稀土精炼合金

稀土精炼合金
稀土精炼合金

稀土精炼合金

稀土精炼合金是诸多合金元素和多种活化元素复合而成的产品,广泛运用于冶炼行业,是国外众多炼钢厂首选精炼添加剂。

机理:

不锈钢、合金钢、特殊钢中含有较高的Cr、Ni、Mo及Nb、V、Ti等高熔点的合金元素,熔解后合金极易产生氧化物、硫化物及硅酸盐等夹杂物,使钢液粘稠,钢中夹杂物难于上浮。由于这些夹杂物的熔点普遍都高于现有的炼钢温度,使其无法被熔解清除,钢件成型后内部及表面更易出现诸多缺陷,导致钢的夹杂超标,品质下降,对钢的力学性能及强度,特别是对韧性影响较大。

本公司从日本所引进的稀土精炼合金是针对上述问题所设计的。其使用简便,经众多厂家使用证明,使用后能有效降低生产成本,大幅度提高产品质量。

?进一步净化钢液

钢液在常规脱氧之后,在钢包中加入了一定数量的稀土精炼合金进行强化脱氧脱硫,而且它们还具有进一步除气(H2、N2、O2)功能,这样便大大净化了钢液,从而使钢内在质量和表面质量显著提高,特别是钢的腐蚀性和抗氧性都有了很大的提高,同时钢的塑性、韧性也大大改善。?细化晶粒、强化晶界和金相功能

稀有元素和Ca等元素,在钢中生成高熔点的细小的弥散分布的产物,它们成为钢液早期结晶的晶核,使晶粒细化;Mg存在于晶界处,可阻止P、Pb等有害元素在晶界的偏聚;Ti和减少了晶界处碳化铬的生成,又能细化晶粒。从而提高了钢的强度和韧性,又改善了钢的耐腐蚀性。?钢中夹杂物的变态

原有的Fe、Mn、Cr、Si和A1等元素形成的氧化物和硫化物等,被稀有元素和Ca的夹杂物取代由于后者细小、分布均匀,既可改善钢耐腐蚀性,又可降低钢的各项异形(对板、带产品极为有利)。其中Ca的夹杂物,还可提高钢的易切削性能和抛光性能。

化学成分:

功能:

1、该产品是复合型产品,粒度小,熔点低,能迅速熔化。

2、稀土精炼合金中所含Re、Ca、Ba、Mg等元素有强化脱氧、脱硫、去除夹杂物功能,还具有进

一步除气性能(H2、N2、O2),同时增加钢水流动性,有利于钢水中夹杂物的集聚上浮,有利于提高坯锭(铸件)的内在质量。

3、稀土精炼合金中所含的活化元素,有助于钢的晶粒细化。经Ca、Re处理过的钢水中的氧化物

及硫化物的形态均会产生变异,分布细小而均匀;有助于提高钢的延展性、易切削性和抛光性能,使产品成材率提高2-3%,由锭到材。

4、不锈钢、耐热钢的抗腐蚀性,抗氧化性都有明显的提高和改善。

5、使用本产品后,对提高产品的质量及质量的稳定性随时间的曲线函数几乎成一条直线,避免

了使用其它中低档产品后期造成波浪状、锯齿状的曲线函数给冶金生产带来诸多不适应现象。使用方法:

1、因本产品用量较少,不能完全取代原有的生产工艺,建议在按照常规造渣脱氧后,再使用稀

土精炼合金,效果更佳。

2、使用量:实际钢水重量× 3kg/吨钢。

3、以1吨钢包为例,出钢时,先将钢包倒入少量钢水(约200-300公斤),再将稀土精炼合金投

掷钢包中与钢水混冲即可。

4、当出钢量大于5吨时,建议分批投放,效果会更佳;投放时间尽量在钢水总量三分之二前加

完。

5、如有条件可配合钢包吹氩搅拌,使产品与钢液充分接触反应。

6、针对精密铸造,由于钢包较小,又多次浇注,建议在炉内分2-3次添加使用。

包装:

1、该产品多层防水包装,规格25kg/桶。

2、贮存或运输过程中应注意防水,防潮,置于干燥通风处。

3、如不慎受潮,请及时烘干,不影响使用效果。

稀土镁合金的研究现状及应用

稀土镁合金的研究现状及应用 杨素媛,张丽娟,张堡垒 (北京理工大学材料科学与工程学院,北京 100081) 摘 要:镁合金具有质轻、高比强度、高比刚度等优异性能。但其强度不高,高温性能较差,为了改善其性能,在熔炼过程中加入稀土制成具有高强、耐热、耐蚀等性能的稀土镁合金,大大增加了材料的抗拉强度、延展性及抗蠕变性能,从而使镁合金在航空航天、汽车工业及电子通讯行业得到了广泛应用。总结了稀土对镁合金的净化和阻燃作用,分析了稀土元素对合金组织和性能的影响,综述了稀土耐热镁合金、稀土高强镁合金、稀土阻燃镁合金的研究现状,并简述了稀土镁合金的应用及发展前景。 关键词:稀土镁合金;组织;力学性能;应用 中图分类号:TG146 2 文献标识码:A 文章编号:1004 0277(2008)04 0081 06 镁及镁合金是目前最轻的结构金属材料,具有高的比强度和比刚度,很好的抗磁性,高的电负性和导热性,良好的消震性和切削加工性能。但是镁合金的强度不高,特别是高温性能较差,大大限制了其应用。所以提高镁合金的室温强度和高温强度是镁合金研究中要解决的首要问题[1,2]。 大部分稀土元素与镁的原子尺寸半径相差在 15%范围内,在镁中有较大固溶度,具有良好的固溶强化、沉淀强化作用;可以有效地改善合金组织和微观结构、提高合金室温及高温力学性能、增强合金耐蚀性和耐热性等;稀土元素原子扩散能力差,对提高镁合金再结晶温度和减缓再结晶过程有显著作用;稀土元素还有很好的时效强化作用,可以析出非常稳定的弥散相粒子,从而能大幅度提高镁合金的高温强度和蠕变抗力。因此在镁合金领域开发出一系列含稀土的镁合金,使它们具有高强、耐热、耐蚀等性能,将有效地拓展镁合金的应用领域。 1 稀土在镁合金中的作用 1 1 稀土对镁合金熔体的净化作用 稀土对镁合金熔体有很好的净化作用,具有除氢净化及除氧化夹杂物的作用。 在熔炼过程中,由于镁的化学性质非常活泼,易与水气发生反应使镁合金具有较强的析氢倾向。在镁合金液有较大的溶解度的氢,会导致铸件产生气孔、针孔及缩松等铸造缺陷。在镁合金熔炼过程中加入稀土,稀土元素与水气和镁液中的氢反应,生成高熔点的稀土氢化物和稀土氧化物,比重较轻的稀土氢化物和稀土氧化物上浮成固体渣,从而达到除氢的目的[3]。 镁与氧结合形成稳定的MgO,是镁合金中形成氧化夹杂物的主要原因。夹杂物使合金的力学性能和耐蚀性能降低,且易使合金产生疲劳裂纹等[4]。由于稀土元素与氧的亲和力更大,因此在镁溶液中加入稀土元素,稀土将优先与氧结合而生成稀土氧化物,从而达到去除氧化物夹杂的作用。 1 2 稀土的阻燃作用 由于镁与氧极易发生反应,因此镁合金在熔炼和浇注过程中易氧化燃烧。镁与氧反应生成的表面MgO膜,致密度系数 Mg<1,疏松多孔,不能有效阻止氧穿透该氧化膜;且MgO的导热系数小,不利于热量的扩散,会加剧镁的氧化和燃烧。稀土元素加入镁合金后,与氧发生反应或与MgO中氧发生置换反应生成稀土氧化物RE2O3,该稀土氧化物的致密度系数 >1,能够有效阻止氧穿透氧化膜与镁发生反应。 第29卷第4期2008年8月 稀 土 Chinese Rare Earths Vol 29,No 4 August2008 收稿日期:2008 02 22 作者简介:杨素媛(1966 ),女,内蒙古锡林浩特人,硕士,教授,研究方向:金属材料。

稀土中间合金及其应用

稀土中间合金及其应用 稀土元素与一种或数种其他元素组成的具有金属特性的物质,又称母合金。一般包括混合稀土金属、硅基稀土复合铁合金和以稀土或钇为基的二元稀土中间合金。 稀土中间合金的基本用途是作稀土添加剂。它的生产方法视原料情况和使用要求而定,主要有熔合法、熔盐电解法、金属热还原法和粉末冶金法(见稀土合金制取)。 一、简史 1908年含铁30%的打火石问世,这是稀土合金的首次应用。1922年美国矿务局(U.S.BureauofMines)首先在钢中添加稀土。从50年代起,含铁5%的铈组混合稀土金属广泛用于钢铁冶金,生产球墨铸铁和汽车用高强度低合金钢。60年代美国钒公司(VanadiumCorp.)和钼公司(MolycorpInc.)研制成功被欧美等一些国家称作稀土硅化物的稀土硅铁合金。1968~1974年期间,由于稀土硅化物的价格按稀土金属含量计比电解法生产的混合稀土金属低58%,致使混合稀土金属在钢铁冶金中的应用地位逐渐被稀土硅化物所取代。1972年稀土硅化物在美国冶金领域中的用量占稀土在该领域中用量的90%。1974年稀土硅化物的消费量相当于6000t的混合稀土金属。从70年代中期起,受世界钢市场和炼钢新技术的影响以及稀土硅化物在炼钢中的熔合能力欠佳,特别是合金生产费用增加而导致价格上涨等因素,致使稀土硅化物在钢中的消费量在80年代初下降到15%。到80年代末,用于高强度低合金钢的稀土中,稀土硅化物的占有率不到10%。 1948年英国研究人员首先用火石合金与硅铁一起处理生铁得到了球墨铸铁。1952年美国联合碳化物公司(UnionCarbideCorp.)在镁硅铁球化剂中配入铈处理铁水取得成功,从而导致了稀土镁硅铁合金的诞生。 前苏联在钢铁冶金中最先应用混合稀土金属和铈铁,70年代开始广泛试制稀土硅铁合金和含镁、钙、锶、钡及稀土的复合铁合金。 1956年中国科学院上海陶瓷冶金研究所研制成功用电硅热法从含RE2O34%~6%的包头钢铁公司的炼铁高炉渣中冶炼稀土硅铁合金的方法,这是世界上首次在电弧炉内用硅铁还原稀土氧化物生产稀土硅铁合金,并于1958年在内蒙古的包头市开始了工业化生产。70年代又先后开发了用碳热法生产稀土硅铁合金和抗球化衰退能力强的钇组稀土硅铁合金的方法。经历20多年的提高与发展,在80年代初稀土硅铁合金及稀土镁硅铁合金产量成为当时中国稀土工业产品中产量最大的稀土产品,大大促进了中国球铁工业的发展。1988年上述两种产品的产量按稀土氧化物计达到4500t。80年代中期,作为球化剂、蠕化剂及孕育剂的稀土复合铁合金产品开始进入系列化、标准化和商品化。80年代后期,中国又开发用熔盐电解法和金属热还原法生产RE-Al、RE-Mg、Nd-Fe、Y-Fe、Y-Mg及Y-Al 等二元合金,用于稀土功能性材料的研究开发。 二、混合稀土金属 由几种或十几种稀土金属自然组成具有金属特性的物质。常用的有铈组混合稀土金属、富铈混合稀土金属和富镧混合稀土金属。 铈组混合稀土金属 按外来译音又称米什金属,是人们最早应用而又常用的稀土金属合金。基本的稀土成分是镧、铈、镨和钕,根据不同的矿物原料制得的铈组混合稀土金属,其稀土元素配分范围为Ce45%~48%、La17%~30%、Pr4%~8%、Nd10%~18%,其他稀土元素1%~6%。工业产品纯度一般含RE96%~99.5%和Fe0.5%~5%,其他杂质元素为硅、钙、镁和铝。铈组混合稀土金属的密度、熔点与沸点分别为6300~6600kg/m3、1089~1163K和3673~3973K。铈组混合稀土金属主要用于生产打火石、钢及有色金属合金的变性处理和微合金化,80年代的新用途是制造廉价的稀土永磁体和生产金属钐的还原剂。铈组混合稀土金属一般用熔盐电解法生产。 富铈混合稀土金属 含铈高的稀土混合金属,一般铈占稀土总量的50%~60%,含La18%~28%、Pr4%~6%和Nd12%~20%,稀土品位为97%~99.7%。一些特殊富铈混合稀土金属的含铈量占稀土总量的90%,

稀土镁合金的研究现状

稀土镁合金的研究现状 摘要:镁合金是目前最轻的结构金属材料,稀土的加入对改善其组织和提高耐腐蚀性,特别是高温性能具有重要作用。本文介绍了稀土镁合金的研究现状以及压铸和快速成型稀土镁合金。 关键词:稀土镁合金;压铸;快速成型 Abstract :Magnesium alloys are the most light structure metal materials ,the rare earth to improve their organization and improve corrosion resistance, especially high temperature performance has an important role,Study situation of Rare-earth Magnesium Alloys were introduced in the paper and pressure casting and rapid prototyping the rare earth magnesium alloys were introduced. Key words: Rare-earth Magnesium Alloys; Pressure Casting; Rapid Prototyping 镁合金是最轻的工程结构材料,具有密度小、比强度和比刚度高、导热导电性好、

阻尼减震性能高、电磁屏蔽性好、良好的铸造性能、易于加工成型、废料容易回收等一系列优点,因此,目前被广泛应用于汽车、电子、航空航天等诸多领域,具有极为广阔的应用前景。稀土元素由于具有独特的核外电子排布,表现出独特的性质,对0、S和其他非金属元素有较强的亲和力,在冶金过程中可以净化合金熔体、改善合金组织、提高合金室温力学性能、增强合金耐腐蚀性能等。近年来,根据对材料的性能要求而研制开发了一系列含稀土的高强、耐热、抗蠕变、阻燃等镁合金,稀土作为主要的合金元素或微合金化元素在镁合金研究领域发挥愈来愈重要的作用[1]。 1稀土在镁中的性质 1.1 稀土镁合金与氢和氧的相互作用 由于镁与氧极易发生反应,因此镁合金在熔炼和浇注过程中易氧化燃烧。镁与氧反应生成的表面MgO膜,致密度系数αMg<1,疏松多孔,不能有效阻止氧穿透该氧化膜;且MgO的导热系数小,不利于热量的扩散,会加剧镁的氧化和燃烧。稀土元素加入镁合金后,与氧发生反应或与MgO中氧发生置换反应生成稀土氧化物RE203,该稀土氧化物的致密度系数a>1,能够有效阻止氧穿透氧化膜与镁发生反应。 在镁合金中,已知Mg-Be,Mg-Ca,Mg-Ce-La合金系的氧化速度都比纯镁小,稀土对改善镁合金熔体的氧化性质有益。 氢在镁中有较大的溶解度,比其在铝中高1~2个数量级,在液态镁中,随温度升高,压力增大,氢的溶解度也增大。氢的主要来源是潮湿的气氛,在熔炼过程中与空气中的水反应: Mg(l)+H2O(g) →MgO(s)+2[H] 氢和镁不形成化合物,在镁中呈间隙式固溶体存在,含氢量过高会使镁合金出现显微气孔。稀土对除去镁合金中的氢有明显作用。在加入稀土后,稀土与氢反应生成REH2相; [RE]+2[H] →REH2 同时,稀土与MgO发生反应: 2 [RE]+3MgO →RE2O3+ 3Mg 此反应有较强的驱动力,因此可生成稀土氢化物和氧化物而达到合金溶液除氢的效果。特别对于含锆的镁合金,由于[H]与Zr生成稳定的化合物ZrH2,使锆在镁合金中溶

球墨铸铁生产中的稀土球化剂的选择

中频炉球墨铸铁生产中的稀土球化剂的选择 2012-05-08 13:47 1。球化剂及球化元素在球墨铸铁生产中的作用 内容导读:尽管国内外球化剂的种类很多,但在我们国内目前应用最多的还是稀土镁类合金,现主要论述该类合金及其球化元素的作用。球化元素及反球化元素 1球化元素的作用 所谓球化元素是指那些能够促进石墨球状化、使石墨球生成或增加的元素。球化元素一般有以下共同性质:(1)元素最外电子层上有一个或两个价电子,次内层有8个电子。这种电子结构使元素与硫、氧和碳有较强的亲和力,反映产物稳定,能显著减少贴水中的硫和氧。(2)元素在铁水中溶解度低,凝固过程中有显著偏析倾向。(3)虽然和碳有一定亲和力,但在石墨晶格内溶解度低。根据以上特点,Mg,Ce,Y,Ca属于有效球化元素。 一是在铁水中蒸气压力高,使铁水佛腾。镁的原子量和密度比铁水小,熔点650度,沸点1108度,在铁水的处理温度下,镁产生的蒸气压力很高(超过1Mpa).镁的熔解热为21J/g,蒸发潜热为406J/g。因此,镁加入铁水时,要产生汽化,使铁水翻腾。二是与硫、氧有很强的亲和力。所生成的MgO和MgS熔点高,密度也远小于铁,容易与铁水分离,因此镁处理后的铁水,硫和羊的含量都很低;三是在铁水凝固过程中有偏析于石墨的倾向,当其在铁水中的残留量超过0.035%时,使末就可以球化,但当镁残留量超过0.07%时,一部分镁偏析于晶界,并于晶界中的碳、磷等发生放热反应,生成MgC2、Mg2C3、Mg3P2等。残留镁量更多时,晶间碳化物增多。 稀土族元素对石墨球化有显著作用的是轻稀土元素中的铈和重稀土中的钇。一是稀土元素的沸点均比镁高,加入铁水中时,不会引起铁水的翻腾和喷溅;二是铈和钇基稀土元素有比镁更强的脱硫脱氧能力,生成的硫化稀土、氧化稀土等化合物熔点高、稳定性好;三是,稀土元素与铁水中的球化干扰元素也能形成稳定的化合物,因此含稀土的球化剂比镁球化剂的抗干扰能力强。 稀土元素残留量对石墨球化有明显的影响。轻稀土处理过共晶铁水,当残留铈含量0.04%时,石墨就可以球化,而且很稳定;处理亚共晶铁水时,轻稀土加入量要增加。轻稀土处理得球铁,石墨圆整度比镁处理得球铁要差,并出现碎块状石墨;另外轻稀土处理得球铁白口倾向大,因此需要控制其加入量。重稀土钇本身熔点高,其脱氧除硫产生的氧化物、硫化物在高温下比较稳定,因此其抗球化衰退能力很强。1400度的铁水保温1小时,球化率降低不超过10%,含硫0.06%的铁水,用钇基重稀土合金处理后,能得到完整的球状石墨。铁水中残留钇0.10—0.15%,石墨球化良好;低于此限度,随钇量减少一次出现不规则石墨和蠕虫状石墨;残留钇超过0.15而低于0.30%时,白口倾向逐渐增大,石墨圆整度变差,并在更高残留量时出现YTe4。 Ca:钙在铁水中的溶解度很低,它对金相组织的影响是通过与氧和硫的结合而间接实现的。与镁相比,钙与硫、氧的亲和力更强,能够有效的脱硫除氧。钙残留量很低时,石墨分枝倾向增加,残留量较多时,可是使石墨尺寸减小,分枝倾向降低。钙残留量达到0.2%时,白口倾向明显加大。 1、1、2反球化元素(球化干扰元素)的作用 该类元素主要是指破坏和阻碍使石墨球化的元素,按其作用机理大概可以分三类: 一是消耗型反球化元素,如硫、氧、硒、碲等,它们与镁、稀土元素生成化合物,通过消耗球化元素来阻止球状石墨的形成。 二是境界偏析的球化干扰元素,包括锡、锑、砷、铜、硼、钛、铝等,这些元素富集到晶界,促使碳在共晶后期结晶时,形成畸形的枝晶状石墨,如果这些元素含量较高,也可在

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

稀土元素在球墨铸铁中作用

友达商贸有限公司专业从事球墨铸铁批发的公司,针对稀土元素在球墨铸铁中所产生的作用 有如下介绍: 净化作用 稀土元素可与氧,硫,氮,氢等形成化合物,但是在铁水中稀土元素与这些元素的反应则受到很多因素的影响而呈现复杂的规律,但是一般来说,稀土元素加入铁水中可脱硫去气,尤 其在用稀土元素镁合金处理时,效果较好。 稀土元素和氧气的亲和力极强,加入铁水中应有强烈的脱氧作用,但是稀土元素氧化物熔点远高于铁水温度,密度接近或超过铁水密度,不易从铁水中逸出,因此稀土元素在铁水中可与夺走氧形成稀土氧化物,从而促进球化但是不一定降低铸铁中总含量,稀土氧化物与二氧化硅可与组成熔点及密度较低的盐而逸出铁水,所以加入稀土硅钙合金会有较好的脱氧效果,把稀土镁硅铁合金加入铁水,由于镁起到沸腾搅拌作用,也促进脱氧。 稀土元素虽然与氮有一定的亲和力,但是铁水中含有錋等元素,氮的溶解度会增加到超过正常铁水的含氮量,这是由于稀土元素可吸收氮气,因此有些实验表明,稀土元素在铁水中脱氮未见成效,甚至还有增氮可能被稀土元素化合或吸收。 稀土元素可以大量吸收氢气,氢在稀土元素中溶解度比在铁中的溶解度高几百倍至几千倍。稀土元素也可以和氢形成不稳定化合物,在高温下分解放出氢气,铁水中加入稀土后,总的含氢量并不减少,但在冷却过程中基体或石墨中的氢大部分被稀土所吸收溶解。 (责任编辑:admin)

发布时间:12-05-04 来源:南京固琦分析仪器制造有限公司点击量:1392 字段选择:大中小 稀土在球墨铸铁中的作用 南京固琦分析仪器制造有限公司专业生产石墨球化率分析仪,石墨球化率化验仪,石墨球化率检测仪,石墨大小分析仪,石墨金相分析仪等精密仪器,稀土能使石墨球化。自从H. Morrogh最先使用铈得到球墨铸铁以来,先后许多人研究了各种稀土元素的球化行为,发现铈是最有效的球化元素,其他元素也均具有程度不等的球化能力。结合国情,我国对稀土的球化作用进行了大量研制工作,发现稀土元素对常用的球墨铸铁成分(C3.6~3.8wt%,Si2.0~2.5wt%)来说,很难获得同镁球墨铸铁那样完整均匀的球状石墨;而且,当稀土量过高时,还会出现各种变态形的石墨,白口倾向也增大,但是,如果是高碳过共晶成分(C>4.0wt%),稀土残留量为0.12~0.15wt%时,可获得良好的球状石墨。根据我国铁质差、含硫量高(冲天炉熔炼)和出铁温度低的情况,加入稀土是必要的。球化剂中镁是主导元素,稀土一方面可促进石墨球化;另一方面克服硫以及杂质元素的影响以保证球化也是必须的。稀土防止干扰元素破坏球化。研究表明,当干扰元素Pb、Bi、Sb、Te、Ti等总量为0.05wt%时,加入0.01wt%(残余量)的稀土,可以完全中和干扰,并可抑制变态石墨的产生。我国绝大部分的生铁中含有钛,有的生铁中含钛高达0.2~0.3wt%,但稀土镁球化剂由于能使铁中的稀土残留量达0.02~0.03wt%,故仍可保证石墨球化良好。如果在球墨铸铁中加入0.02~0.03wt%Bi,则几乎把球状石墨完全破坏;若随后加入0.01~0.05wt%Ce,则又恢复原来的球化状态,这是由于Bi和Ce形成了稳定的化合物。稀土的形核作用。20世纪60年代以后的研究表明,含铈的孕育剂可使铁液在整个保持期中增加球数,使最终的组织中含有更多的石墨球和更小的白口倾向。经研究还表明,含稀土的孕育剂可改善球墨铸铁的孕育效果并显著提高抗衰退的能力。加入稀土可使石墨球数增多的原因可归结为:稀土可提供更多的晶核,但它与FeSi孕育相比所提供的晶核成分有所不同;稀土可使原来(存在于铁液中的)不活化的晶核得以长大,结果使铁液中总的晶核数量增多。

稀土生产中的放射性分布

立志当早,存高远 稀土生产中的放射性分布 有两个方面,一方面是稀土元素本身有少数几个在自然界丰度较小的放射 性同位素。另一方面是稀土矿物中伴生的铀、钍和镭等天然放射性核素。稀土 元素的天然放射性同位素的比放射性强度都很低,故稀土元素本身不作为放射 性元素处理。稀土矿物中伴生的铀、钍和镭等天然放射性核素是稀土生产中放 射性的主要来源,并在稀土中间产品和稀土合金产品中有所分布。表1、表 2、表3 中分别列出了部分稀土矿物、中间产品和稀土合金产品中天然铀、钍 含量及比放射性强度。由表可见,包头混合型稀土矿精矿的α比放射性强度, 在国家控制的7.4×104Bq/kg 的控制线上,生产能力大时,日操作量就有可能超 过国家控制标准。氟碳铈矿、独居石矿和褐钇铌矿精矿的比放射性强度均高于 国家标准控制最低值。稀土中间合金产品中比放射性强度较高,对于贮存、运 输来说,需加强防护。其他多数产品的放射性比强度都低于国家卫生标准限 值。表1 我国几种稀土精矿中铀、钍含量及其比放射性稀土精矿矿种类REO/%ThO2/%U3O8/%总比放射性强度/(Bq/kg)混合矿氟碳铈矿独居石矿褐 钇铌矿24.43~40.265042.7~60.322.02~30.660.111~0.2460.364.3~7.181.48~4.38-0.00510.22~0.882.12~2.145.37×104~7.77×1041.2×1050.37~ 3.7×1060.37~3.7×106 表2 稀土混合矿生产的部分中间产品中天然钍含量及比放射性中间产品名称REO/%ThO2/%总比放射性强度/(Bq/kg)复盐混合稀土 氧化物氧化铈42~4545~480.056~0.22≤0.03≤0.033.26×104~ 7.8×1040.41×104~1.11×1040.44×103 表3 稀土中间合金冶炼原料、产品中天然钍含量及其比放射性原料、产品名称稀土富渣稀土硅铁合金稀土镁合金钙稀土 合金稀土含量(REO)/%天然钍含量/%总比放射性强度/(×104Bq/kg) ≥80.056~0.0592.22~3.4823~340.10~0.203.92~7.776~200.05~0.122.22~

稀土镁合金的研究进展及应用

稀土镁合金的研究现状及应用 张晓 (中北大学材料科学与工程学院,山西太原030051) 摘要:镁合金具有许多优异的性能,如高比强度、高比刚度等。但它强度不高,高温抗蠕变性能差。稀土的加入对改善其组织和提高耐腐蚀性,特别是高温性能具有重要作用。本文介绍了国内外稀土镁合金的研究现状,并展望了稀土镁合金的应用前景。 关键词:镁合金;稀土;现状 Study Situation And Application Of Rare-earth Magnesium Alloys Zhang Xiao (North University Of China School Of Material Science And Engineering, Taiyuan Shanxi 030051) Abstract: Magnesium Alloy has many inherent advantages of Magnesium Alloy, such as high specific strength,high specific stiffness and so on. But it is not high strength and high temperature creep resistance is poor.the rare earth to improve their organization and improve corrosion resistance, especially high temperature performance has an important role,Study situation of Rare-earth Magnesium Alloys were introduced at home and abroad in the paper and the prospect of application in Rare-earth alloys Magnesium Alloy was looked. Key words: Magnesium Alloy; Rare-earth; situation

稀土金属元素

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 稀土用途: 在军事方面 稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,以及能够对敌人肆无忌惮地公开杀戮,正缘于稀土科技领域的超人一等。 在冶金工业方面 稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。 在石油化工方面 用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 在玻璃陶瓷方面 稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显象管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。

稀土元素在镁合金中的作用及其应用

稀土元素在镁合金中的作用及其应用() 稀土元素在镁合金中的作用及其应用(1).txt爱情是艺术,结婚是技术,离婚是算术。这年头女孩们都在争做小“腰”精,谁还稀罕小“腹”婆呀?高职不如高薪,高薪不如高寿,高寿不如高兴。稀土元素在镁合金中的作用及其应用.. 张景怀1,2,唐定骧1,张洪杰1,王立民1,王..军1,孟..健1* (1.中国科学院长春应用化学研究所稀土资源利用国家重点实验室,吉林长春130022;2.中国科学院研究 生院,北京100039) 摘要:综述了稀土元素在镁合金中的主要作用和效果,从冶金物理化学角度对稀土元素在镁合金中的作用行为进行了初步分析。结合中国科 学院长春应用化学研究所的初步研究成果介绍了含稀土镁合金Mg..Zn..RE,Mg..Al..RE,Mg..RE等系列的性能及其应用,展示了含稀土镁合金的 优良综合性能,特别是高强、高韧、耐热和抗蠕变性能、耐腐蚀性能,稀土镁合金将成为研制高性能镁合金的重要方向。 关键词:镁合金;力学性能;耐热性;稀土 中图分类号:TG146.2;O614.33....文献标识码:A....文章编号: 0258-7076(2008)05-0659-09

....镁合金是工程应用中最轻的金属结构材料, 具有密度低、比强度高、比刚度高、减震性高、易加工、易回收等优点,在航天、军工、电子通讯、交通运输等领域有着巨大的应用市场,特别是在 全球铁、铝、锌等金属资源紧缺大背景下,镁的资源优势、价格优势、产品优势得到充分发挥,镁合金成为一种迅速崛起的工程材料。面临国际镁金 属材料的高速发展,我国作为镁资源生产和出口 大国,对镁合金开展深入研究和应用前期开发工 作意义重大。然而目前普通镁合金强度偏低、耐热耐蚀等性能较差仍然是制约镁合金大规模应用的 瓶颈问题[1~5]。 稀土元素由于具有独特的核外电子结构,作 为一种重要的合金化元素,在冶金、材料领域起着独特的作用,例如净化合金熔体、细化合金组织、提高合金力学性能和耐腐蚀性能等。作为合金化 元素或微合金化元素,稀土已经被广泛应用于钢 铁及有色金属合金中[6]。在镁合金领域,尤其是在耐热镁合金领域,稀土突出的净化、强化性能逐渐被人们认识与把握,稀土被认为是耐热镁合金中 最具使用价值和发展潜力的合金化元素。我国的 镁资源和稀土资源特别丰富,近年来国内科研工

稀土在钢中的作用

稀土在钢中的应用 1 概况 稀土,系指元素周期表中第ⅢB族镧系元素以及与镧系元素在化学性质上相近的钪和钇,共计17种元素。是芬兰学者加多林(Johan Gado1in)在1794年发现的。当时在瑞典的矿石中发现了矿物组成类似“土”状物而存在的钇土,且又认为稀少,便定名为“稀有的土”(Baxe Earth)。此后,又陆续发现了与此同类的多种元素,总称为稀土。但后来研究发现,稀土在地壳中的丰度要比人们想象的多得多。如铈比锡多得多,钇也比铅多,即使丰度最少的稀土元素也比铂族元素多,说明稀土并不稀少。也不是“土”,全部是金属元素。 我国稀土资源丰富,为世界上其它任何一个国家所不及。现己探明的工业储量为3600万吨,约占全世界总量的80%,且品种繁多,分布集中。其中包头市白云鄂博矿山的储量就占了全国储量的95%以上。所以才有了“世界稀土在中国,中国稀土在包头”之说。现在包钢每年采出的稀土矿石量为230万吨-250万吨,这一部分矿石中多数稀土品位都比较高,能达到7.25%以上。经过几十年的研究开发,生产技术不断完善,生产规模不断扩大。现已形成了年产稀土精矿6万吨,稀土合金1.5万吨、湿法稀土产品折合氧化物5800吨的83个品种、195种规格的世界最大的稀土矿产品生产基地。 包钢虽然有很丰富的稀土资源,但在稀土处理钢的品种及处理效果等方面,与武钢、济钢、本钢等相比还有很大差距。如何把稀土的资源优势变成经济优势,还需进一步研究和开发。 2 稀土在钢中应用的现状 近几年来国内外的钢铁生产实践表明,钢经过稀土处理,可对钢的性能产生一系列的作用。现在我国用稀土处理钢有80多个品种,年产量达60万吨,预计2002年全国稀土钢产量达300万吨。包钢是稀土之乡,稀土处理钢也开发了一些,但只占包钢钢产量的0.5%。因此大力开发应用稀土资源,进行稀土钢的开发及应用研究,应提到日程上来。 包钢研究稀土在钢中的应用始于60年代。当时稀土当作灵丹妙药,认为无论放到哪种钢里都有作用,甚至提出过“以稀土代替镍、铬”的口号,到70年代中期,对稀土在钢中的应用出现了两种截然不同的见解,一种意见认为稀土在有些钢中作用很明显,应该继续进行试验研究;另一种意见则认为,稀土对含硫较高的钢有一些作用,但是随着生铁含硫量的降低,稀土这一作用将逐渐消失,因此稀土处理钢是没有前途的。到80年代后期,由事实证明,稀土确实有用,当然也不是万能的。钢中含有微量稀土元素,即可明显地优化铸坯质量,提高钢的

稀土硅铁合金及镁硅铁合金化学分析方法 第2部分:钙、镁、锰量

I C S77.120.99 H14 中华人民共和国国家标准 G B/T16477.2 2010 代替G B/T16477.2 1996 稀土硅铁合金及镁硅铁合金 化学分析方法 第2部分:钙二镁二锰量的测定 电感耦合等离子体发射光谱法 C h e m i c a l a n a l y s i sm e t h o d s o f r a r e e a r t h f e r r o s i l i c o na l l o y a n d r a r e e a r t h f e r r o s i l i c o nm a g n e s i u ma l l o y P a r t2:D e t e r m i n a t i o no f c a l c i u m,m a g n e s i u ma n dm a n g a n e s e c o n t e n t s I n d u c t i v e l y c o u p l e d p l a s m a a t o m i c e m i s s i o n s p e c t r o m e t r y 2011-01-14发布2011-11-01实施中华人民共和国国家质量监督检验检疫总局

前言 G B/T16477‘稀土硅铁合金及镁硅铁合金化学分析方法“共分5个部分: 第1部分:稀土总量的测定; 第2部分:钙二镁二锰量的测定电感耦合等离子体发射光谱法; 第3部分:氧化镁量的测定电感耦合等离子体发射光谱法; 第4部分:硅量的测定; 第5部分:钛量的测定电感耦合等离子体发射光谱法三 本部分为第2部分三 本部分是对G B/T16477.2 1996‘稀土硅铁合金及镁硅铁合金化学分析方法钙二镁二锰量的测定“的修订三 本部分与G B/T16477.2 1996相比,主要有如下变动: 采用电感耦合等离子体光谱法代替原火焰原子吸收光谱法测定钙二镁二锰含量三锰的测定范围由0.20%~4.00%调整为0.50~4.00%; 增加了精密度条款; 增加了质量保证和控制条款三 本部分由全国稀土标准化技术委员会(S A C/T C229)归口三 本部分由包头稀土研究院二中国有色金属工业标准计量质量研究所负责起草三 本部分由包头稀土研究院起草三 本部分由包钢钢联股份有限公司技术中心二中国兵器工业集团第五二研究所参加起草三 本部分主要起草人:金斯琴高娃二刘晓杰三 本部分参加起草人:刘钢耀二乔宇二田小亭二段东升三 本部分所代替标准的历次版本发布情况为: G B/T16477.2 1996三

稀土元素资料汇总

稀土元素资料汇总 第一篇 周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。其中原子序数为57~71的15种化学元素又统称为镧系元素。稀土元素包括钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土元素;钆、铽、镝、钬、铒、铥、镱、镥、钇称为重稀土元素。稀土元素是历史遗留下来的名称,通常把不溶于水的固体氧化物叫做土,而在18世纪,这17种元素都是很稀少的尚未被大量发现,因而得名为稀土元素。现已查明,它们并不稀少,特别是中国的稀土资源十分丰富,有开采价值的储量占世界第一位。从1794年芬兰J加多林从瑞典斯德哥尔摩附近的于特比镇发现钇开始,一直到1947年美国JA马林斯基从铀的裂变产物中分离出钷,共经历150多年。 已经发现的稀土矿物有250种以上,最重要的有氟碳铈镧矿[(Ce,La)FCO3]、独居石[CePO4,Th3(PO4)4]、磷钇石(YPO4)、黑稀金矿[(Y,Ce,Ca) (Nb,Ta,Ti)2O6]、硅铍钇矿(Y2FeBe2Si2O10)、褐帘石[(Ca,Ce)2(Al,Fe)3Si3O12]、铈硅石[(Ce,Y,Pr)2Si2O7·H2O]。 第二篇 稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。 “稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”: “轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。 “重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。 二、稀土资源及储备状况 由于稀土元素性质活跃,使它成为亲石元素,地壳中还没有发现它的天然金属无水或硫化物,最常见的是以复杂氧化物、含水或无水硅酸盐、含水或无水磷酸盐、磷硅酸盐、氟碳酸盐以及氟化物等形式存在。由于稀土元素的离子半径、氧化态和所有其它元素都近似,因

稀土镁合金

稀土镁合金 稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE 或R)。 1. Mg-Al-RE 系镁合金组织与性能 摘要: 通过铸造和挤压变形工艺, 研究了AE (Mg-Al-RE)系合金的显微组织及稀土和铝含量的变化对AE 系合金显微组织和力学性能的影响. 实验结果表明: AE 系合金的铸态显微组织由M g α-基体相和沿晶界分布的Al4RE, 1712M g A l 相组成. 随着稀土含量的增加, 1712M g A l 相逐渐消失, 4A l R E 相的体积分数增加, 并逐渐沿晶界处形成连续网状结构. 挤压实验结果显示: AE 系合金具有良好的形变加工性能, 挤压后合金的强度和塑性均比铸态合金大幅度提高. 稀土元素的加入对合金形变过程中的动态再结晶有一定的抑制作用. 在AE 系稀土镁合金中增加Al 含量, 可以使合金的综合力学性能上升到一个较高的水平. 结论 1) AE 系合金的铸态显微组织由M g α-基体和沿晶界分布的4A l R E 及1712M g A l 相组成. 随着稀土加入量的增加, 1712M g A l 相在显微组织中逐渐消失, 4A l R E 体积分数增加, 并 逐渐沿晶界处形成连续网状. 2) AE 系列合金具有良好的形变加工性能. 挤压后合金的强度和塑性均比铸态合金大幅度提高.稀土元素的加入对合金形变过程中的动态再结晶有一定的抑制作用. 3)在AE 系稀土镁合金中增加A l 含量可以使合金的综合力学性能上升到一个较高的水平. 2. 高性能稀土镁合金的研发现状及应用 摘要:介绍高性能稀土镁合金中的铸造稀土镁合金、快速凝固稀土镁合金、变形稀土镁合金、稀土耐热镁合金、稀土阻燃镁合金,并对高性能稀土镁合金在国内外的研发现状及在军民品上的应用状况作了较详细的叙述. 1 稀土镁合金的研发动向 1. 1铸造稀土镁合金 传统的镁合金耐热、抗高温蠕变等性能较差,通常只能用于120 ℃以下的场合,达不到交通工具发动机和传动部件需要耐温150~200 ℃、250 ℃甚至更高的要求,从而限制了它的应用. 围绕着如何提高铸造镁合金的力学、耐腐蚀、耐高温、抗蠕变等性能,研究人员对稀土作为

稀土镁合金的发展_应用及开发

第34卷第3期 2006年9月 稀有金属与硬质合金 Rare Metals and Cemented Carbides Vol.34 №.3 Sep. 2006 ?专题论述? 稀土镁合金的发展、应用及开发 余强国,翁国庆 (湖南稀土金属材料研究院,湖南长沙410014) 摘 要:叙述了国内外稀土镁合金的发展状况,对稀土镁合金的性能及应用作了较为详细的阐述。在对稀土镁中间合金的制备工艺进行比较的基础上,针对性地介绍了目前采用的新工艺。同时,就我国稀土镁合金的发展提出了具体看法。 关键词:稀土镁合金;发展;应用;制备 中图分类号:TF845 文献标识码:A 文章编号:1004Ο0536(2006)03Ο0036Ο03 Develop ment and Application of R E Mg Alloy YU QiangΟguo,WEN G GuoΟqing (Hunan Research Instit ute of RE Metallic Materials,Changsha410014,China) Abstract:Description is made of t he present develop ment of RE Mg alloy bot h at home and abroad.The p roperty and applications of t he said alloy are detailed.Based on t he comparison of p rocesses for prepara2 tion of RE Mg master alloy,t he currentlyΟapplicable new p rocess is int roduced.Meanwhile,some comment s are made on t he f ut ure develop ment of t he RE Mg alloy in China. K eyw ords:RE Mg alloy;develop ment;application;p reparation 1 前 言 镁合金密度小、比强度和比刚度高、阻尼性及切削加工性好,有较强耐碱、耐油腐蚀性能和较好的电磁屏蔽性能,因而得到越来越广泛的应用。另一方面,稀土元素具有净化合金溶液,改善合金的铸造性能,细化和变质合金组织,提高合金的力学性能及抗氧化和抗蠕变性能等作用。在镁合金领域,稀土优异的净化、强化作用不断为人们所认识和掌握,并已开发出一系列具有高强、耐热、耐蚀等性能的含稀土镁合金。由于稀土元素的合金化,使镁合金的强度提高了1~2.5倍,极限工作温度提高到350℃,且铸造性能、耐蚀性能均有大幅提高,大大拓展了镁合金的应用领域。 2 稀土镁合金的发展 稀土镁合金的研制可追溯到20世纪的20年代,当时德国进行了MgΟMM(MM为混合稀土代号,下同)的开发工作,并在DMWΟ801D型飞机发动机上使用了MgΟ6MMΟ11.7Mn合金锻件。与此同时,英国也进行了混合稀土的应用研究工作,于二次世界大战期间,在飞机叶片锻件中使用了MgΟ3MMΟ0.5MnΟ0.5Ca合金。但这种MgΟMMΟMn合金存在铸态组织晶粒粗化的缺陷,从而影响了其商业应用。 1937年,德国学者Sauerwald首次进行了Zr 有效细化MgΟThΟZr合金晶粒的工作,对镁合金的研制作出了杰出贡献。Murp hy和Payne(于1946年)的工作也发现MM和Zr可同时加入镁中,且Zr 对镁仍具有细化晶粒的作用,从而解决了稀土镁合金的工艺问题,使其在商用领域得到了发展。 20世纪60年代初,美国在铸造镁合金中发展 收稿日期:2006Ο04Ο30 作者简介:余强国(1966Ο),男,在读博士,高级工程师,从事稀土冶金研究工作,现任湖南稀土金属材料研究院副院长。

相关文档
最新文档