至重心G的垂距称为初稳性高度GM。 初稳性高度GM是衡准船舶是否具有初稳性的指标。初稳性高度大于零,即船舶重心在稳心之下,船舶就有初稳性。 3.初稳性中的假设(对于任一给定的吃水或排水量) (1)小倾角横倾(微倾); (2)在微倾过程中稳心M和重心G的位置固定不变; (3)在微倾过程中浮心B的移动轨迹是一段以稳心为圆心的圆弧; (4)在微倾过程中倾斜轴过漂心。 (二)初稳性高度GM的表达式 GM=KB+BM-KG=KM-KG

第二节 船舶初稳性(2) (三) 初稳性高度的求取 1、 KM 可在静水力曲线图、静水力参数表或载重表中查取。 2、 KG 的计算 式中,P i —— 组成船舶总重量(含空船重量等)的第i 项载荷,t Z i —— 载荷P i 的重心距基线高度,m 3、Z i 确定 (1)舱容曲线图表查取法 船舶资料中通常有各个货舱和液舱的舱容曲线图或数据表,利用舱容曲线图表,可方便确定舱内散货或液货的重心高度Z i ,方法如下: i )对于匀质散货或液货,已知货堆表面距基线高度,在图中左纵轴上对应点做水平线交舱容中心距基线高度曲线得B 点,过B 点做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ii )对于积载因素相近、合理积载的件杂货,根据所装货物的体积,在下横轴找到相应点向上做垂线,交舱容曲线得A 点,过A 点做水平线交舱容中心距基线高度曲线得B 点,过B 点向上做垂线交上横轴得C 点,对应值即为该舱货物重心距基线高度Z i 。 ) 2.3()m (Z P KG i i ? *∑ =

船舶吃水差的概念与基本计算

第一节 船舶吃水差的概念与基本计算 一、吃水差概述 1. 吃水差(trim)概念 当t = 0 时,称为平吃水(Even keel); t = d F -d A 当t > 0时,称为首倾(Trim by head); 当t < 0时,称为尾倾(Trim by stern)。 2. 吃水差对船舶航海性能的影响 3. 适当吃水差的范围 1)载货状态下,对万吨级货轮: 满载时:t = -0.3~-0.5 m 半载时:t = -0.6~-0.8 m 轻载时:t = -0.9~-1.9 m 2)空载航行时: ◎一般要求 dm ≥ 50%d s (冬季航行dm ≥ 55%d s ) I/D ≥0.65~0.75 | t | <2.5%L bp 其中:d s —— 船舶夏季满载吃水(m); I —— 螺旋桨轴心至水面高度(m); D —— 螺旋桨直径(m)。 ◎推荐值 当L bp ≤ 150m 时 d Fmin ≥ 0.025L bp ( m ) d mmin ≥ 0.02L bp + 2 ( m )

当L bp > 150m 时 d Fmin ≥ 0.012L bp + 2 ( m ) d mmin ≥ 0.02L bp + 2 ( m ) 二、吃水差产生的原因 1. 纵向上,船舶装载后总重心与正浮时的浮心不共垂线,即g b x x ≠ 2. g x 的求法 合力矩定理 () i i g P x x ∑?= ? 三、吃水差的基本计算 1. 纵向小倾角静稳性 理论证明,船舶在小角度纵倾时,其纵倾轴为过初始水线面漂心的横轴,在排水量一定时,纵倾前后相临两浮力作用线的交点L M 为定点,L M 称为纵稳心。 sin tan RL L L L BP t M GM GM GM L ??=???≈???=??? 2. 每厘米纵倾力矩MTC :吃水差改变1cm 所需要的纵倾力矩,可由资料查得。 或:船舶吃水差改变1cm 时,船舶本身所具有的纵向复原力矩。 令1t cm =,则0.01100L RL L L BP BP BP BM t M GM BM MTC L L L ??≈???≈???== 3. 吃水差的计算 ()100100100g b i i b T x x Px x M t MTC MTC MTC ?-∑-??= ==??? 显然,g b x x ≠时,船舶将存在一定的吃水差。 4. 首尾吃水的计算 由图可得: 2BP f F m BP L x d d t L -=+?

船舶稳性和吃水差计算

船舶稳性和吃水差计算 Ship stability and trim calculations 1.总则General rules 保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion. 2.适用范围Sphere of application 公司所属和代管船舶的稳性、强度要求 To satisfy the requirement of company owned and managed ships stability and strength 3.责任Responsibility 3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对 相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values. 3.2.船长负责审批大副确认的配载方案和稳性计算。 The captain is responsible for checking and approving the stowage plan and stability calculation that has been confirmed by chief officer. 4.实施步骤Implementation steps 4.1.每次装货前,大副必须对相关部门提供的预配方案仔细核算,报船长审核签字后才可 实施。 Every time before loading, the chief officer should carefully adjust accounts of the pre stowage plan from the relevant department and transfer it to captain, the stowage plan should be implemented after captain reviewing and signing. 4.2.船舶装货前后大副应认真进行船舶稳性及强度计算校核,包括装货前的预算和装货后 的船舶局部强度和应力状况的核算,货品发生变化后,要重新进行计算。计算时充分考虑自由液面,油水消耗,污水变化及甲板结冰等对船舶稳性产生的影响,确保船舶在离港、航行、抵港的过程中均满足要求。 Every time before loading, the chief officer should carefully calculate and check the ship’s stability and strength, including calculation before loading and the partial strength and stress condition of the ship after loading, if cargos changes, the stability and strength should be re-calculated. When calculating, should fully consider the free surface, water and oil consumption, sewage and water ice on deck and other changes on the impact of ship stability, to ensure that the ship departure, navigating and arriving at port in the process can meet the requirements. 4.3.开航前,大副应完成初稳性高度和强度的计算。稳性计算结果应满足: Before departure, the chief officer should complete the calculations of height of initial stability and strength. Stability calculation results should be satisfied as below: hc - ⊿h > hL 式中:hc:计算的初稳性高度The calculating height of initial stability ⊿h:自由液面修正值Free surface correction value hL:临界初稳性高度The critical height of initial stability 船舶静水力弯矩和剪力以及局部强度不得超过允许值。 Hydrostatic moment of force, shear force and partial strength of the ship can not to exceed the allowable values. 4.4.大副要将每航次的稳性计算资料包括积载图留存,并将稳性计算中的重要内容摘录记 在航海日志中,报船长审核确认签字。 The chief officer should preserve such documents including stability calculation information and stowage plan, and records the important contents of the stability calculation into the log, which shall be reported to captain to verify and sign.

船舶静力学第三章习题答案

第三章 初稳性 习题解 3-3 某巡洋舰的排水量△=10200t ,船长L=200m ,当尾倾为1.3m 时,水线面面积的纵向惯性矩I L =420*104m 4,重心的纵向坐标x G =-4.23m ,浮心的纵向坐标x B =-4.25m ,水的重量密度3/025.1m t =ω。 3-13 某船长L=100m ,首吃水d F =4.2m ,尾吃水d A =4.8m ,每厘米吃水吨数TPC=80t/cm ,每厘米纵倾力矩MTC=75tm ,漂心纵向坐标x F =4.0m 。今在船上装载120t 的货物。问货物装在何处才能使船的首吃水和尾吃水相等。 解:按题意要求最终的首尾吃水应相等,即'='A F d d 设货物应装在(x,y,z)处,则装货后首尾吃水应满足: A A F F d d d d d d δδδδ++=++,即A A F F d d d d δδ+=+ (1)

??? ??????? ??+-=??? ??-=θδθδtg x L d tg x L d F A F F 22 (2) () L F GM x x P tg ??-=θ (3) L GM MTC L 100??= M T C L GM L ?=??∴100 (4) 将式(2)、(3)、(4)代入式(1)中得: ()()MTC L x x P x L d MTC L x x P x L d F F A F F F ?-??? ??+-=?-??? ??-+10021002 代入数值得: ()()75*100*1000.4*1200.420.1008.475*100*1000.4*1200.420.1002.4-?? ? ??+-=-??? ??-+x x 解得: x=41.5m 答:应将货物放在(41.5,0,z )处。 3-14 已知某长方形船的船长L=100m ,船宽B=12m ,吃水d =6m ,重心垂向坐标z G =3.6m ,该船的中纵剖面两边各有一淡水舱,其尺度为:长l =10m ,宽b=6m ,深a=4m 。在初始状态两舱都装满了淡水。试求:(1)在一个舱内的水耗去一半时船的横倾角; (2)如果消去横倾,那们船上x=8m ,y=-4m 处的60t 货物应移至何处? 解:

船舶静力学复习提纲——2018

船舶静力学复习题 1.基本概念 (1)船舶主尺度:中线面,中站面,基平面的定义 (2)5个船型系数及其相互关系 (3)型线图的组成 (4)梯形法和辛普生法计算公式 (5)水线面面积、形心和惯性矩的计算方法 (6)浮态的定义方式 (7)重量重心计算方法 (8)TPC (9)排水体积和浮心的两种积分方法 (10)邦戎曲线 (11) Firsov图谱 (12)船舶常用的几种排水量 (13)储备排水量和水线标记 (14)稳心半径,初稳性高的概念和计算公式 (15) MTC (16)静水力曲线图的组成和应用 (17)自由液面和悬挂重量对初稳性高的修正方法 (18)稳性试验 (19)初稳性校核的工况 (20)静稳性曲线及其基本特征 (21)动稳性曲线 (22)静稳性臂、动稳性臂与重心、浮心间的函数关系 (23)重心变化对静稳性臂的修正。 (24)极限风倾力矩 (25)稳性规范和稳性衡准数 (26)临界初稳性高、极限重心高度 (27)破舱的类型、渗透率 (28)安全限界线、极限破舱水线、可浸长度、许用舱长、分仓因素 2、计算题 和漂心坐标,纵倾和横倾惯性矩。 某船的水线面如图所示,求该船的水线面面积A W Array 60m

三、计算题 海上浮式平台有三个圆柱形浮筒、支撑结构、上层建筑组成。已知上层建筑重量为50吨,重心高度40m,支撑结构和浮筒重量为70吨,重心高度为5m,浮筒为三个柱体,分别位于等边三角形的三个顶点位置,单个柱体截面积为10m2。整个电站的浮力仅由三个浮筒提供。 求(1)平台的排水量和重心高度 (2)要求平台的初稳性高不小于10m,求由三个浮筒圆形构成的正三角形的边长。 四、计算题(10分) 某箱形双体船横剖面如图所示,其重心在基线以上3.875m,吃水T=2.0m,如果要求初稳性高GM 2m,求两单体中心线相隔的间距d的最小值。 五、计算题 某内河船的静水力曲线如下表所示,垂线间长为200m: 初始状态该船的平衡于正浮状态,吃水为8m,重心高度为10m,若在船上再装载8380吨货物,货物的重心位置在(-1m,0.3m,6m),求: (1)初始状态的排水量和重心纵坐标XG、横坐标YG。 (2)装载货物船舶的平均吃水。 (3)装载后船舶的浮态和首尾吃水。 六、计算题 某货船在A港内吃水T=5.35m,要进入B港,其吃水不能超过T 1=4.60m,已知吃水T 2 =5.50m时,水线面面积A W2=1860m2,T3=4.50m时,A W3 =1480m2,假设水线面面积随吃水的 变化是线性的,求船进入B港前必须卸下的货物重量。(水的密度 =1.00 ton/m3) 七、计算题 某内河驳船 =1100 ton,平均吃水d=2.0m,每厘米吃水吨数TPC=6.50 ton/cm,六个同样的舱内装石油,每个舱内都有自由液面,油舱为长方形,其尺度为l=15.0m,b=6.0m,这时船的初稳性高为GM=1.86m,若把右舷中间的一个舱中重量p=120ton的油完全抽出,其重心垂向坐标ZC=0.80m,求船的横倾角。已知石油的密度 =0.9ton/m3。 八、计算题(15分) 某船排水量D=4430ton,平均吃水T=5.3m,重心G点距基线高度为3m,任意角度下浮力

第五章、船舶吃水差

第五章、船舶吃水差(145) 第一节、航行船舶对吃水差及吃水的要求(37) 1、船舶纵倾后浮心向()移动。 A.船中B.中前C.中后D.倾斜方向 2、根据经验,万吨级货船在满载时适宜的吃水差为尾倾()m。 A.2.0~2.5 B.0.9~1.9 C.0.6~0.8 D.0.3~0.5 3、从最佳纵倾的角度确定吃水差,目的是使船舶的()。 A.所受阻力最小B.装货量最大C.燃油消耗率最小D.吃水最合适 4、某万吨货轮某航次轻载出港时吃水差t=-0.5m,则根据经验将会对船舶产生()影响。 A.航速减低B.舵效变差C.操纵性变差D.A、B、C均有可能 5、某万吨货船某航次满载出港时吃水差t=-2.3m,则根据经验将会对船舶产生()影响。 A.船首部底板易受波浪拍击B.甲板上浪C.操纵性变差D.A和C均有可能 6、某万吨货轮某航次半载出港时吃水差t=-0.7m,则根据经验将会对船舶产生()影响。 A.提高航速B.提高船舶舵效C.减少甲板上浪D.A、B、C均有可能7、普通船舶首倾航行时,可能会产生下述()影响。 A.首部甲板易上浪,强度易受损B.出现飞车现象

C.船舶操纵困难,航速降低D.A、B、C均有可能 8、按我国定义,船舶吃水差是指船舶()。 A.首尾吃水之差B.装货前后吃水差C.满载与空载吃水之差D.左右舷吃水之差 9、船舶在空载航行时必须进行压载的原因是()。 A.稳性较差B.受风面积大,影响航速C.螺旋桨的推进效率低D.A、 B、C均是 10、当泊位水深受限时,船舶出港时的吃水差应为()。 A.正值B.负值C.0 D.以上均可 11、当船舶装载后其重心纵坐标与正浮时浮心纵坐标不同时,船舶将会()。A.横倾B.正浮C.纵倾D.任意倾斜 12、船舶纵倾后()。 A.重心与浮心共垂线B.漂心与重心共垂线 C.重心不与正浮时漂心共垂线D.重心不与浮心共垂线 13、吃水差产生的原因是()。 A.船舶装载后重心不与浮心共垂线B.船舶装载后漂心不与重心共垂线 C.船舶装载后重心不与正浮时漂心共垂线D.船舶装载后重心不与正浮时浮心共垂线 14、当船舶的尾吃水等于首吃水时称为()。 A.首倾B.尾倾C.拱头D.平吃水 15、当船舶的首吃水大于尾吃水时,我国通常定义为()。

船舶静力学名词解释

船舶静力学名词解释 1. 总长——自船首最前端至船尾最后端平行于设计水线的最大水平距离。(进坞、码头、船闸时用) 2. 垂线间长——艏垂线与艉垂线之间的水平距离。(静水力计算时用) 艏垂线——通过设计水线与首柱前缘的焦点所作的垂线。。 艉垂线——一般在舵柱的后缘,如无舵柱,则去在舵杆中心线上。 3. 设计水线长——设计水线在首柱前缘和尾柱后缘之间的水平距离。(分析阻力性能用) (如无特殊说明时,船长指垂线间长,水线长指设计水线长) 4. 型宽——指船体两侧型表面之间垂直于中线面的最大水平距离。 5. 型深——在甲板边板最低处,自龙骨板上表面至上甲板边线的垂直距离。 6. 吃水——龙骨基线至设计水线的垂直距离。(不做特殊说明时,指平均吃水) 7. 干舷——自水线至上甲板边板上表面的垂直距离。 8. 水线面系数WP C ——与基平面相平行的任一水线面的面积W A 与船长L 、型宽B 所构成的矩形面积之比。LB A C W WP =(表征水线面的胖瘦程度) 9. 中横剖面系数M C ——中横剖面在水线以下部分的面积M A 与由船宽 B 、吃水d 所构成的矩形面积之比。Bd A C M M =(表征水线以下部分中横剖面的肥瘦程度) 10. 方形系数 B C ——船体水线以下的型排水体积?与由船长L 、型宽B 、吃水d 所构成的长方体体积之比。LBd C B ?=(表征船体水下体积的肥瘦程度) 11. 棱形系数P C ——船体水线以下的型排水体积?与由相应的中横剖面面积M A 、船长L 所构成的棱柱体体积之比。L A C M P ?=(表征排水体积沿船长方向的分布情况)

12. 垂向棱形系数VP C ——船体水线以下的型排水体积?与由相应的水线面面积W A 、吃水 d 所构成的棱柱体体积之比。d A C W VP ?=(表征排水体积沿吃水方向的分布情况) 13. 浮性——船舶在一定装载情况下具有漂浮在水面(或浸沉水中)保持平衡位置的能力。 14. 重心——船舶上各部分重量形成的合力的作用点。 15. 浮心——水下部分静水压力的合力的作用点。也是船舶排水体积的形心。 16. 浮态——船舶浮于静水中的平衡状态。 17. 横倾——船舶中横剖面垂直于静止水面,当中纵剖面与铅垂平面成一横倾角φ时的浮 态。 18. 纵倾——船舶中纵剖面垂直于静止水面,当中横剖面与铅垂平面成一纵倾角θ时的浮 态。 19. 载重量——除去空船外,船舶所能装载的重量,即满载出港排水量减去空船重量。 20. 载货量——除去空船与变动重量外,满载出港时船舶的重量,即载重量减去变动重量。 21. 空载出港——指燃料、润滑油、淡水、粮食以及其他给养物品按规定带足,但没装货时 的重量。 22. 空载到港——指燃料、润滑油、淡水、粮食以及其他给养物品剩余10%,但没装货时的 重量。 23. 满载出港——指燃料、润滑油、淡水、粮食以及其他给养物品按规定带足,且载满货物 时的重量。 24. 满载到港——指燃料、润滑油、淡水、粮食以及其他给养物品剩余10%,且载满货物时 的重量。

船舶原理计算

梯形法则辛氏法则: 1. 已知某船半宽水线值为 y0,y1,------ y9,y10,等间距为Δl , 分别写出用梯形法和辛卜生法计算此时的水线面的面积Aw 计算式。 Aw=2A 梯形法则: 辛氏法则: 2.已知某船的水线面面积为 Aw1,Aw2,Aw3,Aw4,Aw5等水线面间距为Δd ,写出用梯形法和辛卜生法计算此时的排水体积 V 的计算式。 吃水差改变: 3. 某船在淡水中的吃水为7.10m ,排水量为12000t ,在淡水中的TPC 为17.5t/cm 。进入海水后,船的吃水为多少m ?如果要保持船在海水中的吃水不变,应该装货多少t ?船在海水中的TPC 为18t/cm ,海水的密度为1.025t/m3,淡水的密度为1.01t/m3 4. 船舶的重量为6700t ,重心位置xg=2.55m ,zg=7.26n 。现有重量 50t ,从xp=12.45m ,zp=2.05m 处移动到Xp=-10.85m ,Zp=6.75m ,求该重量移动后船舶 的重心位置 少量装卸和自由液面修正和倾角: 5.某船的排水量为16000t ,吃水为8.50m ,GM = 0.85m 。船在开航时,燃油 柜为满柜。船在航行了一段时间之后,消耗燃油400t ,消耗的油的重心距基 ) 2 (00 n n i i y y y l A +- =∑=) 4(3 13211y y y l A ++= ) 33(8 343211y y y y l A +++= ) 2 (0 n n i n Aw Aw Aw d V +- ?=∑=

线高zp = 5m ,yp = 4m 。船的TPC = 24t/cm 。油柜长为5m 、宽为3m 的长 方体,求经自由液面修正后的GM 值是多少?如果船在开航是正浮状态,此 时船的横倾角为多少度? (矩形k=1/12 直角三角形k=1/36 等腰三角形k=1/48 直角梯形k=1/36 ) 6.某船的排水量为14000t ,吃水为8.80 m ,GM = 0.85mY 。船在到达中途港之 后,用船上的吊从码头起吊货重150t 的大件,挂点距基线高40m ,挂点距船舷的水平距离为9m ,船宽为22m 。船的TPC = 23t/cm 。求吊起货后船的 横倾角θ多少? 7.已知某船d F =7.4m ,d A=8.2m ,d m=7.8,L=147m 。今将100t 自第一压载舱(中心在船中前53.92)抽到第三压载舱(中心在船中后32.18m ),试求调整后的首尾吃水和吃水差? P +?=?1TPC P d e 100212 1= = δ) (1 1GM Z e d P GM M G p --++??+ =3 b k i x =) (1 1GM Z e d GM M G p --+? + =

船舶完整稳性规则

附则3 关于国际海事组织文件包括的所有船舶的完整稳性规则 说明与要求 1 本附则是国际海事组织第18届大会1993年11月4日通过的A.749(18)决议的附件。 2 本附则中“动力支承船”的有关规定已被《国际高速船安全规则》所替代。详见本法规第4篇附则2《际高速船安全规则》。 3 船舶的完整稳性还应符合本法规总则与第1篇的适用规定。 349

第1章一般规定 1.1 宗旨 关于国际海事组织文件包括的所有类型船舶的完整稳性规则(以下简称本规则)旨在提出稳性衡准及其他为确保所有船舶的安全操作而采取的措施,使之最大限度地减少对船舶、船上人员和环境的危害。 1.2 适用范围 1.2.1 除非另有说明,本规则中的完整稳性衡准适用于长度为24m及以上的下列类型船舶和其他海上运输工具: ——货船; ——装载木材甲板货的货船; ——装载散装谷物的货船; ——客船; ——渔船; ——特种用途船; ——近海供应船; ——海上移动式钻井平台; ——方驳; ——动力支承船; ——集装箱船。 1.2.2 沿海国家可对新型设计的船舶或未包含在本规则内的船舶的设计方面制定附加要求。 1.3 定义 下列定义适用于本规则。对过去常用的术语但在本规则中未定义的,如在1974 SOLAS公约中所定义的,亦适用于本规则。 1.3.1 主管机关:系指船旗国政府。 1.3.2 客船:系指经修改的1974 SOLAS公约第Ⅰ/2条中规定的载客超过12人的船舶。 1.3.3 货船:系指非客船的任何船舶。 1.3.4渔船:系指用于捕捞鱼类、鲸鱼、海豹、海象或其他海洋生物资源的船舶。 1.3.5 特种用途船:系指国际海事组织《特种用途船舶安全规则》(A.534(13)决议案)1.3.3中规定的因其特殊用途载有12名以上特种人员(包括可不超过12名乘客)的机动自航船舶(从事科研、探险和测量的船舶;用于培训海员的船;不从事捕捞作业的鲸鱼或鱼类加工船舶;不从事捕捞作业的其他海洋生物资源加工船或其设计特点和运行方式类似上述的其他船舶,根据主管机关的意见可列入此类范围)。 1.3.6 近海供应船:系指主要从事运送物品、材料和设备至近海设施上,并在船前部设计有居住处所和桥楼、在船后部有为在海上装卸货物的露天装货甲板的船舶。 1.3.7海上移动式钻井平台(MODU)或平台:系指能够为勘探或开采诸如液态或气态碳氢化合物、 硫或盐等海床之下的资源而从事钻井作业的海上建筑物: .1柱稳式平台:系指用立柱将主甲板连接到水下壳体或沉箱上的平台; .2浮式平台:系指有单体或多体结构船型或驳船型排水船体、用于漂浮状态下作业的平台; .3自升式平台:系指有活动桩腿能够将其壳体升至海面以上的平台。 1.3.8动力支承船(DSC):系指能够在水面或超出水面航行的船舶,其具有的特性与适用现行国际公约,特别是SOLAS公约和LL载重线公约的普通排水量船舶大不相同,以致要采取其他措施来获得同等安 350

相关文档
最新文档