有机半导体激光器研究的新进展

有机半导体激光器研究的新进展
有机半导体激光器研究的新进展

11998-12-02收稿;1999-02-03定稿o国家自然科学基金资助项目?本刊通讯编委

第20卷第4期

半 导 体 光 电

Vol.20No.4

1999年8月

Semiconductor Optoelectronics

Aug.1999

文章编号: 1001-5868(1999)04-0221-05

有机半导体激光器研究的新进展

1o

刘明大1,?史素姣2,刘宇光3,陆 羽1,石家纬1

(1.吉林大学电子工程系,长春130023;2.北大方正出版系统工程公司,北京100871;3.神华集团公司,北京100081)

摘 要: 近年来,有机半导体激光器已经成为一个新的研究热点。叙述了光泵浦有机半导体激光器的最新研究进展,对实现电泵浦(电注入)有机半导体激光器也进行了评述。

关键词: 半导体激光器 有机半导体 光泵浦 电泵浦中图分类号: TN248.4;TN383.1 文献标识码:A

Recent advance of organic semiconductor lasers

LIU M ing-da 1,SH I Su-jiao 2,LIU Yu-guang 3,LU Yu 1,SH I Jia-wei 1

(1.D ept.of Electronic Engineering,Jilin University,C hangchun 130023,China;

2.Founder Publishing System Engineering C o.,Beijing 100871,China;

3.Shenhua Group of China,Beijing 100081,China)

Abstract: The current study is focused on organic semiconductor lasers .The recent advance in optically pumped organic sem iconductor lasers is review ed,and for demonstration of electrically pumped organic semiconductor lasers,the present g reat goal are also discussed.

Keywords: semiconductor laser,organic semiconductor,optical pump,electrical pump

1 引言

近年来,有机小分子和高分子聚合物电发光(EL)器件,已经取得了重大进展。由于其具有驱动电压低、发光效率高、成膜特性好、全色发光等优点,在显示技术领域受到人们的极大关注。

近两年的大量研究表明,有机半导体是一种新型固体激光材料[1~3],其发光波长范围可以从蓝光到近红外。目前,用有机小分子或高分子聚合物半导体材料,均已制成光泵浦有机半导体激光器(OSL)。其谱线宽度最窄为0.02nm ,最高脉冲功率为5W,最高工作寿命大于1@106h 。光泵浦OSL 的结构有平板波导结构、双异质结结构、DBR 结构、DFB 结构以及微腔结构。

由于有机半导体材料的低成本和能够生长准外延或非外延薄膜,使有机半导体激光器容易与其他

光电子器件集成在一起。有机半导体的特殊光电特性导致OSL 的各项性能(输出功率、量子效率、发射波长)比通常的无机半导体激光器的有更好的温度稳定性。OSL 在光通信和传感器应用方面有潜在的优势,特别是460~540nm 的短波段的光泵浦蓝光OSL,在光存储应用中有着美好的前景。有机半导体激光器的出现,将对信息产业产生重大影响。

研究表明,有机半导体激光材料有三个特征[4]:第一,吸收峰与发射峰偏离较大,导致这些材料的辐射吸收非常小,这是有机半导体激光材料的一个独特优点;第二,有机半导体激光材料含有共轭P (P *

)键结构,因此这些有机半导体激光材料的准一维P y P *

键,带间直接跃迁具有很大的相交密度。通过泵浦激发P y P *

跃迁,将很容易实现粒子数反转;第三,有机半导体激光材料的吸收系数A 很大,典型地A \1@105cm -1,所以它的受激截面和吸收截面都很大,因而增益长度将基本上等于吸收长度,这就意味着与自发辐射相比,受激辐射将占有优势。由此可见,有机半导体激光材料具有容易实现粒子

数反转和受激辐射占优势两大特点。

综上所述,由于有机半导体激光材料具有大的受激截面,在低的光泵浦能量下,就可以实现粒子数反转。而且在增益介质中,发射光子的传播距离大于增益长度。所以在亚微米厚度的薄膜内,使用简单的平板波导结构,就可以实现低阈值增益。

有机半导体激光器受激产生激光,可以由五种现象来进行判定[5]:第一,在输出能量与输入能量(泵浦能量)的关系曲线中出现明显的阈值。在阈值以上有一个高的激光效率;第二,有一个强的偏振光输出;第三,出现立体相干性(远场图有衍射斑点);第四,有效光谱谱线变窄;第五,出现激光器谐振模式。

2光泵浦红光激光器

美国Princeton大学的V.Bulovic等人[1,5]研制出光泵浦红光有机半导体激光器,其增益介质是由Alq3(8羟基喹啉铝)掺DCM激光染料组成的。从最佳设计角度考虑,DCM具有红色的受激发射波长645nm。这个发射波长远离Alq3主体分子的紫外吸收边波长450nm。而DCM的吸收中心,又接近Alq3的最大发射谱波长530nm。所以,这个由Alq3:DCM组成的有源层,对有效的Forster能量传递提供了一个从紫外激发的Alq3主体。这样,泵浦能量通过Alq3主体分子吸收后,非辐射传递给DCM客体分子。由于Alq3发射谱与DCM吸收谱匹配,才能在分子之间有足够的Forster能量传递,所以需要很低浓度的客体分子。只有很低浓度的光活性态密度,才能降低阈值并提高激光器的效率。Alq3与DCM的吸收和发射之间有大的Stokes移动,从而大大降低了受激阈值并增加了器件的工作寿命。

这种光泵浦红光OSL采用平板波导结构和DBR结构。有源区为500nm厚的掺有3%的DCM 的Alq3,在高真空下,通过热蒸发共淀积在DBR介质镜面叠层表面上,如图1所示。在有源层的顶部,再顺次淀积20nm厚的Alq3缓冲层和200nm厚的Ag镜面。Alq3缓冲层降低了有机层与金属界面下的DCM激发淬灭。

OSL的光泵浦采用N2激光器(K=337nm),在50Hz下产生500ps脉宽重复速率。泵浦光束通过DBR叠层入射,当K=337nm时它能透射8%,并

聚焦成圆形。在有机薄膜表面上形成100L m直径的光点。

图1激光器结构(a)和DCM及Alq3的化学结构式(b) Fig.1L aser structure(a)and chemical structur e formulas of DCM and A lq3(b)

Alq3:DCM OSL的发射光谱如图2所示。自发辐射谱阈值比较低,这是由于微腔效应影响的结果。K=635nm的峰相当于腔的模式,如图2(a)所示。在阈值以上的光发射谱,相应能量在300J/cm2以上,则完全受高增益支配,OSL发射谱变窄,如图2 (b)所示。

(a)在衬底垂直方向的自发发射谱(K=635nm处观察到腔的模式);(b)在高泵浦能量下,OSL的受激发射谱。

图2Alq3:DCM DBR O SL的发射光谱

(a)Spontaneous emissio n spectrum in the substrate normal d-i rection(Cavity mode is observed at K=635nm).(b)Emission spectra from the same OSL at a high ex citation level.

F ig.2Emission spectrum o f Alq3:DCM DBR OSL

这种Alq3:DCM DBR有机半导体激光器,具有很窄的光谱线宽(0.02nm?0.01nm),很高的功率(3W),在阈值以上脉冲工作时寿命大于1@106h,受激发射光谱范围随着有源层厚度不同而变化,为589~645nm。研制的Alq3:DCM双异质结光波导

222半导体光电1999年8月

结构OSL,发射谱峰值波长为645nm,最高微分量子效率达70%,最大输出脉冲峰值功率达50W 。

3 光泵浦蓝光激光器

光泵浦蓝光有机半导体激光器,在光存贮应用和彩色下转换等领域有着重要的应用。

对有机半导体激光材料的特性研究表明,因为在本体和掺杂剂有机分子之间,存在着有效的非辐射Forster 能量传递,所以本体的发射谱必须与掺杂剂的吸收谱相重叠。为此,Princeton 大学的V.G.Kozlov 等人选择CBP[4,4-双(N-咔唑)联苯]为主体材料,PRL [北(peryene)]为掺杂剂[2],CBP:PRL 作为光泵浦蓝光OSL 的有源层。图3给出了光泵浦蓝光边发射OSL 的结构,120nm 厚的CBP:PRL(质量比为100:1)薄膜,淀积在涂有2L m 厚的SiO 2层(等离子增强CVD 淀积)的抛光InP 衬底(100)表面上。有机薄膜是高真空热蒸发生长的,这种结构的特点是有机薄膜(折射率n = 1.8)在一侧形成一个具有SiO 2包层(n = 1.46)的平板光波导,而在另一侧是空气(n =1)作为包层。有机层厚度的选择原则是在增益区域内限制光场,形成一

个单膜平板波导。

图3 光泵浦蓝光边发射O SL 结构图

Fig.3 Structure of an o ptically pumped blue OSL

这种光泵浦蓝光边发射OSL 的有源层中主体分子为CBP,发射峰在400nm 处。掺杂剂客体分子PRL 在400nm 处亦具有强的吸收峰,这正好满足本体发射谱与客体吸收谱重叠原则。于是,光泵浦能量(N 2激光器,K =337nm )被CBP 分子吸收后,通过偶极对,非辐射地传递给客体分子,并按照分子构象弛豫,其发射光谱范围为460~510nm 。从质量比为1%的CBP:PRL 薄膜没有观察到CBP 分子的发射,这意味着传递过程有很高的效率。这是由于Forster 能量传递远离本体材料的吸收带而

发射的结果,并将导致很低的激射阈值和长的工作

寿命。

CBP:PRL 光泵浦蓝光边发射OSL,受激辐射光谱范围为460~510nm,具有5J/cm 2

的低受激阈

值,15%的高微分量子效率,20W 的高输出功率和激射脉冲工作寿命大于1@105h 。这些数据说明蓝光OSL 器件是无机蓝光激光器的潜在竞争对手。

4 光泵浦绿光激光器

英国剑桥大学的R.H.Friend 研究小组[3],首次观测到聚苯乙炔(PPV)的激光现象。这一现象的发现,立即引起国际上的广泛重视。他们采用DBR 结构,研究了PPV 的微腔效应,制成了如图4所示的光泵浦绿光PPV OSL 。

图4 光泵浦绿光P PV O SL 微腔结构示意图

Fig.4 Schematic diagram of an optically pumped g reen PPV

OSL microcav ity structure

为了实现PPV 的受激发射,一个高质量因子Q 的微腔是必须的,腔的尺寸约为发射光的波长。他们使用具有高反射镜面的微腔底镜为约100nm 厚的DBR,这是一个由高折射率和低折射率材料交替组成的叠层。在可见光波长下,DBR 具有大于99%

的反射率,为了覆盖整个可见光范围,DBR 镜面采用各种不同厚度的叠层制造。于是较长波长的光,在叠层内的较深处反射。这种类型的镜面,随着腔长的增加,在各个分立的台阶内出现的波长也随着增加。由于这种结构尽管腔长尺寸约等于波长,但是几个分立的模式仍然可以出现。在DBR 的顶部,再旋涂一层四水噻吩卤化物豫聚体,以便热转换生成PPV 。60nm 顶层镜面是通过热蒸发Ag 形成的。

采用三倍频再生放大Nd:YAG 激光器作为器件的泵浦源,泵浦光脉宽为200~300ps,重复频率为1kHz,中心波长为355nm 。光束聚焦成250L m 直径的光斑。最大的入射能量为5L J 。使用光谱仪和CCD 摄像机记录发射光谱。激发能量分别为0.

223第20卷第4期 刘明大等: 有机半导体激光器研究的新进展

05L J 和1.10L J 时测得发射光谱曲线,如图5所

示。

图5 PPV 微腔结构的发射光谱

F ig.5 Emission spectra of the P PV microcavity str ucture

对有机半导体微腔内强激子-光子耦合的研究表明[6],采用有机和无机激子混合态的新结构,可望实现极化声子受激发光。同时,真空淀积PPV 低聚合物结晶薄膜的受激发射已经得到证明[7]。PPV 及其衍生物的迁移率也在不断提高,甚至接近1cm 2#V -1#s -1也将是可能的[8]。这些研究进展,都将推动聚合物激光器的进一步完善。

5 电泵浦有机半导体激光器

1993年日本大阪大学的M asahiro Hiramoto 等人[9]通过实验发现,边发射有机电发光器件比面发射器件有较陡的光谱分布,并且发光强度比面发射器件的大100倍。接着他们的下一步的战略目标是,在有机电发光二极管内得到粒子数反转。实现粒子数反转的重要条件是充分的电荷注入和光限制。横向的光限制可采用较低折射率材料包围发光二极管的膜层的方法。另一个途径是,制备一个所谓的双异质结结构来限制注入电流。

美国Princeton 大学的V.G.Kozlov 等人[5]研究了电泵浦OSL 产生的可能性。他们报道的双异质结平面光波导结构,具有较大的单程增益和非常低的激发能量阈值。平板波导结构和双异质结光波导结构激光器,是在涂有2L m 厚的SiO 2层的InP 衬底上生长的。SiO 2膜采用等离子体增强CVD 法生长,有源层薄膜是通过高真空共蒸发40:1(质量比)的Alq 3和DCM 淀积形成的。

平板波导结构OSL 由300nm 厚的Alq:DCM 薄膜(n = 1.7)形成平板波导,其一侧为SiO 2(n =1.

4)包层,另一侧以空气(n =1)作为包层(如图6

右插图)。

双异质结光波导结构OSL,是由一个50nm 厚的Alq 3:DCM 有源层夹在两个125nm 厚的Alq 3包

层之间,形成平面光波导(如图6左插图)。双异质结用于所有导电有机层,并且具有电和光两种限制特性。这种特性对于实现低阈值电泵浦受激发射是需要的。图6示出平板波和双质结光波导两种结构OSL 的输出能量E out 与泵浦能量E P 的关系曲线。在阈值以上,对平板波导器件微分量子效率G =30%,对双异质结光波导器件G =70%。双异质结器件比平板结构器件有更高的效率和较低的阈值。

对于电泵浦OSL 的实现,我们认为DBR 垂直腔腔长较短和腔的光学损耗较大,故其单程增益较小,导致较高的受激能量阈值,使得有机半导体材料稳定性差,在电泵浦条件下难以承受。而双异质结光波导结构OSL,克服了DBR 结构的缺点,具有较大的单程增益,明显低的受激阈值。

图6 平板波导结构和双异质结光波导结构OSL 的输出能

量与泵浦能量的关系

Fig.6 Dependence of output energy on the input pump energy

for slab-w aveg uide and double-heterostructure OSL

在电泵浦双异质结光波导结构中,有源层厚度最终受Alq:DCM 薄膜内空穴扩散长度的限制,这里扩散长度为10nm 。为了评价这种结构的受激发射前景,V.G.Kozlov 等人采用一些可查阅的数据并结合一定的假设,估算出实现电泵浦设想的阈值电流密度为100A/cm 2。如再利用一个高反射率的顶部接触和一个更有效的有机光学体系,电泵浦OSL 在低占空比脉冲下是可以实现的。

6 结束语

各种光泵浦有机半导体激光器已经面世。随着

低阈值、高功率以及有机半导体材料特性的改进,有

224 半 导 体 光 电 1999年8月

机固体电注入激光器也将变成现实。

参考文献

[1]Bulov ic V,K ozlov V G,K halfin V B et al.T ransfor m-

limited,narrow-line w idt h lasing action in or ganic semiconductor microcav ities[J].Science,1998,279(23):

553.

[2]Kozlov V G,Par thasarathy G,Burro ws P E et al.Optica-l

ly pumped blue organic semiconductor lasers[J].A ppl.

Phys.Lett.,1998,72(2):144.

[3]T essler N,Denton G J,F riend R https://www.360docs.net/doc/6a9456266.html,sing from conju-

gatedpoly mer microcavities[J].N ature,1996,382(22):

695.

[4]Fumitomo H,M ar ia A,Diaz-Garia et al.Semiconducting

polymer:a new class of solid-state laser materials[J].

Science,1996,273(27):1833.

[5]Kozlov V G,Bulovic V,Bur rows P E et al.L aser action in

organic semico nductor w aveguide and double-het-

er ostructur e dev ices[J].N ature,1997,389(25):362.[6]Lidzey D G,Bradley D D,Sko lnick M S et al.Stro ng exc-i

ton-photon coupling in an or ganic semiconductor micro-

cavity[J].N ature,1998,395(3):53.

[7]Brouwer H J,Krasnikov V V,Pham T A et al.Stimulated

emission from vacuum-deposited thin film of a substitut-

ed oligo(p-phenylene vinylene)[J].A ppl.P hys.L ett.,

1998,73(6):708.

[8]Hoofman R J O M,De Haas M P,Siebbeles L D A et al.

Hig h mobile electrons and holes on i solated chains of the

semiconducting polymer poly(pheny lene V ing lene)[J].

Nature,1998,392(5):54.

[9]M asahiro Hiramoto,T ani J L,M asaaki Yo koyama.Dir ect-

ed beam emission from edge in organic electr oluminescent

diode[J].Appl.Phys.L ett.,1993,62(7):666.

刘明大男,1936年生,教授。

曾承担过国家自然科学基金、国

防科技预研基金、军事电子基

金、省科委基金、国家重点实验

室开放课题等多项科研项目。

已发表论文数十篇。

225

第20卷第4期刘明大等:有机半导体激光器研究的新进展

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

半导体材料研究的新进展(精)

半导体材料研究的新进展* 王占国 (中国科学院半导体研究所,半导体材料科学实验室,北京100083 摘要:首先对作为现代信息社会的核心和基础的半导体材料在国民经济建设、社会可持续发展以及国家安全中的战略地位和作用进行了分析,进而介绍几种重要半导体材料如,硅材料、GaAs和InP单晶材料、半导体超晶格和量子阱材料、一维量子线、零维量子点半导体微结构材料、宽带隙半导体材料、光学微腔和光子晶体材料、量子比特构造和量子计算机用材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。本文未涉及II-VI族宽禁带与II-VI族窄禁带红外半导体材料、高效太阳电池材料Cu(In,GaSe 2 、CuIn(Se,S等以及发展迅速的有机半导体材料等。 关键词:半导体材料;量子线;量子点材料;光子晶体 中图分类号:TN304.01文献标识码:A文章编 号:1003-353X(200203-0008-05 New progress of studies on semiconductor materials WANG Zhan-guo (Lab.of Semiconductor Materials Science,Institute of Semiconductors, Chinese Academy of Sciences,Beijing100083,China Abstract:The strategic position and important role of semiconductor materials,as a core and foundation of the information society,for development of national economic,national safety and society progress

紫外激光器研究进展及其关键技术讲解

紫外激光器研究进展及其关键技术 黄川 2120160620 摘要:本文详细介绍了利用LD泵浦的紫外激光器产生紫外激光的非线性原理,并在此基础上介绍了在全固态紫外激光器中用到的倍频晶体的种类和各自的应用场景;介绍了近年来高功率固体紫外激光器研制的国内外进展情况,最后展望了高功率全固体紫外激光器研制的未来。 关键词:紫外激光;非线性光学;相位匹配 1、引言 因为紫外激光具有的短波长和高光子的能量特点,所以紫外激光在工业领域内具有非常广泛的应用。在工业微加工领域内,相较于红外激光的热熔过程,紫外激光加工时的“冷蚀效应”可以使加工的尺寸更小,达到提高加工精度的目的。另外,紫外激光器在生物技术,医疗设备加工,大气探测等领域也有广泛的应用。 一般而言,可以将紫外激光器划分为三类:固体紫外激光器,气体紫外激光器,半导体紫外激光器。其中固体紫外激光器应用最为广泛的是激光二极管泵浦全固态激光器。而利用激光二极管抽运的固体UV激光器相较于其他类型的紫外激光器而言,具有效率高,性能可靠,硬件结构简单的特点,因此应用最为广泛,基于LD抽运的全固态UV激光器也得到了迅猛的发展。 在实际的应用当中,实现紫外连续激光输出的方法一般是利用晶体材料的非线性效应实现变频的方法来产生。产生全固态紫外激光的方法一般有两种:一是直接对全固体激光器进行3倍频或4倍频来得到紫外激光;另一种方法是先利用倍频技术得到二次谐波,然后再利用和频技术得到紫外激光。相较于前一种方法,后者利用的是二次非线性极化率,其转换效率要高很多。最常见的是通过三倍频和四倍频技术产生355nm和266nm的紫外激光。下文将简单介绍紫外激光产生的非线性原理。 2、非线性频率转换原理 2.1 介质的非线性极化 激光作用在非线性介质上会引起介质的非线性极化,这是激光频率变换的非线性基础。在单色的电磁波作用下,介质的内部原子,离子等不会发生本征能级的跃迁,但是这些离子的电荷分布以及运动状态都会发生一些变化,引起光感应的电偶极矩,这个电偶极矩作为新的辐射源辐射电磁波。

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体激光器的最新进展及应用现状

半导体激光器的最新进展及应用现状 发表时间:2018-11-11T11:02:03.827Z 来源:《电力设备》2018年第18期作者:黄志焕[导读] 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。 (天津环鑫科技发展有限公司 300384) 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。由于半导体激光器具有体积小、寿命长、电光转换效率高、调制速度快、波长范围宽和易于集成等优点,在光互连、光通信、光存储等方面具有广泛的应用。 关键词:半导体激光器;最新进展;应用现状 1半导体激光器研究的意义半导体激光器的研究是我国光电技术研究的重要内容,是国家重点提出并且一直在努力寻求新的突破的领域。就当前半导体激光器研究的意义来看,对国家的发展具有重要的现实意义。与此同时,半导体激光器在各行各业的应用都十分广泛,并且呈现出以每年20%以上的增长速度,比如,军师领域的激光雷达、制导以及医疗、通讯、光盘等都开始应用半导体激光器。其涉及领域之广,扩展速度之快,应用价值之强,是被广泛认可的。近年来,随着信息科技的不断发展,人们对半导体激光器的性能要求越来越高,传统的半导体激光器在具体的实践应用当中已经表现出明显的不足之处。因此进行半导体激光器的研究,不短提升半导体激光器的现代化水平,具有重要的现实意义。 2半导体行业半导体器件是电子电路中必不可少的组成成分。半导体是人们为了生产生活需要,将两物质按照电学性质进行分类时确定的一个名称。它的导电性介于导体和绝缘体之间。半导体导电性能全是由其原子结构决定的。以元素半导体硅和锗为例,其原子序列分别是14和32,它们两个最外层电子数都是4。半导体具有自由电子和空穴两种载流子。而半导体的性质不同于导体和绝缘体,就是因为半导体拥有的载流子数目不同而载流子是能够运动的荷电粒子。电子和空穴都是载流子,它们相互运动即可产生电流。硅和锗是最为典型的元素半导体。 根据构成物质元素的不同,半导体可分为元素半导体和化合物导体,元素半导体由一种元素构成,化合物半导体由多种元素构成。而根据掺杂类型的不同,半导体可分为本征半导体、N型半导体和P型半导体;如果按照原子结构的排列规则不同,又可分为单晶半导体、多晶半导体和非晶态半导体。半导体行业具有技术密集、资金密集,高风险高回报和知识密集等特点。进入2010年以来,国家大力支持半导体行业的发展,2011年11月,国家税务总局和财政部联合发布了《关于退还集成电路企业采购设备增值税期末留纸税额》;2012年4月政府部门又发布了《关于进一步鼓励软件产业和集成电路产业发展企业所得税政策的通知》;而于2014年,工信部又发布了《国家集成电路产业发展推进纲要》。近几年,我国半导体行业发展速度超快,半导体产业逐渐呈现向大陆地区转移的新趋势,为我国各行业的发展带来设备国产化的发展机遇。而且政府政策大力支持半岛体行业的发展,大基金入场将会加速产业转型升级,成熟化发展。半导体具有掺杂特性、热敏性和光敏性三大特点。 3激光器顾名思义,激光器是一种能发射激光的装置。1954年,人们制成了第一台微波量子放大器;1958年A.L.肖洛和C.H.汤斯把微波量子放大器的原理推广到光频范围;1960年T.H.梅曼等人制成了第一台红宝石激光器;1961年A.贾文等人制成了第一台氦氖激光器。1962年R.N.霍耳等人制成了第一台半导体激光器;之后,激光器的种类就越来越多。一般而言,按工作介质分类,激光器可分为固体激光器、气体激光器、染料激光器和半导体激光器4大类。激光器的组成一般由3个重要部分构成,即工作物质、激励抽运系统、谐振腔。其中激光工作物质是一种激光增益的媒介,其原子或分子的能级差决定了激光的波长与频率。激光抽运系统是指为使激光器持续工作给予能量的源头,它实现并维持了工作物质的粒子数反转。光学谐振腔是激光生成的容器,有多种多样的设计方式是激光器设计的核心。 4激光器系统功能 4.1逻辑控制 系统通过操作面板实现逻辑控制,主要控制功能有3个。(1)内时钟工作:通过RS-422通信接口,向电源控制单元发射出光指令,工作频率可1-20Hz切换,同时通过LED反馈激光器工作状态。(2)外时钟工作:利用外部开关切换至外时钟,利用DSP外部中断接口检测外时钟。(3)自检功能:通过按压自检开关,触发激光器发射激光。 4.2高精度时序控制 激光器输出能量的大小和稳定性与激光电源的高精度时序是密不可分的,必须确保电源控制系统输出时钟的精度及稳定性。为实现μs级高精度控制逻辑,采用DSP控制芯片内置的PLL模块完成高精度时序控制,锁相环独有的负反馈和倍频技术可以提供高精度、稳定的频率,DSP 输入时钟30MHz,倍频到150MHz,时钟周期可达6.67ns。通过精确的技术方法,按照设计的延时产生所需的各路时钟,可以满足高精度的时序配置要求。 4.3恒流源驱动控制 激光器电源控制系统接收到激光发射的信号后,DSP输出12位数字信号,通过DAC1230芯片,将数字信号转换成相应的模拟参考电压信号。恒流源电路中的采样电阻R将通过泵浦模块的电流转换成相应的电压,经过F放大电路后,与参考电压进行比较,产生功率驱动信号,此信号控制功率管的开关。同时可通过DSP改变参考电压的大小,实现恒流源电流的调节。激光电源控制系统还可通RS-422通信接口,远程设置恒流源的电流和脉宽。 4.4温度控制系统 温度是影响激光器泵浦模块输出波长和泵浦效率的重要因素,故对泵浦模块进行控温是必不可少的。半导体激光器一般采用半导体热电致冷器进行控温,该制冷器具有无机械运动、无噪声、无污染、体积小、可靠性高、寿命长、制冷迅速、冷量调节范围宽及冷热转换快等特点。测温元件采用电流输出型温度传感器AD590,特点是工作直流电压较宽,一般为4-30V,输出电流为223μA(-50℃)-423μA(+150℃),灵敏度为1μA/℃。

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

紫外激光器研究进展及其关键技术

紫外激光器研究进展及其 关键技术 Last revision on 21 December 2020

紫外激光器研究进展及其关键技术 黄川 摘要:本文详细介绍了利用LD泵浦的紫外激光器产生紫外激光的非线性原理,并在此基础上介绍了在全固态紫外激光器中用到的倍频晶体的种类和各自的应用场景;介绍了近年来高功率固体紫外激光器研制的国内外进展情况,最后展望了高功率全固体紫外激光器研制的未来。 关键词:紫外激光;非线性光学;相位匹配 1、引言 因为紫外激光具有的短波长和高光子的能量特点,所以紫外激光在工业领域内具有非常广泛的应用。在工业微加工领域内,相较于红外激光的热熔过程,紫外激光加工时的“冷蚀效应”可以使加工的尺寸更小,达到提高加工精度的目的。另外,紫外激光器在生物技术,医疗设备加工,大气探测等领域也有广泛的应用。 一般而言,可以将紫外激光器划分为三类:固体紫外激光器,气体紫外激光器,半导体紫外激光器。其中固体紫外激光器应用最为广泛的是激光二极管泵浦全固态激光器。而利用激光二极管抽运的固体UV激光器相较于其他类型的紫外激光器而言,具有效率高,性能可靠,硬件结构简单的特点,因此应用最为广泛,基于LD抽运的全固态UV激光器也得到了迅猛的发展。 在实际的应用当中,实现紫外连续激光输出的方法一般是利用晶体材料的非线性效应实现变频的方法来产生。产生全固态紫外激光的方法一般有两种:一是直接对全固体激光器进行3倍频或4倍频来得到紫外激光;另一种方法是先利用倍频技术得到二次谐波,然后再利用和频技术得到紫外激光。相较于前一种方法,后者利用的是二次非线性极化率,其转换效率要高很多。最常见的是通过三倍频和四倍频技术产生355nm和266nm 的紫外激光。下文将简单介绍紫外激光产生的非线性原理。 2、非线性频率转换原理

有机光伏材料 严涌

有机光伏材料综述 能源是人类社会发展的驱动力,是人类文明存在的基础。目前我们所能利用的能源主要是煤、石油和天然气等传统石化资源。自从18世纪工业革命以来,人类对能源的需求不断增长,由此导致的能源安全问题日益凸显。太阳直径为1.39*106km,质量为1.99*1030kg,距离地球1.5*108km。组成太阳的质量大多是些普通的气体,其中氢约占71.3%、氦约占27%,其它元素占2%。太阳从中心向外可分为核反应区、核辐射区和对流去区、太阳大气。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000k。太阳每分钟发出的总能量为2.27*1025kJ,尽管只有22亿分之一的能量辐射到地球上,但太阳每秒钟照射到地球上的能量就相当于500万吨煤燃烧所产生的能量。 1太阳能电池 1.1太阳能的利用 太阳能的利用包括很多种技术手段,例如太阳能热水器、光解水制氢气、太阳能热发电以及光伏发电。前二者的应用水平较低,要想大规模地提供能源,主要得靠后两种技术。 太阳能热发电目前主要有三种实现方式,即塔式、槽式和碟式。这三种技术的基本原理都是通过将太阳光聚焦,加热水或者其他工质(例如热熔盐和空气),通过热循环驱动发电机组来发电。 太阳能热发电技术以较为成熟的机械工艺为基础,在规模足够大之后可望实现经济运行。但是这样的热电站也兼具传统热电站的缺点,即建设成本高,机械损耗大,维护成本高,而且只能在专用地上建设,无法与已有城乡建筑物进行集成。在太阳能热发电领域,我国起步较晚,技术积累较少,目前尚不具备对外的竞争优势。 1.2光伏技术 “光伏”这个词译自“Photovoltaic”,即“光”和“伏特”的组合。这个词最早是用来描述一些材料在光照下形成电压的现象,后来人们认识到光电压的形成是由于材料中的电子被入射的光子激发而形成了电势差,从而形成对外的电流电压输出。采用光伏原理发电的设备,我们称之为“太阳能电池”。 最早的光伏效应是Edmund Bequerel 在1839 年发现的,一百多年后(1954年),随着硅半导体工业的发展,第一个能用于实际发电的太阳能电池才在贝尔实验室问世。这个太阳能电池以硅半导体的p-n 结为基础,光电转化效率为6%。 半导体p- n 结的结构及原理如图1所示。当p 型和n 型的半导体相互接触时,由于浓度差的存在,p 型半导体中的空穴会向n 型半导体扩散,n 型半导体中的电子也会向p 型半导体扩散,造成接触面双侧的电荷不平衡,从而形成由n 型区指向p 型区的空间电场。反映在能级图上,即p 型区和n 型区的费米能级一致化后,两个区域间形成了一个能级差,这个能级差即是内建电场(Ebi)。p 型区和n 型区之间的过渡区域,称为p-n 结的结区。在结区内,内建电场会驱使电荷进行定向传输。

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

激光快速成型技术研究现状与发展

激光快速成型技术研究现状与发展 摘要:快速成型技术是近年来制造技术领域的一次重大突破和革命性的发展,激光快速成型技术是其重要组成部分。本文介绍了激光快速成型技术的基本原理和特点,分析了有关工艺方法,讨论了LRP 技术的研究现状和应用,并展望其未来发展趋势。 关键词:激光快速成型;研究现状;发展趋势 1 激光快速成型技术原理和特点 80 年代后期发展起来的快速成型技术(RapidPrototyping ,RP) 是基于分层技术、堆积成型, 直接根据CAD 模型快速生产样件或零件的先进制造成组技术总称。RP 技术不同于传统的去除成型、拼合成型及受迫成型等加工方法,它是利用材料累加法直接制造塑料、陶瓷、金属及各种复合材料零件[1 ] 。以激光作为加工能源的激光快速成型是快速成型技术的重要组成部分,它集成了CAD 技术、数控技术、激光技术和材料科学等现代科技成果。激光快速成型(Laser Rapid Prototyping ,LRP) 原理是用CAD 生成的三维实体模型,通过分层软件分层,每个薄层断面的二维数据用于驱动控制激光光束,扫射液体,粉末或薄片材料,加工出要求形状的薄层,逐层累积形成实体模型。快速制造出的模型或样件可直接用于新产品设计验证、功能验证、工程分析、市场订货及企业决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。以此为基础进一步发展的快速模具工装制造(Quick Tooling) 技术,快速精铸技术(Quick Casting) ,快速金属粉末结技术(Quick Powder Sintering) 等,可实现零件的快速成品。 激光快速成型技术主要特点: (1) 制造速度快、成本低, 节省时间和节约成本,为传统制造方法注入新的活力,而且可实现自由制造(Free Form Fabrication) ,产品制造过程以及产品造价几乎与产品的批量和复杂性无关。[2 ] (2) 采用非接触加工的方式,没有传统加工的残余应力问题,没有工具更换和磨损之类的问题,无切割、噪音和振动等,有利于环保。 (3) 可实现快速铸造、快速模具制造,特别适合于新品开发和单件零件生产。 2 LRP 工艺方法 LRP 技术包括很多种工艺方法,其中相对成熟的有立体光固化(SLA) 、选择性激光烧结(SLS) 、分层实体制造(LOM) 、激光熔覆成形(LCF) 、激光近形制造(LENS) 。 (1) 光固化立体造型(SL —Stereolithography ,orSLA) 将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态光敏树脂逐点扫描,被扫描的树脂薄层产生光聚合反应固化形成零件的一个截面, 再敷上一层新的液态树脂进行扫描加工,如此重复直到整个原型制造完毕。这种方法的特点是精度高、表面质量好,能制造形状复杂、特别精细的零件,不足是设备和材料昂贵,制造过程中需要设计支撑。 (2) 分层实体制造(LOM—Laminated ObjectManufacturing) LOM工艺是根据零件分层得到的轮廓信息用激光切割薄材,将所获得的层片通过热压装置和下面已切割层粘合,然后新的一层纸再叠加在上面,依次粘结成三维实体。LOM主要特点是设备和材料价格较低,制件强度较好、精度较高。Helisys 公司研制出多种LOM工艺用的成型材料,可制造用金属薄板制作的成型件,该公司还开发基于陶瓷复合材料的LOM工艺。 (3) 选择性激光烧结(SLS —Se1ected LaserSintering) SLS 的原理是根据CAD 生成的三维实体模型,通过分层软件分层获得二维数据驱动控制激光束,有选择性地对铺好的各种粉末材料进行烧结,加工出要求形状的薄层,逐层累积形成实体模型,最后去掉未烧结的松散的粉未,获得原型制件。SLS的特点是可以采用多种材料适应不同的应用要求,而具有更广阔的发展前景。但能量消耗非常高,成型精度有待进一步提高。DTM

关于激光器研究(文献综述)

关于锁模光纤激光器的研究 前言 激光器,顾名思义,即是能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,1960年T.H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,大功率激光器通常都是脉冲式输出。2004 年,Idly 提出了一种自相似脉冲光纤激光器,同时为这种光纤激光器建立了一种数值模型。模型中采用非线性薛定谔方程(NLSE)描述脉冲在正色散光纤中的传输,引入了一个与脉冲强度相关的透过率函数将NPE 锁模机理等效成快速可饱和吸收体(SA)的作用0 模拟发现这种激光器输出的脉冲具有抛物线的形状和线性啁啾,能量可高达10nJ。随着自相似脉冲在实验上的实现,自相似锁模光纤激光器迅速成为超短光脉冲领域的研究热点。用Idly 模型对自相似锁模光纤激光器的研究不断取得新的进展。在此我将对激光和激光器的原理和基于原理而做出的进一步的相关研究(如被动锁模光纤激光器)做一个大致的探讨。

主题 激光器的原理 非线性偏振旋转被动锁模环形腔激光器的结构如图1所示, 激光器由偏振灵敏型光纤隔离器、波分复用器、偏振控制器、输出藕合器、掺yb3+光纤组成。其工作原理为从偏振灵敏型光纤隔离器输出的线偏振光,经过偏振控制器PCI(1/4 λ波片)后变为椭圆偏振光, 此椭圆偏振光可看成两个频率相同、但偏振方向互相垂直的线偏振光的合成, 它们在掺yb3+增益光纤中藕合传输时, 经过光纤中自相位调制和交叉相位调制的非线性作用, 产生的相移分别为 其中n1x 、n1y分别为yb3+光纤沿X、Y方向的线性折射率, n2、l分别为该光纤的非线性折射率系数和长度。 由于两线偏振光的相位差(ΔΦ=Φx-Φy), 与两偏振光的光强有关, 适当调整光纤偏振控制器PC2(1/4 λ波片 +1/2 λ波片), 使两偏振光中心

有机半导体材料

有机半导体材料 1 有机半导体材料的分子特征 有机半导体材料与传统半导体材料的区别不言自明,即有机半导体材料都是由有机分子组成的。有机半导体材料的分子中必须含有 键结构。如图1所示,在碳-碳双键结构中,两个碳原子的pz 轨道组成一对 轨道( 和 ),其成键轨道( )与反键轨道( )的能级差远小于两个 轨道之间的能级差。按照前线轨道理论, 轨道是最高填充轨道(HOMO), 是最低未填充轨道(LUMO)。在有机半导体的研究中,这两个轨道可以与无机半导体材料中的价带和导带类比。当HOMO 能级上的电子被激发到LUMO 能级上时,就会形成一对束缚在一起的空穴-电子对。有机半导体材料的电学和电子学性能正是由这些激发态的空穴和电子决定的。

在有机半导体材料分子里, 键结构会扩展到相邻的许多个原子上。根据分子结构单元的重复性,有机半导体材料可分为小分子型和高分子型两大类。 小分子型有机半导体材料的分子中没有呈链状交替存在的结构片断,通常只由一个比较大的 共轭体系构成。常见的小分子型有机半导体材料有并五苯、三苯基胺、富勒烯、酞菁、苝衍生物和花菁等(如图2),常见的高分子型有机半导体材料则主要包括聚乙炔型、聚芳环型和共聚物型几大类,其中聚芳环型又包括聚苯、聚噻吩、聚苯胺、聚吡咯等类型(如图3)。 事实上,由于有机分子的无限可修饰性,有机半导体材料的结构类型可以说是无穷无尽的。 图2: 几种常见的小分子有机半导体材料:(1)并五苯型,(2)三苯基胺类,(3)富勒烯,(4)酞菁,(5)苝衍生物和(6)花菁类。

图3: 几种常见的高分子有机半导体材料:(1)聚乙炔型,(2)聚芳环型,(3)共聚物型。 2 有机半导体材料中的载流子 我们知道无机半导体材料中的载流子只有电子和空穴两种,自由的电子和空穴分别在材料的导带和价带中传输。相形之下,有机半导体材料中的载流子构成则要复杂得多。 首先,由于能稳定存在的有机半导体材料的能隙(即LUMO 与HOMO 的能级差)通常较大,且电子亲和势较低,大多数有机半导体材料是p 型的,也就是说多数材料只能传导正电荷。无机半导体材料中的正电荷(即空穴)是高度离域、可以自由移动的,而有机半导体材料中的正电荷所代表的则是有机分子失去一个电子(通常是HOMO 能级上的电子)后呈现的氧化状态。因此,在有机半导体材料中引入一个正电荷,必然导致有机分子构型的改变。

相关文档
最新文档