稀土硅铁合金产品及系列化

稀土硅铁合金产品及系列化

立志当早,存高远

稀土硅铁合金产品及系列化

稀土硅铁合金已广泛地应用于冶金和铸造生产。稀土的加入明显地改善了

钢和铸铁的力学性能、工艺性能和使用性能。但由于使用的目的、条件、技术

装备水平不同,对合金组分和剂型的要求也不同。名目繁多的合金品种和规格

给稀土中间合金的生产带来一定困难,但为适应市场需求,合金产品系列化,

已成为必须考虑的问题了。熔融配制法生产多品种硅铁合金熔融配制法是制

备多种稀土中间合金的简便有效的方法,特别适用于多元素的复杂合合金。目

前国内使用的稀土铜镁合金、稀土钨镁合金、稀土锌镁合金、稀土锰镁合金久

是该法生产的。熔融法配制稀土合金的设备有中频感应炉、燃油炉、焦炭地

坑炉等。以中频感应炉较好,其升温均匀可控制,有电磁搅拌作用,成品成分

均匀,偏析少,从环境保护和安全防护角度考虑也优于其他炉子。只是一次性

投资较大,在电力供应紧张地区使用受到限制。熔融法的最大优点是通过配

料计算,可同时保证多种元素都达到预期含量。正确估计元素烧损率是配料计

算的关键,各元素的物理、化学性能都不同,烧损率也不同,一般说来化学活

性高、蒸气压高的元素烧损率要大些。以配制低稀土硅铁镁合金为例,

GB4138—84 牌号为FeSiMg8RE7 的合金含RE 6.0%~8.0%,Mg 7.0%~9.0%,Si≤44%,配料时采用RE7%,Mg10%,Si42%。该法的缺点是生产规模不大;需要价格较贵的合金为原料;烧损元素所形成的氧化物大部分还留存在合

金中,影响到使用效果,因此在对产品进行化学分析时,应分别列出元素的总量、金属状态和氧化物的分量,特别是对高温易烧损失元素,如Mg、Ba、

Sr、Ca、RE 等更应如此,以方便用户计量。从目前熔融法配制稀土合金还有着不可替代的作用。它可以补充热还原法和电解法的不足,制备小批量和多品

种多元素复合合金。改进熔融和铸锭工艺,减少有价元素的烧损,降低氧化物

稀土中间合金及其应用

稀土中间合金及其应用 稀土元素与一种或数种其他元素组成的具有金属特性的物质,又称母合金。一般包括混合稀土金属、硅基稀土复合铁合金和以稀土或钇为基的二元稀土中间合金。 稀土中间合金的基本用途是作稀土添加剂。它的生产方法视原料情况和使用要求而定,主要有熔合法、熔盐电解法、金属热还原法和粉末冶金法(见稀土合金制取)。 一、简史 1908年含铁30%的打火石问世,这是稀土合金的首次应用。1922年美国矿务局(U.S.BureauofMines)首先在钢中添加稀土。从50年代起,含铁5%的铈组混合稀土金属广泛用于钢铁冶金,生产球墨铸铁和汽车用高强度低合金钢。60年代美国钒公司(VanadiumCorp.)和钼公司(MolycorpInc.)研制成功被欧美等一些国家称作稀土硅化物的稀土硅铁合金。1968~1974年期间,由于稀土硅化物的价格按稀土金属含量计比电解法生产的混合稀土金属低58%,致使混合稀土金属在钢铁冶金中的应用地位逐渐被稀土硅化物所取代。1972年稀土硅化物在美国冶金领域中的用量占稀土在该领域中用量的90%。1974年稀土硅化物的消费量相当于6000t的混合稀土金属。从70年代中期起,受世界钢市场和炼钢新技术的影响以及稀土硅化物在炼钢中的熔合能力欠佳,特别是合金生产费用增加而导致价格上涨等因素,致使稀土硅化物在钢中的消费量在80年代初下降到15%。到80年代末,用于高强度低合金钢的稀土中,稀土硅化物的占有率不到10%。 1948年英国研究人员首先用火石合金与硅铁一起处理生铁得到了球墨铸铁。1952年美国联合碳化物公司(UnionCarbideCorp.)在镁硅铁球化剂中配入铈处理铁水取得成功,从而导致了稀土镁硅铁合金的诞生。 前苏联在钢铁冶金中最先应用混合稀土金属和铈铁,70年代开始广泛试制稀土硅铁合金和含镁、钙、锶、钡及稀土的复合铁合金。 1956年中国科学院上海陶瓷冶金研究所研制成功用电硅热法从含RE2O34%~6%的包头钢铁公司的炼铁高炉渣中冶炼稀土硅铁合金的方法,这是世界上首次在电弧炉内用硅铁还原稀土氧化物生产稀土硅铁合金,并于1958年在内蒙古的包头市开始了工业化生产。70年代又先后开发了用碳热法生产稀土硅铁合金和抗球化衰退能力强的钇组稀土硅铁合金的方法。经历20多年的提高与发展,在80年代初稀土硅铁合金及稀土镁硅铁合金产量成为当时中国稀土工业产品中产量最大的稀土产品,大大促进了中国球铁工业的发展。1988年上述两种产品的产量按稀土氧化物计达到4500t。80年代中期,作为球化剂、蠕化剂及孕育剂的稀土复合铁合金产品开始进入系列化、标准化和商品化。80年代后期,中国又开发用熔盐电解法和金属热还原法生产RE-Al、RE-Mg、Nd-Fe、Y-Fe、Y-Mg及Y-Al 等二元合金,用于稀土功能性材料的研究开发。 二、混合稀土金属 由几种或十几种稀土金属自然组成具有金属特性的物质。常用的有铈组混合稀土金属、富铈混合稀土金属和富镧混合稀土金属。 铈组混合稀土金属 按外来译音又称米什金属,是人们最早应用而又常用的稀土金属合金。基本的稀土成分是镧、铈、镨和钕,根据不同的矿物原料制得的铈组混合稀土金属,其稀土元素配分范围为Ce45%~48%、La17%~30%、Pr4%~8%、Nd10%~18%,其他稀土元素1%~6%。工业产品纯度一般含RE96%~99.5%和Fe0.5%~5%,其他杂质元素为硅、钙、镁和铝。铈组混合稀土金属的密度、熔点与沸点分别为6300~6600kg/m3、1089~1163K和3673~3973K。铈组混合稀土金属主要用于生产打火石、钢及有色金属合金的变性处理和微合金化,80年代的新用途是制造廉价的稀土永磁体和生产金属钐的还原剂。铈组混合稀土金属一般用熔盐电解法生产。 富铈混合稀土金属 含铈高的稀土混合金属,一般铈占稀土总量的50%~60%,含La18%~28%、Pr4%~6%和Nd12%~20%,稀土品位为97%~99.7%。一些特殊富铈混合稀土金属的含铈量占稀土总量的90%,

球墨铸铁生产中的稀土球化剂的选择

中频炉球墨铸铁生产中的稀土球化剂的选择 2012-05-08 13:47 1。球化剂及球化元素在球墨铸铁生产中的作用 内容导读:尽管国内外球化剂的种类很多,但在我们国内目前应用最多的还是稀土镁类合金,现主要论述该类合金及其球化元素的作用。球化元素及反球化元素 1球化元素的作用 所谓球化元素是指那些能够促进石墨球状化、使石墨球生成或增加的元素。球化元素一般有以下共同性质:(1)元素最外电子层上有一个或两个价电子,次内层有8个电子。这种电子结构使元素与硫、氧和碳有较强的亲和力,反映产物稳定,能显著减少贴水中的硫和氧。(2)元素在铁水中溶解度低,凝固过程中有显著偏析倾向。(3)虽然和碳有一定亲和力,但在石墨晶格内溶解度低。根据以上特点,Mg,Ce,Y,Ca属于有效球化元素。 一是在铁水中蒸气压力高,使铁水佛腾。镁的原子量和密度比铁水小,熔点650度,沸点1108度,在铁水的处理温度下,镁产生的蒸气压力很高(超过1Mpa).镁的熔解热为21J/g,蒸发潜热为406J/g。因此,镁加入铁水时,要产生汽化,使铁水翻腾。二是与硫、氧有很强的亲和力。所生成的MgO和MgS熔点高,密度也远小于铁,容易与铁水分离,因此镁处理后的铁水,硫和羊的含量都很低;三是在铁水凝固过程中有偏析于石墨的倾向,当其在铁水中的残留量超过0.035%时,使末就可以球化,但当镁残留量超过0.07%时,一部分镁偏析于晶界,并于晶界中的碳、磷等发生放热反应,生成MgC2、Mg2C3、Mg3P2等。残留镁量更多时,晶间碳化物增多。 稀土族元素对石墨球化有显著作用的是轻稀土元素中的铈和重稀土中的钇。一是稀土元素的沸点均比镁高,加入铁水中时,不会引起铁水的翻腾和喷溅;二是铈和钇基稀土元素有比镁更强的脱硫脱氧能力,生成的硫化稀土、氧化稀土等化合物熔点高、稳定性好;三是,稀土元素与铁水中的球化干扰元素也能形成稳定的化合物,因此含稀土的球化剂比镁球化剂的抗干扰能力强。 稀土元素残留量对石墨球化有明显的影响。轻稀土处理过共晶铁水,当残留铈含量0.04%时,石墨就可以球化,而且很稳定;处理亚共晶铁水时,轻稀土加入量要增加。轻稀土处理得球铁,石墨圆整度比镁处理得球铁要差,并出现碎块状石墨;另外轻稀土处理得球铁白口倾向大,因此需要控制其加入量。重稀土钇本身熔点高,其脱氧除硫产生的氧化物、硫化物在高温下比较稳定,因此其抗球化衰退能力很强。1400度的铁水保温1小时,球化率降低不超过10%,含硫0.06%的铁水,用钇基重稀土合金处理后,能得到完整的球状石墨。铁水中残留钇0.10—0.15%,石墨球化良好;低于此限度,随钇量减少一次出现不规则石墨和蠕虫状石墨;残留钇超过0.15而低于0.30%时,白口倾向逐渐增大,石墨圆整度变差,并在更高残留量时出现YTe4。 Ca:钙在铁水中的溶解度很低,它对金相组织的影响是通过与氧和硫的结合而间接实现的。与镁相比,钙与硫、氧的亲和力更强,能够有效的脱硫除氧。钙残留量很低时,石墨分枝倾向增加,残留量较多时,可是使石墨尺寸减小,分枝倾向降低。钙残留量达到0.2%时,白口倾向明显加大。 1、1、2反球化元素(球化干扰元素)的作用 该类元素主要是指破坏和阻碍使石墨球化的元素,按其作用机理大概可以分三类: 一是消耗型反球化元素,如硫、氧、硒、碲等,它们与镁、稀土元素生成化合物,通过消耗球化元素来阻止球状石墨的形成。 二是境界偏析的球化干扰元素,包括锡、锑、砷、铜、硼、钛、铝等,这些元素富集到晶界,促使碳在共晶后期结晶时,形成畸形的枝晶状石墨,如果这些元素含量较高,也可在

稀土元素在球墨铸铁中作用

友达商贸有限公司专业从事球墨铸铁批发的公司,针对稀土元素在球墨铸铁中所产生的作用 有如下介绍: 净化作用 稀土元素可与氧,硫,氮,氢等形成化合物,但是在铁水中稀土元素与这些元素的反应则受到很多因素的影响而呈现复杂的规律,但是一般来说,稀土元素加入铁水中可脱硫去气,尤 其在用稀土元素镁合金处理时,效果较好。 稀土元素和氧气的亲和力极强,加入铁水中应有强烈的脱氧作用,但是稀土元素氧化物熔点远高于铁水温度,密度接近或超过铁水密度,不易从铁水中逸出,因此稀土元素在铁水中可与夺走氧形成稀土氧化物,从而促进球化但是不一定降低铸铁中总含量,稀土氧化物与二氧化硅可与组成熔点及密度较低的盐而逸出铁水,所以加入稀土硅钙合金会有较好的脱氧效果,把稀土镁硅铁合金加入铁水,由于镁起到沸腾搅拌作用,也促进脱氧。 稀土元素虽然与氮有一定的亲和力,但是铁水中含有錋等元素,氮的溶解度会增加到超过正常铁水的含氮量,这是由于稀土元素可吸收氮气,因此有些实验表明,稀土元素在铁水中脱氮未见成效,甚至还有增氮可能被稀土元素化合或吸收。 稀土元素可以大量吸收氢气,氢在稀土元素中溶解度比在铁中的溶解度高几百倍至几千倍。稀土元素也可以和氢形成不稳定化合物,在高温下分解放出氢气,铁水中加入稀土后,总的含氢量并不减少,但在冷却过程中基体或石墨中的氢大部分被稀土所吸收溶解。 (责任编辑:admin)

发布时间:12-05-04 来源:南京固琦分析仪器制造有限公司点击量:1392 字段选择:大中小 稀土在球墨铸铁中的作用 南京固琦分析仪器制造有限公司专业生产石墨球化率分析仪,石墨球化率化验仪,石墨球化率检测仪,石墨大小分析仪,石墨金相分析仪等精密仪器,稀土能使石墨球化。自从H. Morrogh最先使用铈得到球墨铸铁以来,先后许多人研究了各种稀土元素的球化行为,发现铈是最有效的球化元素,其他元素也均具有程度不等的球化能力。结合国情,我国对稀土的球化作用进行了大量研制工作,发现稀土元素对常用的球墨铸铁成分(C3.6~3.8wt%,Si2.0~2.5wt%)来说,很难获得同镁球墨铸铁那样完整均匀的球状石墨;而且,当稀土量过高时,还会出现各种变态形的石墨,白口倾向也增大,但是,如果是高碳过共晶成分(C>4.0wt%),稀土残留量为0.12~0.15wt%时,可获得良好的球状石墨。根据我国铁质差、含硫量高(冲天炉熔炼)和出铁温度低的情况,加入稀土是必要的。球化剂中镁是主导元素,稀土一方面可促进石墨球化;另一方面克服硫以及杂质元素的影响以保证球化也是必须的。稀土防止干扰元素破坏球化。研究表明,当干扰元素Pb、Bi、Sb、Te、Ti等总量为0.05wt%时,加入0.01wt%(残余量)的稀土,可以完全中和干扰,并可抑制变态石墨的产生。我国绝大部分的生铁中含有钛,有的生铁中含钛高达0.2~0.3wt%,但稀土镁球化剂由于能使铁中的稀土残留量达0.02~0.03wt%,故仍可保证石墨球化良好。如果在球墨铸铁中加入0.02~0.03wt%Bi,则几乎把球状石墨完全破坏;若随后加入0.01~0.05wt%Ce,则又恢复原来的球化状态,这是由于Bi和Ce形成了稳定的化合物。稀土的形核作用。20世纪60年代以后的研究表明,含铈的孕育剂可使铁液在整个保持期中增加球数,使最终的组织中含有更多的石墨球和更小的白口倾向。经研究还表明,含稀土的孕育剂可改善球墨铸铁的孕育效果并显著提高抗衰退的能力。加入稀土可使石墨球数增多的原因可归结为:稀土可提供更多的晶核,但它与FeSi孕育相比所提供的晶核成分有所不同;稀土可使原来(存在于铁液中的)不活化的晶核得以长大,结果使铁液中总的晶核数量增多。

稀土生产中的放射性分布

立志当早,存高远 稀土生产中的放射性分布 有两个方面,一方面是稀土元素本身有少数几个在自然界丰度较小的放射 性同位素。另一方面是稀土矿物中伴生的铀、钍和镭等天然放射性核素。稀土 元素的天然放射性同位素的比放射性强度都很低,故稀土元素本身不作为放射 性元素处理。稀土矿物中伴生的铀、钍和镭等天然放射性核素是稀土生产中放 射性的主要来源,并在稀土中间产品和稀土合金产品中有所分布。表1、表 2、表3 中分别列出了部分稀土矿物、中间产品和稀土合金产品中天然铀、钍 含量及比放射性强度。由表可见,包头混合型稀土矿精矿的α比放射性强度, 在国家控制的7.4×104Bq/kg 的控制线上,生产能力大时,日操作量就有可能超 过国家控制标准。氟碳铈矿、独居石矿和褐钇铌矿精矿的比放射性强度均高于 国家标准控制最低值。稀土中间合金产品中比放射性强度较高,对于贮存、运 输来说,需加强防护。其他多数产品的放射性比强度都低于国家卫生标准限 值。表1 我国几种稀土精矿中铀、钍含量及其比放射性稀土精矿矿种类REO/%ThO2/%U3O8/%总比放射性强度/(Bq/kg)混合矿氟碳铈矿独居石矿褐 钇铌矿24.43~40.265042.7~60.322.02~30.660.111~0.2460.364.3~7.181.48~4.38-0.00510.22~0.882.12~2.145.37×104~7.77×1041.2×1050.37~ 3.7×1060.37~3.7×106 表2 稀土混合矿生产的部分中间产品中天然钍含量及比放射性中间产品名称REO/%ThO2/%总比放射性强度/(Bq/kg)复盐混合稀土 氧化物氧化铈42~4545~480.056~0.22≤0.03≤0.033.26×104~ 7.8×1040.41×104~1.11×1040.44×103 表3 稀土中间合金冶炼原料、产品中天然钍含量及其比放射性原料、产品名称稀土富渣稀土硅铁合金稀土镁合金钙稀土 合金稀土含量(REO)/%天然钍含量/%总比放射性强度/(×104Bq/kg) ≥80.056~0.0592.22~3.4823~340.10~0.203.92~7.776~200.05~0.122.22~

稀土金属元素

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 稀土用途: 在军事方面 稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,以及能够对敌人肆无忌惮地公开杀戮,正缘于稀土科技领域的超人一等。 在冶金工业方面 稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。 在石油化工方面 用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。 在玻璃陶瓷方面 稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显象管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。

稀土在钢中的作用

稀土在钢中的应用 1 概况 稀土,系指元素周期表中第ⅢB族镧系元素以及与镧系元素在化学性质上相近的钪和钇,共计17种元素。是芬兰学者加多林(Johan Gado1in)在1794年发现的。当时在瑞典的矿石中发现了矿物组成类似“土”状物而存在的钇土,且又认为稀少,便定名为“稀有的土”(Baxe Earth)。此后,又陆续发现了与此同类的多种元素,总称为稀土。但后来研究发现,稀土在地壳中的丰度要比人们想象的多得多。如铈比锡多得多,钇也比铅多,即使丰度最少的稀土元素也比铂族元素多,说明稀土并不稀少。也不是“土”,全部是金属元素。 我国稀土资源丰富,为世界上其它任何一个国家所不及。现己探明的工业储量为3600万吨,约占全世界总量的80%,且品种繁多,分布集中。其中包头市白云鄂博矿山的储量就占了全国储量的95%以上。所以才有了“世界稀土在中国,中国稀土在包头”之说。现在包钢每年采出的稀土矿石量为230万吨-250万吨,这一部分矿石中多数稀土品位都比较高,能达到7.25%以上。经过几十年的研究开发,生产技术不断完善,生产规模不断扩大。现已形成了年产稀土精矿6万吨,稀土合金1.5万吨、湿法稀土产品折合氧化物5800吨的83个品种、195种规格的世界最大的稀土矿产品生产基地。 包钢虽然有很丰富的稀土资源,但在稀土处理钢的品种及处理效果等方面,与武钢、济钢、本钢等相比还有很大差距。如何把稀土的资源优势变成经济优势,还需进一步研究和开发。 2 稀土在钢中应用的现状 近几年来国内外的钢铁生产实践表明,钢经过稀土处理,可对钢的性能产生一系列的作用。现在我国用稀土处理钢有80多个品种,年产量达60万吨,预计2002年全国稀土钢产量达300万吨。包钢是稀土之乡,稀土处理钢也开发了一些,但只占包钢钢产量的0.5%。因此大力开发应用稀土资源,进行稀土钢的开发及应用研究,应提到日程上来。 包钢研究稀土在钢中的应用始于60年代。当时稀土当作灵丹妙药,认为无论放到哪种钢里都有作用,甚至提出过“以稀土代替镍、铬”的口号,到70年代中期,对稀土在钢中的应用出现了两种截然不同的见解,一种意见认为稀土在有些钢中作用很明显,应该继续进行试验研究;另一种意见则认为,稀土对含硫较高的钢有一些作用,但是随着生铁含硫量的降低,稀土这一作用将逐渐消失,因此稀土处理钢是没有前途的。到80年代后期,由事实证明,稀土确实有用,当然也不是万能的。钢中含有微量稀土元素,即可明显地优化铸坯质量,提高钢的

稀土硅铁合金及镁硅铁合金化学分析方法 第2部分:钙、镁、锰量

I C S77.120.99 H14 中华人民共和国国家标准 G B/T16477.2 2010 代替G B/T16477.2 1996 稀土硅铁合金及镁硅铁合金 化学分析方法 第2部分:钙二镁二锰量的测定 电感耦合等离子体发射光谱法 C h e m i c a l a n a l y s i sm e t h o d s o f r a r e e a r t h f e r r o s i l i c o na l l o y a n d r a r e e a r t h f e r r o s i l i c o nm a g n e s i u ma l l o y P a r t2:D e t e r m i n a t i o no f c a l c i u m,m a g n e s i u ma n dm a n g a n e s e c o n t e n t s I n d u c t i v e l y c o u p l e d p l a s m a a t o m i c e m i s s i o n s p e c t r o m e t r y 2011-01-14发布2011-11-01实施中华人民共和国国家质量监督检验检疫总局

前言 G B/T16477‘稀土硅铁合金及镁硅铁合金化学分析方法“共分5个部分: 第1部分:稀土总量的测定; 第2部分:钙二镁二锰量的测定电感耦合等离子体发射光谱法; 第3部分:氧化镁量的测定电感耦合等离子体发射光谱法; 第4部分:硅量的测定; 第5部分:钛量的测定电感耦合等离子体发射光谱法三 本部分为第2部分三 本部分是对G B/T16477.2 1996‘稀土硅铁合金及镁硅铁合金化学分析方法钙二镁二锰量的测定“的修订三 本部分与G B/T16477.2 1996相比,主要有如下变动: 采用电感耦合等离子体光谱法代替原火焰原子吸收光谱法测定钙二镁二锰含量三锰的测定范围由0.20%~4.00%调整为0.50~4.00%; 增加了精密度条款; 增加了质量保证和控制条款三 本部分由全国稀土标准化技术委员会(S A C/T C229)归口三 本部分由包头稀土研究院二中国有色金属工业标准计量质量研究所负责起草三 本部分由包头稀土研究院起草三 本部分由包钢钢联股份有限公司技术中心二中国兵器工业集团第五二研究所参加起草三 本部分主要起草人:金斯琴高娃二刘晓杰三 本部分参加起草人:刘钢耀二乔宇二田小亭二段东升三 本部分所代替标准的历次版本发布情况为: G B/T16477.2 1996三

稀土元素资料汇总

稀土元素资料汇总 第一篇 周期系ⅢB族中原子序数为21、39和57~71的17种化学元素的统称。其中原子序数为57~71的15种化学元素又统称为镧系元素。稀土元素包括钪、钇、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土元素;钆、铽、镝、钬、铒、铥、镱、镥、钇称为重稀土元素。稀土元素是历史遗留下来的名称,通常把不溶于水的固体氧化物叫做土,而在18世纪,这17种元素都是很稀少的尚未被大量发现,因而得名为稀土元素。现已查明,它们并不稀少,特别是中国的稀土资源十分丰富,有开采价值的储量占世界第一位。从1794年芬兰J加多林从瑞典斯德哥尔摩附近的于特比镇发现钇开始,一直到1947年美国JA马林斯基从铀的裂变产物中分离出钷,共经历150多年。 已经发现的稀土矿物有250种以上,最重要的有氟碳铈镧矿[(Ce,La)FCO3]、独居石[CePO4,Th3(PO4)4]、磷钇石(YPO4)、黑稀金矿[(Y,Ce,Ca) (Nb,Ta,Ti)2O6]、硅铍钇矿(Y2FeBe2Si2O10)、褐帘石[(Ca,Ce)2(Al,Fe)3Si3O12]、铈硅石[(Ce,Y,Pr)2Si2O7·H2O]。 第二篇 稀土元素是镧系元素系稀土类元素群的总称,包含钪Sc、钇Y及镧系中的镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu、钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu,共17个元素。 “稀土”一词是十八世纪沿用下来的名称,因为当时用于提取这类元素的矿物比较稀少,而且获得的氧化物难以熔化,也难以溶于水,也很难分离,其外观酷似“土壤”,而称之为稀土。稀土元素分为“轻稀土元素”和“重稀土元素”: “轻稀土元素”指原子序数较小的钪Sc、钇Y和镧La、铈Ce、镨Pr、钕Nd、钷Pm、钐Sm、铕Eu。 “重稀土元素”原子序数比较大的钆Gd、铽Tb、镝Dy、钬Ho、铒Er、铥Tm、镱Yb、镥Lu。 二、稀土资源及储备状况 由于稀土元素性质活跃,使它成为亲石元素,地壳中还没有发现它的天然金属无水或硫化物,最常见的是以复杂氧化物、含水或无水硅酸盐、含水或无水磷酸盐、磷硅酸盐、氟碳酸盐以及氟化物等形式存在。由于稀土元素的离子半径、氧化态和所有其它元素都近似,因

稀土在钢中的应用

稀土在钢中的应用 朱兆顺张建 武钢集团鄂钢公司技术部,湖北省鄂州市 436002 摘要:本文简要的分析了稀土在钢铁冶金中的应用。用稀土这个高技术材料来强化和提升钢铁传统产业,在低合金钢、合金钢中加入微量稀土,提高钢质增强国际竞争力,把稀土的资源优势转化为钢材的品种优势和经济优势,具有十分重大的意义。 关键字:稀土,微合金化,弥散硬化,稀土铌重轨 1.稀土的分类 根据稀土元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和不同的离子半径可产生不同性质的特征,十七种稀土元素通常分为二组。 轻稀土(又称铈组)包括:镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)。 重稀土(又称钇组)包括:铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钪(Sc)、 钇(Y)。 2.稀土金属的某些物理特性 表1

3.稀土的用途 由于稀土元素的特殊性质,决定了稀土的用途。钢铁工业中应用的主要是稀土硅铁合金(含轻稀土混合金属20%~45%),稀土硅铁镁合金(稀土金属6%~25%,镁7%~12%),重稀土硅铁合金(含钇类混合稀土60%以上)。混合稀土金属(含轻稀土95%以上),富铈或镧的稀土硅铁合金(Ce占70%或La占50%以上)。其中炼钢生产中最常用的有两种,一是稀土合金,块状稀土硅铁合金,以前用于大包投入,大包压入,粉状一般用于大包内喷粉、模铸中注管喷粉等方法加入钢中;二是混合稀土金属,制成(φ0.5mm~φ2mm)或棒(≥φ2mm),丝用于钢包、中注管或连铸结晶器,使用喂丝机喂入钢中,棒采用模内吊挂的方法熔入钢中。稀土金属包芯线作为线性添加材料的新品种,由于喂丝技术在炼钢生产中的广泛应用,必将得到进一步的发展。 4.稀土在钢中的作用机理 4.1微合金化作用 稀土元素的微合金化作用初步认定主要是稀土原子在晶界上偏聚与其它元素交互作用,引起晶界的结构、化学成分和能量的变化,并影响其它元素的扩散和新相的成核与长大,最终导致钢组织与性能的变化。钢中稀土金属含量因不同钢种,不同冶炼方法和不同的稀土加入方法而有很大差异。稀土强化晶界,阻碍晶间裂纹的形成和扩展,有利于改善塑性尤其是高温塑性;稀土能抑制动态再结晶、细化晶粒和沉淀相尺寸并促进铁素体中Nb(C、N),(Nb、Ti)(C、N)和V(C、N)的析出;溶解的稀土可改变渗碳体的组成和结构并使碳化物球化、细化和均匀分布。 4.2与其它有害元素的作用 一定量(量的多少还需进一步测算)的稀土可以与钢中磷、砷、锡、锑、铋、铅等低熔点有害元素相作用。一方面,稀土可以与这些杂质形成熔点较高的化合物;另一方面,还能抑制这些夹杂在晶界上的偏祈。例如,钢存在热脆性,是由于钢中有一些低熔点的金属元素,当把稀土加入钢液中,生成高熔点金属化合物,不熔于钢中而进入炉渣,起到净化作用,使钢中杂质减少,从而克服了热脆性。 4.3稀土元素的脱硫、脱氧 热力学分析和大量有关钢中稀土夹杂研究表明,钢中[O]、[S]含量在一定范围内,钢液中加入稀土时,极易生成稀土的氧硫化物。当钢中氧含量降至201ppm以下时、加入钢液中的稀土首先形成RE203S型夹杂物,而后形成RE3S4或RES型的硫化物,这些硫化物可能包裹在氧硫化物外围,组成复合夹杂物或稀土硅酸盐化合物,它们熔点高且非常稳定,显球状,钢液经过适当的镇静之后,这些稀土氧化物、硫化物或稀土硅酸盐化合物将从钢中排除,从而净化了钢液。稀土在钢中的作用90%是通过对硫化物形态的控制来实现的。当RE/S为2.7-3.0时,硫化物形态控制效果达到最佳状态。 4.4捕氢作用 稀土能吸收大量的氢,可以制成储氢材科,稀土加到钢中,可以抑制钢中氢引起的脆性和白点。已有研究表明,稀土有降低氢的扩散系数,延缓氢在裂纹尖端塑性区的富集,从而使裂纹扩展的孕育期和断裂时间延长因此,稀土有抑制钢的氢脆作用。 4.5弥散硬化作用 向钢液中喷吹稀土氧化物(CeO2)粉剂,可以提高钢的强度和韧性,降低脆性转变温度提高钢的持久强度。其原因是一方面 CeO2可以作为结晶核的细化铸态晶粒;另一方面,弥散分布的CeO2质点可以提高晶界对位错运动的阻力。 4.6变性夹杂 稀土加入钢液中生成球状稀土硫化物或硫氧化物,取代容易形成的长条状MnS夹杂,使硫化物形状得到控制,提高了钢的热塑性,特别是横向冲击韧性,改善钢材的各向异性。稀土使棱角状高硬度的氧化铝夹杂转为球状硫氧化物及铝酸稀土,有利于提高钢的疲劳性能。 5.稀土对钢材性能的影响

关于编制稀土镁硅铁合金项目可行性研究报告编制说明

稀土镁硅铁合金项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/9710266324.html, 高级工程师:高建

关于编制稀土镁硅铁合金项目可行性研究 报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国稀土镁硅铁合金产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5稀土镁硅铁合金项目发展概况 (12)

火法冶炼生产稀土硅铁基合金-概述

书山有路勤为径,学海无涯苦作舟 火法冶炼生产稀土硅铁基合金-概述 稀土中间合金种类繁多,主要包括稀土硅铁基中间合金、稀土铝合金、稀土镁合金等。用热还原法制取的稀土中间合金主要有稀土硅铁合金、稀土硅铁镁合金、稀土硅铁钡(钙、钛等)合金等。目前它的产量(以稀土氧化物计)约占我国稀土产量的1/3~1/4。1956 年中国科学院上海冶金研究所创造性地研究成功在电弧炉中用75 硅铁作还原剂,从含REO4%~6%的包头钢铁公司炼铁高炉渣中回收稀土,制取稀土硅铁合金的工艺。包钢稀土一厂首先采用该工艺,开始生产稀土硅铁合金。1966 年冶金部包头稀土研究院为了满足国家对稀土硅铁合金的需求,打破了中贫铁矿入高炉中不能顺行和易发生爆炸的观点,成功地研制出含稀土的中贫铁矿矿石和低品位稀土精矿球团直接入高炉脱铁去磷,制取REO>10%的富渣,再采用电硅热法冶炼稀土硅铁合金的工艺,使我国稀土硅铁合金的生产步入了新的阶段,合金成本远低于国外的同类产品,这不仅为国内在钢铁生产中大规模推广应用稀土创造了条件,而且促使稀土中间合金在20 世纪60 年代后期就出口越南和美国,受到了用户的欢迎。 进入80 年代,随着白云鄂博矿选技术的突破,工业化生产的中高品位稀土精 矿陆续问世,给稀土中间合金生产提供了精料,新的强化冶炼技术和适销对路的合金品种不断出现,促使稀土中间合金工业有了长足的进步和发展。铸铁、钢和特种合金变质处理的理论与实践的发展,特别是球墨铸铁、石油管线和耐海水、耐大气腐蚀用钢的稀土处理技术的推广,促进了稀土中间合金工业的进一步发展,采用金属热还原法和碳热还原法都成功有效地制取出多种稀土中间合金。特别是90 年代,东北大学张成祥、涂赣峰等人发明了在矿热炉中 碳热还原一步法生产稀土硅化物合金,并在3600~6300kVA 不同容量的矿热炉中成功进行了工业化生产。稀土中间合金目前已广泛用于钢铁、机制制造

稀土在钢中的应用

第一章综述 在钢的冶炼中应用稀土是我国推广稀土应用最早的领域之一。通过冶金工作者40多年的努力,我国已研制出稀土耐热钢、稀土耐磨钢、稀土耐腐蚀钢和稀土高强度低合金等钢种。 1.1 稀土的分类及用途 稀土是指元素周期表中第ⅢB族镧系元素以及与镧系元素在化学性质上相近的钪和钇,共计17种元素,是芬兰学者加多林(Johan Gado1in)在1794年发现的,当时在瑞典的矿石中发现了矿物组成类似“土”状物而存在的钇土,且又认为稀少,便定名为“稀有的土”(Baxe Earth)。此后,又陆续发现了与此同类的多种元素,统称为稀土。但后来研究发现,稀土在地壳中的含量要比人们想象的多得多。如铈比锡多得多,钇也比铅多,即使含量最少的稀土元素也比铂族元素多,说明稀土并不稀少,也不是“土”,全部都是金属元素[1]。 稀土元素根据其性质的差异和分离工艺的要求一般分为轻稀土和重稀土两类,其中镧、铈、镨、钕、钜、钐、铕为轻稀土。稀土元素是典型的金属元素,它们的金属活泼性仅次于碱金属和碱土金属,较其他金属元素都活泼,能与多种元素化合,且稀土金属的燃点很低,如铈165℃,钕270℃,极易与氧发生反应。所有的稀土金属能在180℃-200℃的空气中被氧化成RE2O3型氧化物,稀土氧化物的熔点都很高,生成自由能负值很大,说明其氧化物都是很稳定的化合物。由于稀土元素的性质特殊,决定了稀土的用途。钢铁工业中应用的主要是稀土硅铁合金(含轻稀土混合金属20%-45%),稀土硅铁镁合金(稀土金属6%-25%,镁7%-12%),重稀土硅铁合金(含钇类混合稀土60%以上)。混合稀土金属(含轻稀土95%以上),富铈或镧的稀土硅铁合金(Ce占70%或La占50%以上)。其中炼钢生产中最常用的有两种,一是稀土合金,块状稀土硅铁合金,以前用于大包投入,大包压入,粉状一般用于大包内喷粉、模铸中注管喷粉等方法加入钢中;二是混合稀土金属,制成丝(φmm-φmm)或棒(≥φmm),丝用于钢包、中注管或连铸结晶器,用喂丝机喂入钢中,棒采用模内吊挂的方法熔入钢中。稀土金属包芯线作为线性添加材料的新品种,由于喂丝技术在炼钢生产中的广泛应用,必将得到进一步的发展。 我国稀土资源丰富,为世界上其它任何一个国家所不及。现已探明的工业储量为3600万吨,约占全世界总量的80%,且品种繁多,分布较集中。其中包头市白云鄂博矿山的储量就占了全国储量的95%以上,所以才有了“世界稀土在中国,中国稀土在包头”的说法。现在包钢每年采出的稀土矿石量约为230万吨到250万吨,这一部分矿石中多数稀土含量都比较高,能达到7.25%以上。经过几十年的研究开发,生产技术不断完善,生产规模不断扩大,现在已经形成了年产稀土精矿6万吨,稀土合金1.5万吨、湿法稀土产品折合氧化物5800吨的83个品种、195种规格的世界最大的稀土矿产品生产基地。

稀土硅铁合金产品及系列化

立志当早,存高远 稀土硅铁合金产品及系列化 稀土硅铁合金已广泛地应用于冶金和铸造生产。稀土的加入明显地改善了 钢和铸铁的力学性能、工艺性能和使用性能。但由于使用的目的、条件、技术 装备水平不同,对合金组分和剂型的要求也不同。名目繁多的合金品种和规格 给稀土中间合金的生产带来一定困难,但为适应市场需求,合金产品系列化, 已成为必须考虑的问题了。熔融配制法生产多品种硅铁合金熔融配制法是制 备多种稀土中间合金的简便有效的方法,特别适用于多元素的复杂合合金。目 前国内使用的稀土铜镁合金、稀土钨镁合金、稀土锌镁合金、稀土锰镁合金久 是该法生产的。熔融法配制稀土合金的设备有中频感应炉、燃油炉、焦炭地 坑炉等。以中频感应炉较好,其升温均匀可控制,有电磁搅拌作用,成品成分 均匀,偏析少,从环境保护和安全防护角度考虑也优于其他炉子。只是一次性 投资较大,在电力供应紧张地区使用受到限制。熔融法的最大优点是通过配 料计算,可同时保证多种元素都达到预期含量。正确估计元素烧损率是配料计 算的关键,各元素的物理、化学性能都不同,烧损率也不同,一般说来化学活 性高、蒸气压高的元素烧损率要大些。以配制低稀土硅铁镁合金为例, GB4138—84 牌号为FeSiMg8RE7 的合金含RE 6.0%~8.0%,Mg 7.0%~9.0%,Si≤44%,配料时采用RE7%,Mg10%,Si42%。该法的缺点是生产规模不大;需要价格较贵的合金为原料;烧损元素所形成的氧化物大部分还留存在合 金中,影响到使用效果,因此在对产品进行化学分析时,应分别列出元素的总量、金属状态和氧化物的分量,特别是对高温易烧损失元素,如Mg、Ba、 Sr、Ca、RE 等更应如此,以方便用户计量。从目前熔融法配制稀土合金还有着不可替代的作用。它可以补充热还原法和电解法的不足,制备小批量和多品 种多元素复合合金。改进熔融和铸锭工艺,减少有价元素的烧损,降低氧化物

稀土在铜及铜合金中的作用

提高质量稀土在铜及铜合金中的作用 ??稀土在铜及铜合金中的作用 一、稀土对铜及铜合金组织的影响 1、净化组织 工业用铜中往往含有多种杂质,虽然有些杂质含量很低,甚至低于 0.001 %(质量分数,下同) ,但是这些杂质元素会严重影响铜及铜合金的加工性能、降低导电性及导热性。如氧、硫和铜形成的脆性化合物(Cu2O 和Cu2S) 可以降低铜的塑性,这些脆性化合物冷拉时还会产生毛刺,并降低铜的导电性、耐蚀性和焊接性能。稀土净化铜及铜合金组织主要有两种方式: (1) 稀土与氧和硫的亲和力很强,形成熔点较高,热稳定性强,比重较小的稀土化合物,从而达到脱硫、脱氧的作用;又稀土元素很容易与原子态氢发生作用,生成RH2 或RH3 型稳定氢化物(R 代表稀土金属) ,这些氢化物以固溶体的形式溶于铜合金中,从而消除了氢的有害作用。(2) 稀土与铅、铋等元素生成比铜熔点高的高熔点金属间化合物,因此在铜熔铸过程中,可以保持固体状态,与熔渣一起从液体金属铜合金中排除,达到脱铅、铋 的目的。

2、细化组织 稀土对铜及铜合金显微组织的影响主要体现为细化晶粒,减少或消除柱状晶,扩大等轴晶区的作用。稀土细化铜及铜合金组织的作用机理主要存在以下三种: (1) 形成新晶核,抑制晶粒长大。稀土在铜 及其合金中能与一些元素反应形成高熔点化合物,常以极微细颗粒悬浮于熔体之中,成为弥散的结晶核心,使晶粒变多,变小;又从凝固原理及热力学观点看,由于稀土大量聚集在固液界面前沿的液相中,使合金在凝固时成分过冷增大,以树枝状方式凝固生长,同时在分枝节点处产生细颈、熔断,增多了结晶核心,从而细化了晶粒。(2) 微晶化作用。由于稀土元素的原子半径( 0.174nm~0.204 nm) 比铜的原子半径(0.127nm) 要大36 %~60 % ,故稀土原子很容易填补正在生长中的铜或铜合金的晶粒新相的表面缺陷,生成能阻碍晶粒继续生长的膜,从而细化为微晶; (3) 合金化作用。稀土在铜中的溶解度很小,一般仅千分之几到万分之几,但稀土与铜能生成多种金属间化合物。这些金属间化合物弥散分布于基体中,达到细化晶粒。 3、稀土对夹杂物组织的影响 稀土对夹杂物组织的影响主要是改变杂质的形态和分布。其主要表现有以下四种: (1) 减轻或消除合金结构中的树枝状晶形和柱状结晶,这与稀土同某些杂质形成难熔化合物并呈弥散状态有关。(2) 使合金中某些呈条状、片状甚至块状的杂质(如铅、铋等,其中有的杂质可形成低熔点共晶) 转变成点状或球

稀土硅镁铁合金的一些主流生产方法

稀土硅镁铁合金的一些主流生产方法 1 中频感应炉熔炼法 该方法是生产稀土镁硅铁等复合铁合金的主要方法之一。它以稀土硅铁合金,硅铁,废钢铁为原料进行熔配。常用设备规格为0.15一0.5 t,单炉产量为0.05一0.25 t,熔炼时间30min左右,熔炼增祸材质为石墨或镁砂。该工艺具有设备投资少,见效快,操作简便,合金成分易控,产品合格率高等优点。同时也存在生产成本高,合金易喷溅等缺点。 1.1 用FeSiRE23熔配稀土镁硅铁合金 FeSiRE23合金一般用电弧炉生产,稀土收率达80%左右,1t该合金可熔配成3t FeSiMg8RE 合金,镁收率达80%一90%。目前,国内各合金厂家普遍采用该工艺。该工艺加料顺序为硅铁一镁一硅铁一稀土硅铁合金一废钢铁。这样可以使镁与钢液接触之前尽量与硅形成化合物,降低镁的活度,减少合金喷溅损失。另外,搅炉要掌握时机,炉料要保持透气状态。目前,国内有些小型合金厂为降低生产成本,在生产中配入部分筛下的稀土合金粉及废硅铁粉,粉料在炉内极度易结壳而发生合金喷溅及伤人事故,而且产品中易夹杂生料,影响产品质量,应当引起重视。 1.2 用FeSi9(50一60)RE 27熔配法 最近几年,我国威海,营口相继建成矿热炉碳热法生产稀土硅铁合金生产线,共有8000 t 的生产规模,稀土收率达95%。该产品特点是硅含量高,含钡4%左右川。由于钡是一种辅助球化元素有较强的抗球化和抗孕育衰退能力。目前合金市场中稀土钡钙镁硅铁合金以其优越的性能逐渐受到用户的青睐,因而使高硅含钡的稀土合金熔配工艺得到迅速推广。据厂家反映,在熔炼过程中,合金基本无喷溅现象,而且相对硅铁用量少,钢铁用量大,炉子升温快,熔炼时间短。由于合金中硅含量高,自由硅与铁先化合而减少单质铁与镁的接触机会,减少了镁的氧化损失,镁的收率可达90%。总之,用该工艺生产的产品不仅在球化剂市场中占有一席之地,而且在将来开发新型多元复合球化剂方面具有广阔的前景。 1.3 用FeSi( < 44)R E13 熔配法 国内一些合金厂家为了提高电炉冶炼稀土硅铁合金中的稀土总收率而采用留渣放合金二次还原生产工艺,使稀土总收率达90%。二次还原生产的低品位稀土硅铁合金用中频炉熔配生产稀土镁硅铁合金效果较好。加料顺序为:镁一硅铁一低品位稀土硅合金一废钢铁。由于低品位合金加人量较大,合金中带人的硅和铁量大,相对配人的硅铁和废钢铁较少,有效避免镁的汽化和合金喷溅。操作安全,炉况反应平稳,镁收率达90%。由于单炉耗用稀土硅铁合金量大,因而仅适用于小规模生产,尤其适合于既生产稀土硅铁合金又生产稀土镁硅铁合金的厂家川。生产成本低,具有较好的经济效益。 1.4 硅热还原RE凡法 在 10 0K VA的感应炉中加人稀土氟化物、白云石(CaO:55.8%、Mg0:32.2%、Si02:3.0%、A1203 :4.1% , Fe203 :2.0% 、Mn02:0 . 27% )及75%硅铁可冶炼出含Si:59%,Mg:4.1%,Y-RE:10.0%,Al:1.0%,Fe:19 .9% ,P=0.015% ,S:0.01% ,C:0.21%的稀土镁硅铁合金。冶炼过程中由于CaO,Mg O被Si还原生产活性的Ca一Mg,它们又与硅一起还原了稀土氟化物,此时得到的Si02与强碱性的CaO,MgO结合,所以混合物中硅活性增加。尤其钙对RE凡有较强的还原性,而且生产成的Ca几易熔于Si02一CaO -Mg0,可降低渣的粘度,改善渣与合金的分离,强化冶炼过程,稀土收率高达94.49%。但由于REF的制造成本较高,对该工艺的实现工业化生产有较强制约性。 2 电弧炉冶炼法 目前,用于生产的电弧炉规模为1.5一5t,单炉产量为1一4t,冶炼时间为2.5h左右。

相关文档
最新文档