菱形判定的证明题

菱形判定的证明题
菱形判定的证明题

1. 如图,在△ABC 中,AB=BC ,D 、E 、F 分别是BC 、AC 、AB 上的中点,(1)求证四边形BDEF 是菱形。

(2)若AB=12cm ,求菱形BDEF 的周长?

2. 已知:如图,△ABC 中,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,且AE=AC ,EF ∥BC 交AD 于

点F ,求证:四边形CDEF 是菱形。

3. 如图,平行四边形ABCD 的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点E 、F 、O ,求证:四

边形AFCE 是菱形。

4. 如图,在平行四边形中,平分交于点,平分交于点. 求证:(1);

(2)若,则判断四边形是什么特殊四边形,请证明你的结论.

5. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF .

(1)求证:△≌△CDE ;

(2)若AB =AC ,求证:四边形BFCE 是菱形.

ABCD BE ABC ∠AD E DF ∠ADC BC F ABE CDF △≌BD EF ⊥EBFD

BDF F D E C A

B

D C B A O

E 6. 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由;(2)若AB =6,BC =8,求四边形OCED 的面积.

7.如图,在平行四边形ABCD 中,点P 是对角线AC 上一点,PE ⊥AB ,PF ⊥AD ,垂足分别为点E 、F ,且PE =PF ,平行四边形ABCD 是菱形吗?为什么?

8.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC ,试判断四边形AEDF 的形状,并说明理由.

9.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB ,(1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离.

10.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. F D E A C P B

菱形的判定专项练习30题(有答案)ok

菱形的判定专项练习30题(有答案) 1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点. (1)求证:四边形ABED是菱形; (2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长. 2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD. 求证:BC=2DN. 3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点. (1)求证:四边形AEDF是菱形; (2)若AB=12cm,求菱形AEDF的周长. 4.如图,在?ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F; (2)?ABCD是菱形. 菱形的判定--- 1

5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF. (1)求证:AF=DC; (2)若∠BAC=90°,求证:四边形AFBD是菱形. 6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形. 7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE. (1)求证:四边形ADCE是菱形. (2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么? 8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形. 9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作?ADFE交BC于点G,H,且EH=EC. 求证:(1)∠B=∠C; (2)?ADFE是菱形. 菱形的判定--- 2

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

菱形的判定(教学设计)

菱形的判定 一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法. 二、教学重点:菱形判定方法的探究. 三、教学难点:菱形判定方法的探究及灵活运用. 四、教学过程: 活动1、引入新课,激发兴趣 1、复习 (1)菱形的定义:一组邻边相等的平行四边形是菱形。 (2)菱形的性质1 菱形的两组对边分别平行,四条边都相等; 性质2 菱形的两组对角分别相等,邻角互补; 性质3 菱形的两条对角线互相平分,菱形的两条对角线互相 垂直,且每一条对角线平分一组对角。 2、导入 (1)如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么? 根据菱形的定义可知: 一组邻边相等的平行四边形是菱形. 所以只要再有一组邻边相等的条件即可. (2)要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法 【问题牵引】 用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。 问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗? 继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?

学生猜想:对角线互相垂直的平行四边形是菱形。 教师提问:这个命题的前提是什么?结论是什么? 学生用几何语言表示命题如下: 已知:在□ABCD 中,对角线AC ⊥BD , 求证:□ABCD 是菱形。 分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO ,由∠AOB=∠AOD=90o及AO=AO ,得ΔAOB ≌ΔAOD ,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD 是菱形。 【归纳定理】 通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1): 对角线互相垂直的平行四边形是菱形。 提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。对角线互相垂直且平分的四边形是菱形。 活动3、菱形第二个判定方法的应用 例3 如图,如图,□ABCD 的对角线AC 、BD 相交 于点O ,且AB=5,AO=4,BO=3,求证:□ABCD 是菱形。 思路点拨:由于平行四边形对角线互相平分,构 成了△ABO 是一个三角形,?而AB=5,AO=4,BO=3,由勾股定理的逆定理可知∠AOB=90°,证出对角线互相垂直,这样可利用菱形第二个判定方法证得。 活动4、探究与归纳菱形的第三个判定方法 【操作探究】过程: 先画两条等长的线段AB 、AD ,然后分别以B 、D 为圆心,AB 为半径画弧,得到两弧的交点C ,连接BC 、CD ,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论? 学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。 O D C B A

极限的计算、证明

极限的论证计算,其一般方法可归纳如下 1、 直接用定义()等δεε--,N 证明极限 例、试证明01 lim =∞→n n 证:要使ε<-01n ,只须ε 1 >n ,故 0>?ε,11 +?? ? ???=?εN ,N n >?,有ε<-01 n 2、 适当放大,然后用定义或定理求极限或证明极限 例、证明:0! lim =∞→n a n n ,0>a 证:已知0>a 是一个常数 ?∴正整数k ,使得k a ≤ ()ε 1!,01+???? ????=?>?∴+εεk a N k ,当N n >时,有 ε<-0! n a n 3、用两边夹定理在判定极限存在的同时求出极限 例、求()() n n n n 264212531lim ??-??∞ → 解: ()()()()n n n n n 212264212753264212531?-??-??=??-?? ()()()()n n n n n n 41 125312642211253264?-????=?-??> ∴ ()()n n n 41 2642125312 >??? ? ????-??

两边开n 2次方: ()()121 21412642125311222→?=>??-??>n n n n n n n n 由两边夹:()() 1264212531lim =??-??∞ →n n n n 4、 利用等价性原理把求一般极限的问题化为无穷小量的极限问 题 例、设0≠→l S n ()∞→n ,0>p 为常数,求证:p p n l S →()∞→n 证:00→-≤-≤l S l S n n ,得 l S n →()∞→n 记 n n l S α+=,其中 0→n α()∞→n 再记n n l S α+=()n n l l l βα+=??? ? ? ?+=11,其中0→=l n n αβ()∞→n 则有()p n p p n l S β+=1。 若取定自然数p K >,则当1

圆的有关证明与计算题专题

A B 《圆的证明与计算》专题研究 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O的切线; (2)如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于D,点E为BC的中点,连结DE,求证:DE是⊙O 的切线. (3)如图,以等腰△ABC的一腰为直径作⊙O,交底边BC于D,交另一腰于F,若DE⊥AC于E(或E为CF中点),求证:DE是⊙O的切线. (4)如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB 的延长线于点C,求证:CD是⊙O的切线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:

菱形 复习中难题 含答案

菱形复习中难题含答案 1.菱形的概念:有一组邻边相等的平行四边形叫做菱形 2.菱形的性质 (1)具有平行四边形的一切性质 (2)菱形的四条边相等 (3)菱形的对角线互相垂直,并且每一条对角线平分一组对角 (4)菱形是轴对称图形 3.菱形的判定 (1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形 (3)定理2:对角线互相垂直的平行四边形是菱形 4.菱形的面积 S菱形=底边长×高=两条对角线乘积的一半 (★★)若菱形的一条对角线与边的夹角为25°,则这个菱形各内角的度数 为. 【答案】50°、130°、50°、130°. (★★)1.菱形ABCD的周长为20,两对角线长3:4,则菱形的面积为. 【答案】24. (★★)2.如图,E、F分别为菱形ABCD中BC、CD边上的点,△AEF是等边三角形,且AE=AB,求∠B和∠C的度数.

F E D C B A 【答案】利用三角形内角和180度和同旁内角互补来解决问题,易得∠B=80°和∠C=100°. (★★)菱形的两条对角线与各边一起围成三角形中,共有全等的等腰三角形的对数是. 【答案】4. (★★)用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是().A.一组临边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形 D.每条对角线平分一组对角的平行四边形是菱形 D C B A (★★★)若菱形一边上的高的垂足是这边的中点,则这个菱形的最大内角是. 答案:120°. (★★★)1.菱形的对称轴共有条. 【答案】2.

2.已知:如图,菱形ABCD的对角线交于点O,且AO、BO的长分别是方程x2-2mx+4(m-1)=0的两根,菱形ABCD的周长为20,求m的值. 【答案】先解方程求得两根分别为2和(2m-2),再根据周长为20求得m的值为5. (★★★)3.菱形的周长为20cm,一条对角线长为8cm,则菱形的面积为. 【答案】24. (★★)下列命题错误的有(填写序号). ①菱形四个角都相等. ②对角线互相垂直且相等的四边形是矩形. ③对角线互相垂直且相等的四边形是菱形. ④对角线互相平分,且每一条对角线平分一组对角的四边形是菱形. 【答案】①②③. (★★)1.已知四边形ABCD中,过点A、C分别作BD的平行线,过点B、D分别作AC的平行线,如果所作的四条直线围成一个菱形,则四边形ABCD必须是() A.矩形B.菱形C.AC=BD的任意四边形D.平行四边形 【答案】C (★★)2.(1)用两个边长为a的等边三角形拼成的是形. (2)用两个全等的等腰三角形拼成的是形. (3)用两个全等的直角三角形拼成的是形. 【答案】(1)菱形;(2)菱形和平行四边形;(3)矩形和平行四边形. (★★)如图,在△ABC中,AB=AC,M点是BC的中点,MG⊥AB于点G,MD⊥AC于点D,GF⊥AC于点F,DE⊥AB于点E,GF与DE相交于点H,求证:四边形GMDH是菱形.

22.3菱形的判定常考题(含有详细的答案解析)

菱形的判定2 一、选择题 1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是() A、矩形 B、菱形 C、正方形 D、梯形 2如图,下列条件之一能使平行四边形ABCD是菱形的为() ①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD. A、①③ B、②③ C、③④ D、①②③ 3、能判定一个四边形是菱形的条件是() A、对角线相等且互相垂直 B、对角线相等且互相平分 C、对角线互相垂直 D、对角线互相垂直平分 4、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是() A、平行四边形 B、矩形 C、菱形 D、正方形 填空 1、如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________. 2、如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使 四边形AECF为菱形,则添加的一个条件可以是_________.(只需写出一个即可,图中不能再添加别的“点”和“线”) 3、在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)=>ABCD是菱形,再写出符合要求的两个:_________=>ABCD是菱形;_________=>ABCD是菱形

三、解答题(共11小题) 1、如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE, CE. (1)求证:△ABE≌△ACE; (2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. 2、如图,在?ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD. (1)求证:△ADE≌△CBF. (2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论. 3、(2007?娄底)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F. (1)求证:AE=DF; (2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由. 4、(2011?常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形. 5、如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M. (1)求证:△ABC≌△DCB; (2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

2018届中考数学复习专题题型(七)--圆的有关计算与证明

(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。已知CE=12,BE=9[来源:学#科#网Z#X#X#K] (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长 : 试题解析: (1)∵CD 切半圆O 于点D , ∴CD ⊥OD , ∴∠CDO=90°, ∵BE ⊥CD , ∴∠E=90°=∠CDO , 又∵∠C=∠C , ∴△COD ∽△CBE . (2)在Rt △BEC 中,CE=12,BE=9, ∴22CE BE +=15, ∵△COD ∽△CBE . ∴OD OC BE BC =,即15915r r -=, 解得:r= 458. 考点:1. 切线的性质;2.相似三角形的判定与性质. 2.(2017山东德州第20题)如图,已知Rt ΔABC,∠C=90°,D 为BC 的中点.以AC 为直径的圆O 交AB 于点E. (1)求证:DE 是圆O 的切线. (2)若AE:EB=1:2,BC=6,求AE 的长.

(1)如图所示,连接OE,CE ∵AC是圆O的直径 ∴∠AEC=∠BEC=90° ∵D是BC的中点 ∴ED=1 2 BC=DC ∴∠1=∠2 ∵OE=OC ∴∠3=∠4 ∴∠1+∠3=∠2+∠4,即∠OED=∠ACD ∵∠ACD=90° ∴∠OED=90°,即OE⊥DE 又∵E是圆O上的一点 ∴DE是圆O的切线.

考点:圆切线判定定理及相似三角形 3.(2017甘肃庆阳第27题)如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线. (1)∵A 的坐标为(0,6),N (0,2), ∴AN=4, ∵∠ABN=30°,∠ANB=90°, ∴AB=2AN=8, ∴由勾股定理可知:223AB AN -=, ∴B (32). (2)连接MC ,NC ∵AN 是⊙M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

中考几何证明题集锦(主要是与圆有关的)

中考几何证明题 1、如图:A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于C ,连结BC ,∠C =22.50,∠BAC =450。 第 1 题图 C 2. 如图,割线ABC 与⊙O 相交于B 、C 两点,D 为⊙O 上一点,E 为BC 的中点,OE 交BC 于F ,DE 交AC 于G ,∠ADG =∠AGD . ⑴求证:AD 是⊙O 的切线; ⑵如果AB =2,AD =4,EG =2,求⊙O 的半径. . 3.,正三角形ABC 的中心O 恰好为扇形ODE 的圆心,且点B 在扇形内.要使扇形ODE 绕点O 无论怎样转动,△ABC 与扇形重叠部分的面积总等于△ABC 的面积的3 1 ,扇形的圆心角应为多少度?说明你的结论。 4、如图:已知在Rt △ABC 中,∠B =900,AC =13,AB =5,O 是AB 上的点,以O 为圆心,0B 为半径作⊙O 。 (1)当OB =2.5时,⊙O 交AC 于点D ,求CD 的长。 (2)当OB =2.4 时,AC 与⊙O 的位置关系如何?试证明你的结论。 第 4 题图 C B D E 第3 题图 第2题 ⌒

5、如图:已知A 、D 两点分别是正三角形DEF 、正三角形ABC 的中心,连结GH 、AD ,延长AD 交BC 于M ,延长DA 交EF 于N ,G 是FD 与AB 的交点,H 是ED 与AC 的交点。 (1)写出三个不同类型的、必须经过至少两步推理才能得到的正确结论(不要求写出证明过程); (2)问FE 、GH 、BC 有何位置关系?试证明你的结论。 第 5 C M B D H G A E N F 6.如图(a ),已知直线AB 过圆心O ,交⊙O 于A 、B ,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C 、D ,交AB 于E ,且与AF 垂直,垂足为G ,连结AC 、AD . 求证:①∠BAD =∠CAG ;②AC ·AD =AE ·AF . (2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变. ①请你在图(b )中画出变化后的图形,并对照图(a ),标记字母; ②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由. 7. 如图,△ABC 中,∠BAC 的平分线AD 交BC 于D ,⊙O 过点A ,且和BC 切于D ,和AB 、AC 分别交于E 、F 。 设EF 交AD 于G ,连结DF 。 (1) 求证:EF ∥BC ; (2) 已知:DF =2 ,AG =3 ,求 EB AE 的值。 8、 已知:如图,CD 是Rt △ABC 的斜边AB 上的高,且BC =a ,AB =c ,CD =h ,AD =q ,DB =p 。 求证:q p h ?=2 ,c p a ?=2 8 题 · B D C F E A G O 图(a) B O A F D C G E l · B O A 图(b) 第6题·

菱形证明专题训练

- - 优质资料 绝密★启用前 乐学教育菱形证明专题训练 1. 已知:如图,在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE =CF ,DF ∥BE ,AC 平分∠ BAD.求证:四边形ABCD 为菱形. 【答案】∵AB ∥CD , ∴∠BAE =∠DCF. ∵DF ∥BE , ∴∠BEF =∠DFE , ∴∠AEB =∠CFD. 又∵AE =CF , ∴△AEB ≌∠CFD , ∴AB =CD. ∵AB ∥CD , ∴四边形ABCD 是平行四边形. ∵AC 平分∠BAD , ∴∠BAE =∠DAF. 又∠BAE =∠DCF , ∴∠DAF =∠DCF , ∴ AD =CD , ∴四边形ABCD 是菱形. 2. 如图,矩形ABCD 中,点O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连 接BF 交AC 于点M ,连接DE ,BO .若∠COB =60°,FO =FC . 求证: (1)四边形EBFD 是菱形; 【答案】连接OD .∵点O 为矩形ABCD 的对角线AC 的中点, ∴B ,D , O 三点共线且BD =DO =CO =AO . 在矩形ABCD 中,AB ∥DC ,AB =DC ,∴∠FCO =∠EAO . 在△CFO 和△AEO 中,

第2页共20页※ ※ 请 ※ ※ 不 ※ ※ 要 ※ ※ 在 ※ ※ 装 ※ ※ 订 ※ ※ 线 ※ ※ 内 ※ ※ 答 ※ ※ 题 ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 外 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 装 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 订 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. . 线 .. .. .. .. .. .. . o .. .. .. .. .. .. . o .. .. .. .. .. .. .. o .. .. .. .. .. .. .. o .. .. .. .. .. .. .. o .. .. .. .. .. .. .. .. .. .. .. . ∴△CFO≌△AEO,∴FO=EO. 又∵BO=DO,∴四边形BEFD是平行四边形. ∵BO=CO,∠COB=60°, ∴△COB是等边三角形.∴∠OCB=60°. ∴∠FCO=∠DCB-∠OCB=30°. ∵FO=FC,∴∠FOC=∠FCO=30°. ∴∠FOB=∠FOC+∠COB=90°. ∴EF⊥BD.∴平行四边形EBFD是菱形. (2)MB∶OE=3∶2. 【答案】∵BO=BC,∴点B在线段OC的垂直平分线上. ∵FO=FC,∴点F在线段OC的垂直平分线上. ∴BF是线段OC的垂直平分线. ∴∠FMO=∠OMB=90°. ∴∠OBM=30°.∴OF=BF. ∵∠FOC=30°,∴FM=OF. ∴BM=BF-MF=2OF-OF=OF. 即FO=EO,∴BM∶OE=3∶2. 3. 如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.求证:四边形BGFD是菱形. 【答案】∵FG∥BD,BD=FG,∴四边形BGFD是平行四边形. ∵CF⊥BD,AG∥BD,∴CF⊥AG.又∵∠ABC=90°,点D是AC的中点,∴BD=DF=AC, ∴平行四边形BGFD是菱形.

初三数学-菱形的判定

初三数学 菱形的判定 、教学目标: 1、掌握菱形的判定方法。 2、能运用菱形的判定方法解决有关冋题。 二、教学重点:熟练掌握菱形的判定方法 教学难点:能运用菱形的判定方法解决有关问题。 三、教学过程 (一)复习回顾:菱形的特征 (1)_____________________ 对边_____________________,四条边都 (2)_______________ 对角。 (3)____________________ 对角线___________________________ ,对角线分别这节课我们来探索从平行四边形出发,加上什么条件可以得到菱形: (二)讲授新课 1、菱形的识别: 方法一:有一组邻边______________ 的平行四边形是菱形。(定义) 几何语言::乎BCD中,A吐 _________ 严BCD是。 下面请用菱形的定义来证明“对角线互相垂直的平行四边形是菱形” 已知:如图,________________________________________ 求证:______________________________________________ 证明: 方法二:对角线互相垂直的平行四边形是菱形 (即:平行四边形+对角线菱形 几何语言:如图??? MBCD中,丄 二.ABCD 是。 方法三:四条边都的四边形是菱形。 几何语言:???四边形ABCD中, AB BC CD DA ???四边形ABCD是菱形。 小结:判定一个图形是菱形的方法: (1) __________________________________ 平行四边形+ 菱形 (2) __________________________________ 平行四边形+ 菱形 (3) _______________________ 的四边形—菱形

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

中考圆有关的证明和计算

半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1.

∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上. 求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线.

例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切. 分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解. 证明:取FG中点O,连结OC. ∵ABCD是正方形, ∴BC⊥CD,△CFG是Rt△ ∵O是FG的中点, ∴O是Rt△CFG的外心. ∵OC=OG, ∴∠3=∠G, ∵AD∥BC, ∴∠G=∠4. ∵AD=CD,DE=DE, ∠ADE=∠CDE=450, ∴△ADE≌△CDE(SAS) ∴∠4=∠1,∠1=∠3. ∵∠2+∠3=900, ∴∠1+∠2=900. 即CE⊥OC. ∴CE与△CFG的外接圆相切

相关文档
最新文档