坐标变换.

坐标变换.
坐标变换.

3.1 变换矩阵的确定原则

坐标变换的数学表达式可以用矩阵方程表示为

y=ax (3-1)

式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下:

(1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则;

(2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵;

(3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。

假设电流坐标变换方程为:

i=ci′ (3-2)

式中,i′为新变量,i称为原变量,c为电流变换矩阵。

电压坐标变换方程为:

u′=bu (3-3)

式中,u′为新变量,u为原变量,b为电压变换矩阵。

根据功率不变原则,可以证明:

b=ct (3-4)

式中,ct为矩阵c的转置矩阵。

以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。

3.2 定子绕组轴系的变换(a-b-c<=>α-β)

所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。

三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α

轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即:

(3-5)

式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。

经计算并整理之后可得:

(3-6)

(3-7)

图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

用矩阵表示为:

(3-8)

如果规定三相电流为原电流i,两相电流为新电流i′,根据电流变换的定义式(3-2),式(3-8)具有i′=c-1i的形式,为了通过求逆得到c就要引进另一个独立于isα和isβ的新变量,记这个新变量为io,称之为零序电流,并定义为:

(3-9)

式中,k为待定系数。

补充io后,式(3-8)变为:

(3-10)

则:

(3-11)

将c-1求逆,得到:

(3-12)

其转置矩阵为:

(3-13)

根据确定变换矩阵的第三条原则即要求c-1=ct,可得和,从而有和,代入相应的变换矩阵式中,得到各变换矩阵如下:

二相—三相的变换矩阵:

(3-14)

三相—二相的变换矩阵:

(3-15)

对于三相y形不带零线的接线方式有,ia+ib+ic=0则,ic=-ia-ib,由式(3-8)可以得到:

(3-16)

而二相—三相的变换可以简化为:

(3-17)

图3-2表示按式(3-16)构成的三相—二相(3/2)变换器模型结构图。

图3-2 3/2变换模型结构图

3/2变换、2/3变换在系统中的符号表示如图3-3所示。

图3-3 3/2变换和2/3变换在系统中的符号表示

如前所述,根据变换前后功率不变的约束原则,电流变换矩阵也就是电压变换矩阵,还可以证明,它们也是磁链的变换矩阵。

3.3 转子绕组轴系变换()

图3-4(a)是一个对称的异步电动机三相转子绕组。图中ωsl为转差角频率。在转子对称多相绕相中,通入对称多相交流正弦电流时,生成合成的转子磁势fr,由电机学可知,转子磁势与定子磁势具有相同的转速、转向。

图3-4 转子三相轴系到两相轴系的变换

根据旋转磁场等效原则及功率不变约束条件,同定子绕组一样,可把转子三相轴系变换到两相轴系。具体做法是,把等效的两相电机的两相转子绕组d、q相序和三相电机的三相转子绕组a、b、c相序取为一致,且使d轴与a轴重合,如图3-4(b)所示。然后,直接使用定

子三相轴系到两相轴系的变换矩阵(参见式3-15)。

3.4 旋转变换

在两相静止坐标系上的两相交流绕组α和β和在同步旋转坐标系上的两个直流绕组m和t 之间的变换属于矢量旋转变换。它是一种静止的直角坐标系与旋转的直角坐标系之间的变换。这种变换同样遵守确定变换矩阵的三条原则。

转子d、q两相旋转轴系,根据确定变换矩阵的三条原则,也可以把它变换到静止的α-β轴系上,这种变换也属于矢量旋转坐标变换。

3.4.1 定子轴系的旋转变换

图3-5 旋转变换矢量关系图

在图3-5中,fs是异步电动机定子磁势,为空间矢量。通常以定子电流is代替它,这时定子电流被定义为空间矢量,记为is。图中m、t是任意同步旋转轴系,旋转角速度为同步角速度ωs。m轴与is之间的夹角用θs表示。由于两相绕组α和β在空间上的位置是固定的,因而m轴和α轴的夹角是随时间变化的,即,其中为任意的初始角。在矢量控制系统中,通常称为磁场定向角。

以m轴为基准,把is分解为与m轴重合和正交的两个分量ism和ist,分别称为定子电流的励磁分量和转矩分量。

由于磁场定向角是随时间变化的,因而is在α轴和β轴上的分量isα和isβ也是随时间变化的。由图3-5可以看出,isα、isβ和ism和ist之间存在着下列关系:

写成矩阵形式为:

(3-18)

简写:

式中,为同步旋转坐标系到静止坐标系的变换矩阵。

变换矩阵c是正交矩阵即ct=c-1,因此,由静止坐标系变换到同步旋转坐标系的矢量旋转变换方程式为:

简写:

式中,为静止坐标系到同步旋转坐标系的变换矩阵。

电压和磁链的旋转变换矩阵与电流的旋转变换矩阵相同。

根据式(3-18)和式(3-19)可以绘出矢量旋转变换器模型结构,如图3-6所示。

图3-6 矢量旋转变换器模型结构图

由图3-6可知,矢量旋转变换器由四个乘法器和两个加法器及一个反号器组成,在系统中用符号vr,vr-1表示,如图3-7所示。在德文中,矢量旋转变换器叫做矢量回转器用符号vd 表示。

图3-7 矢量旋转变换器在系统中的符号表示

3.4.2 转子轴系的旋转变换

转子d-q轴系以角速度旋转,根据确定变换矩阵的三条原则,可以把它变换到静止不动的α-β轴系上,如图3-8所示。

图3-8 转子两相旋转轴系到静止轴系的变换

转子三相旋转绕组(a-b-c)经三相到二相变换得到转子两相旋转绕组(d-q)。假设两相静止绕组αr、βr除不旋转之外,与d、q绕组完全相同。根据磁场等效的原则,转子磁势fr沿α轴和β轴给出的分量等式,再除以每相有效匝数,可得:

写成矩阵形式

(3-20)

如果规定ird、irq为原电流,irα、irβ为新电流,则式中:

(3-21)

c-1的逆矩阵为:

若存在零序电流,由于零序电流不形成旋转磁场,只需在主对角线上增加数1,使矩阵增加一列一行即可

(3-22)

需要指出的是,由于转子磁势fr和定子磁势fs同步,可使αr、βr与αs、βs同轴。但是,实际上转子绕组与α、β轴系有相对运动,所以αr绕组和βr绕组只能看作是伪静止绕组。需要明确的是,在进行这个变换的前后,转子电流的频率是不同的。变换之前,转子电流i rd、irq的频率是转差频率,而变换之后,转子电流irα、irβ的频率是定子频率。可证明如下:

(3-23)

利用三角公式,并考虑到θr=ωrt则有:

(3-24)

从转子三相旋转轴系到两相静止轴系也可以直接进行变换。转子三相旋转轴系a-b-c到静止轴系α-β-ο的变换矩阵可由式(3-15)及式(3-21)相乘得到:

(3-25)

求c-1的逆,得到

(3-26)

c是一个正交矩阵,当电机为三相电机时,可直接使用式(3-25)给出的变换矩阵进行转子三相旋转轴系(a-b-c)到两相静止轴系(α-β)的变换,而不必从(a-b-c))到(d-q-o),再从(d-q-o)到(α-β-ο)那样分两步进行变换。

3.5 直角坐标—极坐标变换(k/p)

在矢量控制系统中常用直角坐标—极坐标的变换,直角坐标与极坐标之间的关系是:(3-27)

(3-28)

式中,θs为m轴与定子电流矢量is之间的夹角。

由于θs取值不同时,的变化范围为0~∞,这个变化幅度太大,难以实施应用,因此常改用下列方式表示θs值。

因为:,

所以:(3-29)

根据式(3-27)和式(3-29)构成的直角坐标一极坐标变换的模型结构图(德语称为矢量分析器vector analyzer-va)如图3-9所示。

图3-9 直角坐标—极坐标变换器模型结构图

由图可知,直角坐标一极坐标变换是由两个乘法器、两个求和器和一个除法器组成,符号表示如图3-10所示。

图3-10 直角坐标—极坐标变换器在系统中的符号表示

坐标变换与参数方程教案全

§16.1坐标轴的平移(一) 【教学目标】 知识目标: (1)理解坐标轴平移的坐标变换公式; (2)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算; 能力目标: 通过对坐标轴平移的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高. 【教学重点】 坐标轴平移中,点的新坐标系坐标和原坐标系坐标的计算. 【教学难点】 坐标轴平移的坐标变换公式的运用. 【教学设计】 学生曾经学习过平移图形.平移坐标轴和平移图形是两种相关的变化方式,从平移的运动过程上看,平移坐标轴和平移图形是两种相反的过程.向左平移图形的效果相当于将坐标轴向右平移相同的单位;向上平移图形的效果相当于将坐标轴向下平移相同单位.要强调坐标轴平移只改变坐标原点的位置,而不改变坐标轴的方向和单位长度.坐标轴平移的坐标变换公式,教材中是利用向量来进行推证的,教学时要首先复习向量的相关知识.例1是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求点在原坐标系中坐标的题目.例2是利用坐标轴平移的坐标变换公式化简曲线方程的知识巩固性题目.教学中要强调新坐标系原点设置的原因,让学生理解为什么要配方. 【课时安排】 1课时. 【教学过程】 揭示课题 2.1坐标轴的平移与旋转 创设情境 兴趣导入 在数控编程和机械加工中,经常出现工件只作旋转运动(主运动),而刀具发生与工件相对的进给运动.为了保证切削加工的顺利进行,经常需要变换坐标系. 例如,圆心在O 1(2,1),半径为1的圆的方程为 1)1()2(22=-+-y x .

对应图形如图2-1所示.如果不改变坐标轴的方向和单位长度,将坐标原点移至点1O 处,那么,对于新坐标系111x O y ,该圆的方程就是 12121=+y x . 图2-1 动脑思考 探索新知 只改变坐标原点的位置,而不改变坐标轴的方向和单位长度的坐标系的变换,叫做坐标轴的平移. 下面研究坐标轴平移前后,同一个点在两个坐标系中的坐标之间的关系,反映这种关系的式子叫做坐标变换公式. 图2-2 如图2-2所示,把原坐标系xOy 平移至新坐标系111x O y ,1O 在原坐标系中的坐标为 ),(00y x .设原坐标系xOy 两个坐标轴的单位向量分别为i 和j ,则新坐标系111x O y 的单位向 量也分别为i 和j ,设点P 在原坐标系中的坐标为),(y x ,在新坐标系中的坐标为),(11y x ,于是有 OP =x i +y j ,1O P =x 1i +y 1 j , 1OO =x 0i +y o j , 因为 11OP OO O P =+, 所以 0011 x y x y x y +=+++i j i j i j , 即 0101 )()x y x x y y +=+++i j i j (.(转下节)

matlab图像处理——距离变换

V ol. , No Month year. 卷 第 期 年 月 距离变换的应用(选自陆宗骐的论文) 粘连区域的分割需要解决的问题有两个,即在何处分割以及如何进行分割。文献[4]介绍了一种较为简单、直观的粘连区域分割方法——等值线跟踪法。此方法对二值图象作距离变换,根据局部极大的特点搜索区域核心代替极限腐蚀,用等值线跟踪代替条件膨胀,利用跟踪过程中前后两次周长的跃变发现两区域合并的时间,从而确定分割点的位置,最后用作区域连接段骨架垂线的方法进行粘连部分的分割。此方法不仅处理速度快,所得分割区域的形状也大为改观,见图1(d)。 当然,确定分割点也并非一定要采用等值线跟踪才行。也可根据粘连区域连接段象素的特点,设计相应的分析算法不经跟踪直接寻得。本文在完成了一幅存在粘连的钢筋端面图象分割的基础上,总结得出若干分割原则。限于篇幅,本文只介绍象素属性分析法中分割位置的搜索算法,后续分割部分参见文献[4]。 2 术语定义 2.1 三个检测环 为了识别象素的属性,需要考察该象素所在邻域内相关象素的状态,本分割方法中需使用三个检测环。它们是以当前待测象素为中心的3×3、5×5 点,见图2。它们分别称为内环、中环与外环。图中,中心象素用星号表示,内环用数字1~8表示,中环用小写字母a~p 表示,外环用大写字母A~Z 和数字1~6表示。主要用以测试环上数据的跳变,以及数值的大小关系与某类象素数目的多少等。 2.2 象素类型 为行文方便起见,对不同类型的象素与数据定 义若干专用名词。 ·边界点:图象中距离值为1的点。 ·背景点:图象中距离值为0的点。 ·(粘连区域)连接线:连接粘连两区域的(单点宽或双点宽)骨架,它们应取同一距离值。 ·当前点:处于邻域中央,考察其是否在连接线上的那个象素。 ·等值点:指在检测邻域内数值等于当前点的距离值的那些象素,连接线上的点必须是等值点。 ·内点、外点:指在检测邻域内距离值分别大于、小于当前点的距离值的那些象素。 ·角点:内环上只有两个与当前点等值的点,并且它们构成直角三角形时,称当前点为角点。 ·图象的最大距离值:全图象素中最大的距离值,它大致等于图象中最大区域的等效半径。 图3给出了三个检测点及其所在邻域的例子,图中数据为象素的距离值。为清楚起见,图中中心象素加粗后再加下划线,中环象素用粗体字表示。在图3(a)中, 带下划线的7为当前点,中环上面水平线上的两个7为等值点,其间的8为内点,当前点周围的5、6为外点,而此时当前点7是一个角点。 3 分割点的特征

(整理)坐标变换的原理和实现方法

由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α 轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7)

集成形态学重建和测地距离变换的DEM内插方法

第41卷第7期2016年7月武汉大学学报·信息科学版 Geomatics and Information Science of Wuhan University Vol.41No.7 July  2016收稿日期:2015-01- 26项目资助:国家自然科学基金(41371405);国家测绘地理信息局基础测绘项目(A 1506);中央级公益性科研院所基本科研业务费专项资金(7771413 )。第一作者:林祥国,副研究员,主要从事遥感数据信息提取的理论与方法研究。linxiangg uo@gmail.comDOI:10.13203/j.whugis20140097文章编号:1671-8860(2016)07-0896- 07集成形态学重建和测地距离变换的DEM内插方法 林祥国1 1 中国测绘科学研究院摄影测量与遥感研究所,北京,1 00830摘 要:等高线是获取数字高程模型(DEM)常用的数据源之一,但内插方法对DEM生成精度有显著的影响。基于形态学重建和测地距离变换运算,提出一种等高线数据生成DEM的内插方法。形态学重建用于获取与空间一点对应的最邻近的上等高线和下等高线的高程值,测地距离变换用于获取该点到上下两条等高线的测地距离;使用沿流水线的线性内插获取该点的高程值。实验表明,在只使用等高线数据生成DEM的情况下,本文提出的内插方法获取的DEM精度更高。关键词:形态学重建;测地距离变换;测地距离;DEM;内插中图法分类号:P208;P232 文献标志码:A 数字高程模型(dig ital elevation model,DEM) 是对地球表面地形的一种离散的数字表达[1] 。自20世纪50年代后期被提出以来,D EM受到极大的关注,并在测绘、土木工程、地质、矿山工程、景观建筑、道路设计、防洪、农业、规划、军事工程、飞行器与战场仿真等领域得到了广泛的应用。一般而言,不同数据源需要不同的内插方法来生成DEM。目前,生成DEM的数据主要来源于地形图、遥感数据(既包括航天航空影像数据,又包括合成孔径雷达干涉测量数据和激光雷达数 据)、地面测量、既有DEM等[2] ; 从地形图上获取D EM是目前应用最为广泛的一种方法。我国测绘部门就分别利用1∶1万、1∶5万和1∶25万比例尺的数字线划图生成了多种分辨率的DEM。 通常,由地形图获取DEM时, 基于等高线的分布特征,有三种方式生成DEM[1] : 等高线离散化、等高线内插和等高线构建Delaunay不规则三角网(triangulated irregular network,TIN)。等高线离散化方法实质是将等高线看作不规则分布 的数据,并没有考虑等高线本身的地形特性[ 1] ,这导致生成的DEM可能会出现一些异常;基于等高线数据生成DEM的最陡坡度(流水线)内插算法的内插原理比较简单,但由于数字化的等高线远远没有纸质地形图等高线直观,因此,该方法实 现起来还存在许多问题[ 2] 。由于直接由等高线构建的TIN存在“ 平坦三角形”(即水平三角形)问题[ 3] ,因此,目前工程生产中普遍采用基于等高线和附加的“特征数据”(如地形结构线和特征数据点诸如山顶点、凹陷点、鞍部点等)构建TIN的方法。 近几年提出了很多新的内插方法,胡鹏[ 4] 、胡海[5] 等人的研究成果比较具有代表性。“特征数 据”本质上是等高线的对偶形式,并不是必须的;而且在工程生产中,很难控制特征数据的密度以平衡DEM的精度和工作量。因此,可利用地图代数直接由等高线内插生成DEM,即MADEM。 地图代数是建立在距离变换[ 6] 运算基础上的一种图像操作;它用来内插生成DEM时,不仅不需要额外的辅助特征数据,而且生成的DEM具有较 高的精度,满足“高程序同构”[7,8] 的DEM精度评 价标准。 但是基于地图代数的内插方法也存在亟待改进之处。由于该方法是通过迭代求取半距等高线(即到两相邻等高线距离相等的线)Cl/2、Cl/4、Cl/8、Cl/16、Cl/32…(Cl为地形图上等高线的基本等高距)来生成DEM的,即迭代地求取两相邻等高线的Voronoi图的边界、 并将两等高线的平均值赋予该边界;至再分已无必要时,以1/2 n+1 Voronoi图为界( n为最大迭代次数),分层赋相应高程[ 9] ,本质上这也是一种线性内插方法。但是,

坐标变换就是两种坐标类型

坐标变换就是两种坐标类型、不同参照体系之间的变换 坐标变换因不同的坐标类型、体系变换方法不一样,没有固定的公式 比方说测量地球,就有多种坐标体系: 1。以地心为原点的空间直角坐标 2。经纬度坐标 3。把地球表面分成很多格子,对于一个小格子区,球面接近平面,在这个平面上设一个平面直角坐标系,就是北京54坐标等坐标形式 这些坐标来回转换,比较复杂,甚至是学术性的问题,一般根据不同的观点和精度,有一些小程序,做转换工作 工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m, y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

基于distanceTransform-距离变换的区域中心提取

基于distanceTransform-距离变换的区域中心提取 这几天在做一个手势识别的项目,其中最的关键一步是提取手掌中心。获得手掌重心通常的做法是计算整个手部的重心,并以该重心位置近似手掌重心,这种方法只适用于没有手指伸出或只有一个手指伸出的情况,否则获得的手掌重心位置将严重偏离真实位置。 距离变换的基本含义是计算一个图像中非零像素点到最近的零像素点的距离,也就是到零像素点的最短距离。因此可以基于距离变换提取手掌重心。 算法基本思想: (1)将手掌图像二值化,手掌内的区域设为白色,外部区域设为黑色。 (2)将二值化后的图像经过distanceTransform变换,得到dist_image,其中每个像素点的值是该像素点到其最近的零像素点的距离。 (3)找到dist_image的最大值(即圆的半径R),并记录下位置(即圆心坐标)。 代码如下: [cpp] view plaincopy#include "opencv2/opencv.hpp" #include <opencv2/core/core.hpp> #include

<opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <vector> using namespace cv; using namespace std; pair<Point,double> DetectInCircles(vector<Point> contour,Mat src) { Mat dist_image; distanceTransform(src,dist_image,CV_DIST_L2,3); int temp=0,R=0,cx=0,cy=0; int d; for (int i=0;i<src.rows;i++) for (int j=0;j<src.cols;j++) { /* checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary*/ d = pointPolygonTest(contour, Point2f(j, i), 0); if (d>0) { temp=(int)dist_image.ptr<float>(i )[j]; if (temp>R) { R=temp; cy=i; cx=j; } } } return make_pair(Point(cx,cy),R); } int main() { // Read input binary image

三相坐标系和二相坐标系转换

交流电动机矢量控制变压变频调速系统(三)第三讲坐标 变换的原理和实现方法 收藏此信息打印该信息添加:李华德来源:未知 由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7) 图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

坐标转换方法

经纬度转西安80坐标系坐标转换方法 一、分带划分 1.我国采用6度分带和3度分带: 1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。 1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~ 4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。

地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为2 0345486,其中20即为带号,345486为横坐标值。 2.当地中央经线经度的计算 六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图)。 三度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)。 3、如何计算当地的中央子午线? 当地中央子午线决定于当地的直角坐标系统,首先确定您的直角坐标系统是3 度带还是6度带投影公式推算: 6度带中央子午线计算公式:当地经度/6=N;中央子午线L=6 * N (带号)当没有除尽,N有余数时,中央子午线L=6*N - 3 3度带中央子午线计算公式:当地经度/3=N;中央子午线L=3 X N 我国的经度范围西起73°东至135°,可分成 六度带十一个(13号带—23号带),各带中央经线依次为(75°、81°、 (1) 23°、129°、135°); 三度带二十二个(24号带—45号带)。各带中央经线依次为(72°、75°、……132°、135°); 六度带可用于中小比例尺(如1:250000)测图,三度带可用于大比例尺(如1:10000)测图,城建坐标多采用三度带的高斯投影 二、以以下经纬度为例:

坐标变换总结Clark变换和Park变换

一个坐标系的坐标变换为另一种坐标系的坐标的法则。 由于交流异步电动机的电压、电流、磁通和电磁转矩各物理量之间是相互关联的强耦合,并且其转矩正比与主磁通与电流,而这两个物理量是随时间变化的函数,在异步电机数学模型中将出现两个变量的乘积项,因此,又为多变量,非线性系统(关键是有一个复杂的电感矩阵),这使得建立异步电动机的准确数学模型相当困难。为了简化电机的数学模型,需从简化磁链入手。 解决的思路与基本分析: 1.已知,三相( ABC )异步电动机的定子三相绕组空间上互差120度,且通以时间上互差120 ω的旋转磁场。 度的三相正弦交流电时,在空间上会建立一个角速度为 1 又知,取空间上互相垂直的(α,β)两相绕组,且在绕组中通以互差90度的两相平衡交流电流时,也能建立与三相绕组等效的旋转磁场。此时的电机数学模型有所简化。 2. 还知, 直流电机的磁链关系为: F---励磁绕组 轴线---主磁通的方向,即轴线在d轴上,称为直轴(Direct axis)。 A---电枢绕组 轴线---由于电枢绕组是旋转的,通过电刷馈入的直流电产生电枢磁动势,其轴线始终被限定在q轴,即与d轴成90度,称为交轴(Quadrature axis)。 由于q轴磁动势与d轴主磁通成正交,因此电枢磁通对主磁通影响甚微。换言之,主磁通唯一地由励磁电流决定,由此建立的直流电机的数学模型十分简化。 如果能够将三项交流电机的物理模型等效的变换成类似的模型,分析和控制就变得大大简单了。 电机模型彼此等效的原则:不同坐标系下产生的磁动势(大小、旋转)完全一致。 关于旋转磁动势的认识: 1) 产生旋转磁动势并不一定非要三相绕组不可。结论是:

坐标转换方法

在工作过程中许多朋友会遇到坐标转换的问题,下面笔者就经常使用的一个坐标转换软件的使用方法做一个稍微详细的说明。 1、坐标系的确定 图1 软件使用界面 图1为软件使用界面,目前我们在工作过程中碰到的XY坐标系大多为全国80(也称西安1980)坐标系,也会有少量的设计会使用北京54坐标系。 图2和图3为同一点转换成全国80和北京54后差别,从两个转换结果来看,两个坐标系相差较小,可能比系统误差还小。(坐标转换过程中会产生系统误差,在不同位置误差也会有差异,所以转换出来的坐标只能是大概位置的参考。有兴趣的可以去研究下大地坐标系和投影坐标系,研究明白了就知道了为啥会有一定程度的误差,而且偏离中心线越远,误差越大)

图2(北京54) 图3(全国80) 2、中央子午线的确定 中央子午线一般为三度带和六度带的中央子午线坐标(至于什么是三度带和六度带,有兴趣的可以自行去研究投影坐标系的由来)。三度带的中央子午线经度为3的整数倍,六度带的中央子午线经度为6的整数倍,以图3中坐标为例,经度为112°30′至115°30′以内的坐标均为以114°为中

央子午线经度的三度带分区内;经度为111°至117°以内的坐标均为以114°为中央子午线经度的六度带分区内。 无法确定所在区域的中央子午线经度,可将区域的经度转换成小数后除3或者6,四舍五入后再乘3或者6即为中央子午线经度,如图中114°30′,转换后为114.5°,除3,四舍五入后再乘3即为114°。 3、经纬度转XY坐标 图4 图4为经纬度转XY坐标方法示意,在确定区域的中央子午线经度后,在BL处填上相应的纬度和经度,点击转换即可转出所需坐标。 4、完整的XY坐标转经纬度 目前国内部分设计单位在设计时,出于某些目的,会省略XY坐标中的某些位数,因此在此处分完整的XY坐标转经纬度和不完整的XY坐标转经纬度。

平面直角坐标变换

§ 平面直角坐标变换 为了考虑同一图形在不同的坐标系下的方程之间的关系,我们首先需要建立同一个点在不同的坐标系下的坐标之间的关系,这就是坐标变换的问题,因为我们研究的图形是点的轨迹. 我们仅考虑平面直角坐标变换. 设在平面上给出了由两个标架{O ;i , j }和{O';i', j'}所决定的右手直角坐标系,这里i 和j 以及i'和j'是两组坐标基向量,它们是平面上的两个标准正交基,我们依次称这两个坐标系为旧坐标系和新坐标系. 由于坐标系的位置完全由原点和坐标基向量所决定,所以新坐标系与旧坐标系之间的关系,就由O'在{O ;i , j }中的坐标以及i'和j'在{O ;i , j }中的分量所决定. 任一直角坐标变换总可以分解成移轴(也叫坐标平移)和转轴(也叫坐标旋转)两个步骤. 1.移轴 如果两个标架{O ;i , j }和{O';i , j' }的原点O 与O'不同,O'在{O ;i , j }中的坐标为(x 0,y 0),但两标架的坐标基向量相同,即有 i' = i , j' = j 那么标架{O';i', j'}可以看成是由标架{O ;i , j }将原点平移到O'点而得来的(图).这种坐标变换叫做移轴(坐标平移). 设P 是平面内任意一点,它对标架{O ;i , j }和{O';i', j'}的坐标分别为 (x ,y )与(y x '',),则有 P O O O OP '+= 但 j i y x +=, j i y x O '+'=', j i 00y x O O +=' 于是有 j i j i )()(00y y x x y x +'++'=+ 故 {x ,y } = {x 0,y 0}{x',y' } 根据向量相等的定义得移轴公式为 图 ???+'=+'=00 y y y x x x -1) 从中解出x'和y',就得逆变换公式为 ? ??-='-='00 y y y x x x -2) 2.转轴 若两个标架{O ;i , j }和{O';i', j'}的原点相同,即O = O',但坐标基向量不同,且有∠(i ,i' ) = ?,则标架{O';i',j'}可以看成是由标架{O ;i ,j }绕O 点旋转? 角而

不同坐标系之间的变换

§不同坐标系之间的变换 欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的 两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与它 相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1(10-10) ???? ??????-=Y Y Y Y Y R εεεεεcos 0sin 010 sin 0cos )(2 (10-11)

???? ? ?????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令)()()(3210 Z Y X R R R R εεε= (10-13) 则有: ??? ? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: 于是可化简 ?? ?? ? ?????---=111 0X Y X Z Y Z R εεεεεε(10-16) 上式称微分旋转矩阵。 不同空间直角坐标之间的变换 当两个空间直角坐标系的坐标换算既有旋转又有平移时,则存在三个平移参数和三个旋转参数,再顾及两个坐标系尺度不尽一致,从而还有一 个尺度变化参数,共计有七个参数。相应的坐标变换公式为:

坐标变换.

3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4) 式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。

3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α 轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7) 图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

常用坐标系统的基础知识

《常用坐标系统的基础知识》 因技术水平、历史机缘及国家保密原因,历史上形成了多套坐标基准体系。每套基准体系又分别对应大地坐标系(以经纬度来标识各点)、空间直角坐标系、高斯平面直角坐标系(常说的公里网)。空间直角坐标系常用于宇宙空间科研或参数中间转换,日常生活中使用较少;常规测量一般使用经纬度及公里网坐标。公里网坐标又根据中央子午线及误差精度的不同,人为划分为六度带、三度带和一点五度带坐标。 我国有北京54、西安80、国家2000(参数最接近国际WGS84)等常规坐标系,都采用北方为上-X-正,东方为右-Y-正,上北下南左西右东的绘图方式。这与平时的数学坐标系统右为X正、上为Y正不同,需要特别注意。有些地方政府出于各种原因,使用地方坐标系,是在常规坐标系上进行平移与旋转形成的。 大地坐标系俗称为经纬度坐标系,采用地球中心作为参考中心进行投影。经纬度---竖向为纬度X(B)、横向为经度Y(L),按经度把地球划成橘子瓣状分带。纬度采用赤道为起始0度、北极为90度,向北增大,北半球记作北纬XX度。经度采用英国伦敦的格林威治天文台作为起始0度,向东记作东经XX度。经度按每15度划分时区,共24个时区,对应24小时,此与坐标分带无关。我国首都处于东经117度、北纬40度附近,属于东8时区(105-120度)。由于采用度分秒格式表示地理位置不利于日常使用,又引入公里网坐标。 北京54、西安80及国家2000公里网坐标系是平面高斯投影坐标系统,三者因为采用的地球参

数不同,有少量差别。原先一般都使用北京54坐标系;现在正向西安80坐标系过度;我国测绘局公布几年后将再过渡为国家2000坐标系。 公里网坐标使用公里、米作为测量及绘图单位,因球型影响都有少量投影误差。为了减小球形投影误差,人为将地球按中央子午线经度划分为多个投影带。为了方便,我们都以赤道作为 X=0 公里,向北增大;为避免横向Y值出现负数,以中央子午线处记作500公里=500,000米,前再加两位带号,eg:39,500,000米。 六度带坐标----按每6度划分,起点以东经3度为中心,含0-6度, 3°-01带 9°-02带 15°-03带......117°-20带 123°-21带。 三度带坐标----按每3度划分,起点以东经3度为中心,1.30-4.30, 3°-01带 6°-02带 9°-03带......117°-39带 120°-40带。 一点五度带----按每1.5度分,起点以东经3度为中心,2.15-3.45, 3°-01带 4.30°-02带 6°-03带......117°-77带 118.30°-78带。 地图的比例尺越大,需要的分带越小,一点五度带投影误差最小。我国首都位于东经39,447,672、北纬4,419,516附近(三度带坐标)。由于工作中需要将分带线附近的点画在同一张图上,某些点属于另一分带内,此时也必须将坐标转换到本分带内,这叫<跨带坐标转换>。 高程系统一般采用平均海平面为正负0米,向上为正值,向下为负值。各系统间高程的差值较小,有时可不进行转换。

坐标转换方法

在天正里面输入坐标定位 已知三个角点坐标和基础电子图,全图缩放先Z在A快捷键电脑里面把各个桩点的坐标定位出来的方法第一步:在天正命令行里输入AL(记住点击一下命令行并在下面命令行里输入AL不然最终结果可能会无效或出现坐标跑位),在回车,命令行里面会出现“选择对象”(你就用鼠标圈中你要定位的那些建筑或某栋楼的基础图),在回车。第二步:命令行里面就会出现“指定第一个原点”,(你就把基础图已知的第一个角点的坐标的位置点中),命令行里面就会出现指定第一个目标点,(你就把你已知的第一个坐标点在命令行里面输入进去,记住是在命令行里面输入,不是在桌面鼠标旁边输入,先Y后X,中间没有标点符号,只有Y和X用TAB区分),在回车第三步:命令行里面就会出现“指定第二个原点”,(你就把基础图已知的第二个角点的坐标的位置点中),命令行里面就会出现指定第二个目标点,(你就把你已知的第二个坐标点在命令行里面输入进去,记住是在命令行里面输入,不是在桌面鼠标旁边输入,先Y后X,中间没有标点符号,只有Y和X用TAB区分),在回车第四步:命令行里面就会出现“指定第三个原点”,(你就把基础图已知的第三个角点的坐标的位置点中),命令行里面就会出现指定第三个目标点,(你就把你已知的第三个坐标点在命令行里面输入进去,记住是在命令行里面输入,不是在桌面鼠标旁边输入,先Y后X,中间没有标点符号,只有Y和X用tab区分),在回车第五步:如果你是按照以上操作的,那么你最先圈中的基础图就会自动跑到你设定的三个坐标的位置,图纸坐标就算设置完成。注:有可能你的这张电子图的图形界限不对,你就必须在你这张基础图上重新设置图形界限,设置图形界限步骤如下:点击格式,在点击图形界限,命令行里面就会出现“指定左下角点”,你就在你的桌面上的左下角点击一下,在点击一下命令 行,就可以输入你已知的三个角点的任意一个坐标的Y和X,(没有标点符号,只用逗号隔开Y和X),再在命令行里面输入Z,在回车,在输入A,在回车,图形界限就会自动生成,你就把你要设置的哪张基础图找出来,验证几个点,是否设置的坐标有误。如果没有问题,和你已知的几个坐标点吻合,那么你这张图的所有坐标点都可以用了,想点那个桩的坐标就点那个。(这种方法简单实用,切记没有必要最好不要外传。这种方法现在很少人会) 还可以用805软件坐标旋转用AL倒入2个已知点在总说明图上有Y轴和X轴互换小数点不要输入跳过啊

第三章 坐标变换

第三章 坐标变换 3.1 时空矢量图 根据电路原理,凡随时间作正弦变化的物理量(如电动势、电压、电流、磁通等)均可用一个以其交变频率作为角速度而环绕时间参考轴(简称时轴t )逆时针旋转的时间矢量(即相量)来代替。该相量在时轴上的投影即为该物理量的瞬时值。我们这里介绍的时空矢量图表示法是一种多时轴单相量表示法,即每相的时间相量都以该相的相轴作为时轴,而各相对称的同一物理量用一根统一的时间向量来代表。如图3-1所示,只用一根统一的电流相量1I (定子电流)即可代表定子的对称三相电流。不难证明,1I 在A 上的投影即为该时刻A i 瞬时值;在B 上的投影即为该时刻B i 瞬时值;在C 上的投影即为该时刻C i 瞬时值。 有了统一时间相量的概念,我们就可以方便地将时间相量跟空间矢量联系起来,将他们画在同一矢量图中,得到交流电机中常用的时空矢量图。在图3-2所示的时空矢量图中,我们取各相的相轴作为该相的时轴。假设某时刻 m A I i +=达到正最大,则此时刻统一相量A I 应 与A 重合。据旋转磁场理论,这时由定子对称三相电流所生成的三相合成基波磁动势幅值应与A 重合,即1F 应与A 重合,亦即与1I 重合。由于时间相量1I 的角频率ω跟空间矢量1F 的电角速度1ω相等,所以在任何其他时刻,1F 与1I 都始终重合。为此,我们称1I 与由它所生成的三相合成基波磁动势1F 在时空图上同相。在考虑铁耗的情况下,1B 应滞后于1F 一个铁 耗角Fe α,磁通相量m Φ 与1B 重合。定子对称三相电动势的统一电动势相量1 E 应落后于m Φ 为90度。 由电机学我们知道,当三相对称的静止绕 组A 、B 、C 通过三相平衡的正弦电流A i 、B i 、 c i 时产生的合成磁势F ,它在空间呈正弦分布,并以同步速度ω(电角速度)顺 着A 、B 、C 的相序旋转。如图3-3-a 所示,然而产生旋转磁势并不一定非要三相电流不可,三相、四相等任意多相对称绕组通以多相平衡电流,都能产生旋转磁势。如图3-3-b 所示,所示为两相静止绕组α、β,它们在空间上互差90度,当它们流过时间相位上相差90度的两相平衡的交流电流αi 、βi 时,也可以产生旋转磁动势。当图3-3-a 和图3-3-b 的两个旋转磁动势大小和转速都相等时,即认为图3-3-a 中的两相绕组和图3-3-b 中三相绕组等效。再看图3-3-c 中的两个 图3-2 时空矢量图

平面直角坐标变换

§5、7平面直角坐标变换 为了考虑同一图形在不同得坐标系下得方程之间得关系,我们首先需要建立同一个点在不同得坐标系下得坐标之间得关系,这就就是坐标变换得问题,因为我们研究得图形就是点得轨迹. 我们仅考虑平面直角坐标变换. 设在平面上给出了由两个标架{O;i,j}与{O';i',j'}所决定得右手直角坐标系,这里i与j以及i'与j'就是两组坐标基向量,它们就是平面上得两个标准正交基,我们依次称这两个坐标系为旧坐标系与新坐标系. 由于坐标系得位置完全由原点与坐标基向量所决定,所以新坐标系与旧坐标系之间得关系,就由O'在{O;i, j }中得坐标以及i'与j'在{O;i, j }中得分量所决定. 任一直角坐标变换总可以分解成移轴(也叫坐标平移)与转轴(也叫坐标旋转)两个步骤. 1.移轴 如果两个标架{O;i,j }与{O';i, j' }得原点O与O'不同,O'在{O;i,j }中得坐标为(x0,y0),但两标架得坐标基向量相同,即有 i'= i, j'=j 那么标架{O';i',j'}可以瞧成就是由标架{O;i,j }将原点平移到O'点而得来得(图5、7、1).这种坐标变换叫做移轴(坐标平移). 设P就是平面内任意一点,它对标架{O;i, j}与{O';i', j'}得坐标分别为(x,y)与(),则有 , 于就是有 故{x,y} = {x0,y0}+{x',y' } 根据向量相等得定义得移轴公式为图5、7、1 ??????????????(5、7-1) 从中解出x'与y',就得逆变换公式为 ??????????????(5、7-2) 2.转轴 若两个标架{O;i,j }与{O';i',j'}得原点相同,即O=O',但坐标基向量不同,且有∠(i,i' ) = α,则标架{O';i',j'}可以瞧成就是由标架{O;i,j}绕O点旋转α角而得来得(图5、7、2).这种由标架{O;i,j }到标架{O';i',j'}得坐标变换叫做转轴(坐标旋转). 下面推导转轴公式.

54坐标系转换80坐标系详细教程

MAPGIS“北京54 坐标系”转“西安80坐标系”详细教程 北京54坐标系和西安80坐标系其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为他们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若求得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),如果区域范围不大,最远点间的距离不大于30km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法: 第一步:向地方测绘局(或其他地方)找本区域三个公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z); 第二步:讲三个点的坐标对全部转换以弧度为单位。(菜单:投影转换——输入单点投影转换,计算出这三个点的弧度值并记录下来); 第三步:求公共点操作系数(菜单:投影转换——坐标系转换)。如果求出转换系数后,记录下来; 第四步:编辑坐标转换系数(菜单:投影转换——编辑坐标转换系数),最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 详细步骤如下: 首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。 下面我们来讲解“北京54 坐标系”转“西安80坐标系”的转换方法和步骤。 一、数据说明 北京54 坐标系和西安80 坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3 个以上的公共点坐标对(即北京54 坐标下x、y、z 和西安80 坐标系下x、y、z),可以向地方测绘局获取。 二、“北京54 坐标系”转“西安80 坐标系”的操作步骤 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1 所示:

相关文档
最新文档