高斯小学奥数四年级上册含答案第12讲_乘法原理进阶

高斯小学奥数四年级上册含答案第12讲_乘法原理进阶
高斯小学奥数四年级上册含答案第12讲_乘法原理进阶

(完整)六年级奥数乘法和加法原理答案

第二十六周乘法和加法原理 例题1: 由数字0,1,2,3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。 ①要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成3×4×4=48个不相等的三位数。 ②要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成3×3×2=18个没有重复数字的三位数。 练习1: 1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数? 2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式? 3、由数字1,2,3,4,5,6,7,8,可组成多少个: ①三位数; ②三位偶数; ③没有重复数字的三位偶数; ④百位是8的没有重复数字的三位数; ⑤百位是8的没有重复数字的三位偶数。 例题2: 有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形? 要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑: 两个正方体向上一面同为奇数的共有3×3=9(种)不同的情形; 两个正方体向上一面同为偶数的共有3×3=9(种)不同的情形; 两个正方体向上一面同为偶数的共有3×3+3×3=18(种)不同的情形。 练习2: 1、在1—1000的自然数中,一共有多少个数字1?

四年级奥数乘法原理

四年级奥数乘法原理 This manuscript was revised by the office on December 22, 2012

四年级奥数乘法原理 1、三位小朋友每两人通一次电话,一共通了多少次? 2、在一次聚会上,小刚遇见了他的5位朋友,他们彼此握了一次手,他们一共握了多少次手? 3、校运动会上,四年级有5人参加乒乓球单打比赛,每人都要和另外4人比赛一场,一共要比赛多少场 4、小红和她的爸爸,妈妈,弟弟去公园玩,每次选2人进行合影留念,有多少种不同的选法? 5、某旅行社推出"五一"黄金周的旅游景点为:桂林,花果山,周庄,苏州园林,南京中山陵.小红家想选择其中的两个景点游玩,他们家一共有多少种不同的选择方案? 6、有5位同学,如果每两人互赠一件礼物,共需多少件礼物? 7、某小姐有三件裙子,四件上衣,两双鞋子,问总共有几种不同的搭配方法? 8、设一室有五个门,甲分由不同之门进出此室各一次,但不得由同一门进出,则其方法有几种? 9、图书馆中有五本不同的三民主义书和八本不同的数学书,一学生欲选一本书的方法有几种若三民主义和数学各选一本,共有多少种选法? 10、某篮球校队是由二位高一学生,四位高二学生,六位高三学生所组成,现在要从校队中选出三人,每年级各选一人,参加篮球讲习会,问总共有多少种选法?

11、甲班有40位同学,乙班有45位同学, 丙班有50位同学,若各班推选一人筹办文艺展览会,共有几种选派法? 12、用0,1,2,3,4,5,6组成四位数的密码共有几种? 13、用0,1,2,3,4五个数字排成的三位数有几个其中数字相异的三位数有几个? 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 14.在小于10000的自然数中,含有数字1的数有多少个? 15.马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 16.从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法? 17.用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复) 18.求360共有多少个不同的约数。

2109年小学四年级奥数经典30讲

2109年小学四年级奥数经典30讲 目录 第1讲速算与巧算(一) 第2讲速算与巧算(二) 第3讲高斯求和 第4讲 4,8,9整除的数的特征 第5讲弃九法 第6讲数的整除性(二) 第7讲找规律(一) 第8讲找规律(二) 第9讲数字谜(一) 第10讲数字谜(二) 第11讲归一问题与归总问题 第12讲年龄问题 第13讲鸡兔同笼问题与假设法 第14讲盈亏问题与比较法(一) 第15讲盈亏问题与比较法(二) 第16讲数阵图(一) 第17讲数阵图(二) 第18讲数阵图(三)

第19将乘法原理 第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题 第25讲智取火柴 第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则 第29讲抽屉原理(一)第30讲抽屉原理(二)

第1讲速算与巧算(一) 计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。 我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。 例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下: 86,78,77,83,91,74,92,69,84,75。 求这10名同学的总分。 分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下: 6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到 总和=80×10+(6-2-3+3+11- =800+9=809。 实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:

小学奥数--四年级高斯求和(学生版)6份

高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为(1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。 例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 项数=(末项-首项)÷公差+1。 末项=首项+公差×(项数-1)。 对于任意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项和末项和的一半;或者换句话说,各项和等于中间项乘以项数。即为中项定理

【例题讲解及思维拓展训练】 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 【思维拓展训练一】 1、11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 2、3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例2 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 【思维拓展训练二】 1、求首项是34,公差是5的等差数列的前50项的和。 例3 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成? 分析:最大三角形共有8层,从上往下摆时,每层的小三角形数目及所用火柴数目如下表: 由上表看出,各层的小三角形数成等差数列,各层的火柴数也成等差数列。 解:(1)最大三角形面积为 (1+3+5+…+15)×12=[(1+15)×8÷2]×12=768(厘米2)。

四年级奥数乘法原理讲义(专业奥数)

乘法原理 一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有:N=m1×m2×…×mn种不同的方法.这就是乘法原理. 特别提示: 1、做一件事分几步完成 2、每一步都有多种选择 3、步步相乘4、步步相关例1、某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有多少种走法呢? 例2 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法? 例3 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法? 例4 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?

例5 由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 例6 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数? 例7 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法? 例8 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数? 习题一 1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法? 2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个

最新四年级奥数教程(完美修复版本)

小学奥数基础教程(四年级) 第1讲速算与巧算(一) 第2讲速算与巧算(二) 第3讲高斯求和 第4讲 4,8,9整除的数的特征 第5讲弃九法 第6讲数的整除性(二) 第7讲找规律(一) 第8讲找规律(二) 第9讲数字谜(一) 第10讲数字谜(二) 第11讲归一问题与归总问题 第12讲年龄问题 第13讲鸡兔同笼问题与假设法 第14讲盈亏问题与比较法(一) 第15讲盈亏问题与比较法(二) 第16讲数阵图(一) 第17讲数阵图(二) 第18讲数阵图(三) 第19将乘法原理 第20讲加法原理(一) 第21讲加法原理(二) 第22讲还原问题(一) 第23讲还原问题(二) 第24讲页码问题 第25讲智取火柴 第26讲逻辑问题(一) 第27讲逻辑问题(二) 第28讲最不利原则 第29讲抽屉原理(一) 第30讲抽屉原理(二) 第1讲速算与巧算(一) 计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思 维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。 我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补 速算法。 例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下: 86,78,77,83,91,74,92,69,84,75。 求这10名同学的总分。 分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数 虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到 总和=80×10+(6-2-3+3+11- =800+9=809。 实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:

小学奥数——乘法原理与加法原理

乘法原理与加法原理 在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决. 例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法? 分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即: 第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法: 3×1=3. 如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法: 共有六种走法,注意到3×2=6. 在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的. 在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数. 一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有种

不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有 种不同的方法. 这就是乘法原理. 例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法? 例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法? 例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形? 例5.由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成. ①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.

四年级奥数乘法原理

四年级奥数乘法原理 1、三位小朋友每两人通一次,一共通了多少次? 2、在一次聚会上,小刚遇见了他的5位朋友,他们彼此握了一次手,他们一共握了多少次手? 3、校运动会上,四年级有5人参加乒乓球单打比赛,每人都要和另外4人比赛一场,一共要比赛多少场 4、小红和她的爸爸,妈妈,弟弟去公园玩,每次选2人进行合影留念,有多少种不同的选法? 5、某旅行社推出"五一"黄金周的旅游景点为:,花果山,周庄,园林,陵.小红家想选择其中的两个景点游玩,他们家一共有多少种不同的选择方案? 6、有5位同学,如果每两人互赠一件礼物,共需多少件礼物? 7、某小姐有三件裙子,四件上衣,两双鞋子,问总共有几种不同的搭配方法? 8、设一室有五个门,甲分由不同之门进出此室各一次,但不得由同一门进出,则其方法有几种?

9、图书馆中有五本不同的三义书和八本不同的数学书,一学生欲选一本书的方法有几种若三义和数学各选一本,共有多少种选法? 10、某篮球校队是由二位高一学生,四位高二学生,六位高三学生所组成,现在要从校队中选出三人,每年级各选一人,参加篮球讲习会,问总共有多少种选法? 11、甲班有40位同学,乙班有45位同学, 丙班有50位同学,若各班推选一人筹办文艺展览会,共有几种选派法? 12、用0,1,2,3,4,5,6组成四位数的密码共有几种? 13、用0,1,2,3,4五个数字排成的三位数有几个其中数字相异的三位数有几个? 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 14.在小于10000的自然数中,含有数字1的数有多少个? 15.马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配? 16.从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?

小学奥数题讲解: 高斯求和(等差数列)

小学奥数题讲解:高斯求和(等差数列) 德国数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题 让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案 等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好能够分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广 泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中 第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列 称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末 项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式:

和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加 数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时 就需要先求出项数。根据首项、末项、公差的关系,能够得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。

奥数高斯求和

奥数高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1 + 2+3 + 4+ …+ 99+ 100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1 + 100= 2+ 99= 3 + 98=-= 49+ 5 2 = 50+ 51。 1?100正好可以分成这样的50对数,每对数的和都相等。于是, 小高斯把这道题巧算为 (1 + 100)X 100 + 2 = 5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1) 1, 2, 3, 4, 5, (100) (2) 1, 3, 5, 7, 9,…,99;( 3) 8, 15, 22, 29, 36,…, 其中(1)是首项为1,末项为100,公差为1的等差数列; 是首项为1,末项为99,公差为2的等差数列;(3)是首项为末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和二(首项+末项)X项数+ 2。 例1 1+2+3+ …+ 1999=? 分析与解:这串加数1, 2, 3,-, 1999是等差数列,首项是1,末(2) 8,

项是1999,共有1999个数。由等差数列求和公式可得 原式=(1 + 1999)X 1999- 2= 1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+ 31 = ? 分析与解:这串加数11, 12, 13,…,31是等差数列,首项是11, 末项是31,共有31-11 + 1 = 21 (项)。 原式二(11+31)X 21-2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到项数二(末项-首项)+公差+1, 末项二首项+公差x(项数-1 )。 例3 3 + 7+11+ …+ 99=? 分析与解:3, 7, 11,…,99是公差为4的等差数列, 项数二(99- 3)- 4+ 1= 25, 原式=(3+ 99)X 25- 2= 1275。 例4求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+ 3X(40-1 ) = 142, 和=(25+ 142)X 40- 2= 3340。

四年级奥数-乘法原理

四年级奥数-乘法原理A 1.有五顶不同的帽子,两件不同的上衣,三条不同的裤子。从中取出一顶帽子、一件上衣、一条裤子配成一套装束。问:有多少种不同的装束? 2.四角号码字典,用4个数码表示一个汉字。小王自编一个"密码本",用3个数码(可取重复数字)表示一个汉字,例如,用"011"代表汉字"车"。问:小王的"密码本"上最多能表示多少个不同的汉字? 3."IMO"是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的"IMO"? 4.在右图的方格纸中放两枚棋子,要求两枚棋子不在同一行也不在同一列。问:共有多少种不同的放法? 5.要从四年级六个班中评选出学习和体育先进集体各一个(不能同时评一个班),共有多少种不同的评选结果? 6.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法?

四年级奥数-乘法原理B 7.如下图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形? 8.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式? 9.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法? 10.由数字1、2、3、4、5、6、7、8可组成多少个 ①三位数? ②三位偶数? ③没有重复数字的三位偶数? ④百位为8的没有重复数字的三位数? ⑤百位为8的没有重复数字的三位偶数? 11.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?

四年级奥数-高斯求和

第3讲高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到 等差数列的求和公式:和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=? 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。

四年级奥数详解答案乘法原理

四年级奥数详解答案 第九讲乘法原理 一、知识概要 如果要完成一件任务需要分成几个步骤进行做,第一步有m1种方法,做第二步有m2种方法……,做第n步有m n种方法,即么,按这样的步骤完成这件任务共有N= m1×m2×…×m n种不同的方法。这就是乘法原理。 乘法原理和加法原理的区别是:加法原理是指完成一件工作的方法有几类,之间不相关系,每类都能独立完成一件工作任务;而乘法原理是指完成一件工作的方法是一类中的几个不同步骤,互相关联,缺一不可,共同才能完成一件工作任务。 二、典型例题精讲 1. 从甲地到乙地有两条路可走,从乙地到丙地有三条路可走,试问:从甲地经乙地到丙 地共有多少种不同的走法? 分析:如图,很明显,这是个乘法原理的题目。要完成“从甲到丙的行走任务”必须分两步完成。第一步:甲分别通过乙的三条路线到达丙,故有3种走法。第二步: 甲从第二条路线出发又分别通过乙的三条路线到达丙,故又有3种走法。这两种 走法相类似,共同完成“从甲到丙”的任务。 解:3×2=6(种) 答:共有6种不同的走法。 2. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行、 每列只能出现一个棋子,共有多少种不同的放法? 分析:(如图二)摆放四个棋子分四步来完成。第一步放棋子A,A可任意摆放,有16种摆放;第二步摆B,由于A所在的位置那一行,那一列都不能放,故只有9 种放法;第三步摆C子,也由A、B所在的那一行,那一到都不能,只有四格 可任意放,故有4种放法;第四步,只剩一格放D子,当然只有一种放法。

解:16×9×4×1=576(种) 答:共有576种不同的放法。 3. 有五张卡片,分别写有数字1,2,4,5,8。现从中取出3张片排在一起,组成一个 三位数,如□1□5□2,可以组成个不同的偶数。 分析:分三步取出卡片:1.个位,个位只能放2、4、8;故有3种放法;2.百位,因个位用去1张,所以百位上还有四张可选,故有4种放法;3.十位,因个位和百位 共放了两张,所以还有3张可选放,有3种放法。 解:3×4×3=36(个) 4. 兴趣小组有7名男生,5名女生,现要从这些同学选出4名参加数学竞赛,其中至少 要有2名女生,共有种不同的选法。 分析:分三类选出(加法原理):第一类:2名学生,先从5名女生中选2名,有5×4÷2=10(种)选法,再从7名男生中选2名有7×6÷2=21(种),共有10× 21=210(种);第二类:3名女生,先从5名女生中选3名,(其实等于选出2名 不比赛)有10种选法;再从男生中选1人,有7种选法。共有10×7=70(种)选 法。第三类:4名学生,即从5名选1人不比赛,有5种方法。 解:10×21+10×7+5=285(种) 5. 有4名男生,2名女生,排成一行录像,要求2名不站在两边,且2名女生站在相邻 位置,共有多少种不同的排法? 分析:分两步考虑,第一步,先确定女生排法,2名女生不站两边,有6种站法。第二步,确定男生的站法,4名男生4个位置可选择,故有4×3×2×1=24(种)站法。 解:6×24=144(种) 答:共有144种不同的排法。 6. 地图上a、b、c、d四个国家(如下图),现有红、黄、绿、蓝四种颜色给地图染色,使相邻国家的颜色不同。有种不同的染色方法。 分析:着色分四步,在图A中,第一步给a着色,有四种方法;第二步给b着色,因a:b相邻,故有3种色选着,方法有3种;第三步给c着色,有2种着法;第四步, 给d着色,有2种着法。在图B中,a着色后可将b、d的着色分为相同与不同 两类去考虑,染色的顺序为a、b、d、c.

三年级奥数简单数阵与幻方

数阵与幻方 【知识点与方法】 一、数阵和幻方的概念:(1)数阵:每一条直线段的数字和相等。(2)幻方:在一个由若干个排列整齐的数组成的正方形中,任意一横行、一纵行及对角线的和都相等。 二、联系之前所学的高斯求和的知识,首先找到中心项:首项、末项、中间项。然后对称找和相等的成对的项。 【经典例题】 例1、将1、2、3、4、5这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 例2、将1、4、7、10、13这五个数分别填入下图中,使横行3个数的和与竖行3个数的和都等于25。 例3、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都相等。 例4、将5~11这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于24。 例5、将1~9这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 练习与思考

1.将3、6、9、12、15这五个数分别填入下图中,使横行3个数的和与竖行3个数的和相等。 2. 将1、3、5、7、9这五个数分别填入下图中,使横行3个数的和与竖行3个数的和为17。 (2题图) (3题图a) (3题图b) 3. 将1~9这九个数分别填入右上图的小方格里,使横行和竖列上五个数之和相等。(至少找出两种本质上不同的填法) 4.将3~9这七个数分别填入左下图的○里,使每条直线上的三个数之和等于20。 (4题图) (5题图) 5.将1~11这十一个数分别填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大。 6. 将2~10这九个自然数填入下图的九个方格内,使得它成为一个幻方(每行、每列、每条对角线和都相等)。 7.将1~7这七个数分别填入下图的○里,使得每条直线上三个数之和与每个圆圈上的三个数之和都相等。

小升初奥数讲义习题 第4讲 高斯求和、新定义

高斯求和、新定义 一、高斯求和 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢? 和=(首项+末项)×项数÷2;(项数=(末项-首项)÷公差+1) 例1、1+2+3+...+1999=11+12+13+...+31=3+7+11+ (99) 例2、在下图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成? 举一反三、数一数图中各有多少个三角形。 例3、求100以内除以3余2的所有数的和。

举一反三、在所有的两位数中,十位数比个位数大的数共有多少个? 例4、盒子里放有三只乒乓球,一位魔术师第一次从盒子里拿出一只球,将它变成3只球后放回盒子里;第二次又从盒子里拿出二只球,将每只球各变成3只球后放回盒子里……第十次从盒子里拿出十只球,将每只球各变成3只球后放回到盒子里。这时盒子里共有多少只乒乓球? 举一反三、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟也敲一下。问:时钟一昼夜敲打多少次? 【巩固练习】 1、计算下图中,共有多少个长方形。 2、奥数6班开学第一天每两位同学互相握手一次,全班10人,共握手多少次?

二、定义新运算 我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。除此之外,还会有什么别的运算吗?定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。 例1、对于任意数a ,b ,定义运算“*”:a*b=a×b-a-b 。求12*4的值。 举一反三、假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。 例题2、如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么 7*4=________;210*2=________;4*4=________。 举一反三、如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x ※3=54中,x =________。 例题3、规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果 A ?=⑧ ⑦⑥1 1-1,那么,A 是几? 举一反三、设a ⊙b=4a -2b+ab 2,求x ⊙(4⊙1)=52中的未知数x 。

四年级数学高斯求和讲解

四年级数学高斯求和讲解 德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢?原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9, (99) (3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 例1 1+2+3+…+1999=? 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+…+31=? 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+…+99=? 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。 例5 在下图中,每个最小的等边三角形的面积是12厘米2,边长是1根火柴棍。问:(1)最大三角形的面积是多少平方厘米?(2)整个图形由多少根火柴棍摆成?

(完整版)小学奥数加乘法原理

加乘法原理 加法原理: 完成一件事情,如果有n类办法,在第一类办法中有a种不同做法,第二类有b 种不同做法,第三类中有c中不同的做法。。。那么完成这件事就有N=a+b+c+d+。。。种不同的做法。 例1:小龙和小虎是亲戚,暑假小龙邀请小虎去另一城市玩,小虎所在城市每天有三趟火车、 两班轮船、四班汽车去小龙的城市,请问小虎去的话有多少种选择方式? 乘法原理:做一件事情需要分n步骤,做第一步有a种不同方法,做第二步有b 种不同方法,第三步有c种不同方法。。。那么完成这件事就有N=a×b×c×。。。种不同方法。 例2:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,试问从甲地经乙地到丙地 共有多少种不同的走法? 练习: 1、小东到新华书店买书,他喜欢的书有5种数学书,3种科幻书,6种古典小说。他带的 钱只能买其中的一种,他有多少种不同的选择方法? 2、一条直线上标有ABCDE共5个点,问:用这5个点中的任意两点为端点,能数出多少 条不同的线段? 3、从1~9这九个数中,每次取2个数的和大于10,能有几种取法?

4、某人有一个5分硬币,四个2分硬币,八个1分硬币,现在要拿出8分,有几种不同的拿法? 5、运行于杭州、上海之间的快车,中途要停靠六个站,这列快车要准备多少种不同的车票? 6、一只甲虫从A点出发沿着线段爬到B点,要求任何点和线段都不重复经过,有多少种不 同的走法? A B 7、小东到新华书店买书,他喜欢的书有5种数学书,3种科幻书,6种古典小说。他各买 一本有多少种不同的选择方法? 8、某市电话号码为8位,其中首位是8,这个市的电话号码最多有几个? 9、正方形有16个方格,要把ABCD四个不同的棋子放在方格里,并使每行每列只能出现 一个棋子,问共有多少种不同的放法? 10、由0、3、5、8组成三位数,(1)可以组成几个不相等的三位数,(2)可以组成几个没有重复数字的三位数

四年级奥数.计数综合.乘法原理

(1) 懂得并运用加法乘法原理来解决问题, (2) 掌握常见的计数方法,会使用这些方法来解决问题 一、 乘法原理 我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理. 乘法原理:一般地,如果完成一件事需要n 个步骤,其中,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法 ,…,做第n 步有m n 种不同的方法,则完成这件事一共有N=m 1×m 2×…×m n 种不同的方法. 乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一..不可的... ,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”. 二、 乘法原理解题三部曲 1、完成一件事分N 个必要步骤; 2、每步找种数(每步的情况都不能单独完成该件事); 3、步步相乘 三、 乘法原理的考题类型 1、路线种类问题——比如说从A 地到B 地有三种交通方式,从B 地到C 地有2种交通方式,问从A 地到C 地有多少种乘车方案; 2、字的染色问题——比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法; 3、地图的染色问题——同学们可以回家看地图,比如中国每个省的染色情况,给你几种颜色,问你一张包括几个部分的地图有几种染色的方法; 4、排队问题——比如说6个同学,排成一个队伍,有多少种排法; 知识结构 乘法原理

5、数码问题——就是对一些数字的排列,比如说给你几个数字,然后排个几位数的偶数,有多少种排法. 重难点 (1)掌握加法乘法原理 (2)熟练运用加乘方法 (3)解决加乘及计数综合性题目 例题精讲 【例 1】马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋.问:小丑的帽子和鞋共有几种不同搭配? 【巩固】康康到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 【例 2】从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路.问:从甲地经乙、丙两地到丁地,共有多少种不同的走法? 【巩固】邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?

四年级奥数《高斯求和》答案及解析

高斯求和 德国着名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算: 1+2+3+4+…+99+100= 老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。高斯为什么算得又快又准呢原来小高斯通过细心观察发现: 1+100=2+99=3+98=…=49+52=50+51。 1~100正好可以分成这样的50对数,每对数的和都相等。于是,小高斯把这道题巧算为 (1+100)×100÷2=5050。 小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。 若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。例如: (1)1,2,3,4,5, (100) (2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71) 其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。 由高斯的巧算方法,得到等差数列的求和公式: 和=(首项+末项)×项数÷2。 ]例1 1+2+3+ (1999) 分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。由等差数列求和公式可得 原式=(1+1999)×1999÷2=1999000。 注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。 例2 11+12+13+ (31) 分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。 原式=(11+31)×21÷2=441。 在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。根据首项、末项、公差的关系,可以得到 项数=(末项-首项)÷公差+1, 末项=首项+公差×(项数-1)。 例3 3+7+11+ (99) 分析与解:3,7,11,…,99是公差为4的等差数列, 项数=(99-3)÷4+1=25, 原式=(3+99)×25÷2=1275。 例4 求首项是25,公差是3的等差数列的前40项的和。 解:末项=25+3×(40-1)=142, 和=(25+142)×40÷2=3340。 利用等差数列求和公式及求项数和末项的公式,可以解决各种与等差数列求和有关的问题。

相关文档
最新文档