高低压互感器变比测试仪

高低压互感器变比测试仪
高低压互感器变比测试仪

高低压互感器变比测试仪

一、概述

高低压互感器变比测试仪是本公司凭借生产智能化仪表的多年经验积累,适应用户现场需求而推出的。可在现场不拆线、不断电的情况下测量35KV及以下系统高压计量装置的高压一次电流、低压二次电流,并可计算出变比值。

安装在高压绝缘杆端部的高压钳形表(以下简称钳表)所采集的电流信号,将采用无线传输方式发送到手持式终端,终端则直接采集高压电流互感器二次电流。手持式终端将根据钳表两侧信号,实时计算电流互感器一次,二次电流及变比,以保证操作过程的安全性与可靠性。抽拉式高压绝缘操作杆伸长可达5米,确保操作过程的人身安全。

本仪器具有新型实用、外形美观、携带方便、抗干扰能力强、运行稳定可靠等突出特点。

1.1 主要功能:

1.1.1 可测量高压一次电流,低压二次电流;

1.1.2 可计算出变比值及变比误差;

1.1.3 可储存、可查询;

1.1.4 具备时钟功能;

1.1.5 可以测量母线三相电流不平衡度(扩展功能)。

1.2 性能特点

1.2.1 大屏幕液晶汉显,体积小、重量轻;

1.2.2 采用先进的电子技术和高速数字处理器;

1.2.3 手持式终端与钳表均采用高性能锂电池供电,一次充电可持续工作8小时;

1.2.4 高压钳表的电流信号采用无线传输,绝对确保操作的安全性。

二、主要技术指标

2.1 钳表信息无障碍传输距离:100米;

2.2 高压电流:钳型表输入0~200A;

2.3 低压电流:钳型互感器输入0~5A ;

2.4 测量精度

2.4.1 高压电流1.0%;

2.4.2 低压电流 0.5%;

2.4.3 变比1.0%;

2.5 变比测量范围:1~300;

2.5 工作温度:-10℃~50℃;

2.6 功耗:高压钳表约0.5w,主机约1w;

2.7 预热时间:0.5分钟;

2.8 耐压:70000V/1分钟。

三、面板及接线端口

3.1 按键

本测试仪共有十二个按键,如图1

●[选择/存储]键:在主菜单和参数输入时用于选择输入行,反复按此键可在各行之间循环;在变比测量时,按此键可存储变比值;

●[0--9]键:在参数输入时用于数字输入;在主画面下按[1--6]键可进入相应功能画面;

●[确认]键:用于参数输入的确认;由子画面向主画面的返回。

图1

3.2接线端口

本测试仪共有3个外部接线端口,如图2

所示

图2a

电源开关

充电插座

图2b 四、接线

4.1 高压钳表与主机采用无限传输,不需要接线。 4.2 低压一次钳表与主机低压一次钳表输入口(四芯)接好。(选配功能,只有在测量低压变比时使用)

4.3 低压二次钳表与主机低压二次钳表输入口(三芯)接好。

4.4 高压钳表卡高压电流,低压钳表卡低压电流。

五、操作

5.1 开机

接好线以后,打开电源开关进入主画面,按1-6键进入相应功能画面。

5.2参数设置

在主画面下,按[1]键进入此画面,如图3:其中量程为一次钳表的量程,有六个档位,分别是1(高压),2(20A ),3(50A ),4(100A ),5(500A ),6(1000A ),按数字键1、2、3、4、5、6分别选择(注:2—6档为低压一次电流档)。其中变比为互感器标称变比,用于计算变比误差,设置完成后按[确认]键返回主画面。

低压一次钳表

输入 低压二次钳表输入

编号=120520

人员=15

量程=1(高压)

变比=020

图3 参数设置

5.3变比测量

在主画面下,按[2]键进入此画面。在此功能,可以显示出一次、二次电流值及变比值,并可显示变比误差。

按[存储]键可存储此时的变比及误差。

按[确认]键返回主画面。 一次= 10.50A

二次= 2.10A

变比= 5

误差=+0.00%

图4 变比测量

注意:高压一次钳表与低压一次钳表不能同时适用。

5.4查询存储

在主画面下,按[3]键进入此画面,如图5a 。

操作者输入要查询的编号,按[确认]键开始查询,如有数据显示如图5b ,内容依次为编号,变比,误差,时间,人员,存储序号。

按[3]键可以查询下一个相同编号的数据。

按[确认]键返回主画面。

图5a 图5b 5.5 时间确认

在主画面下,按[4]键进入此画面,如图6

可查看和修改时间,反复按[选择]键可在各行之间循环;修改完成后按[确认]键确认并返回主画面。

编号= 120520 按确认查询

编号=120520 变比=5 误差=+0.00% 070319 12 015

2007年 06 月 18日

15时18分

图6

5.6不平衡度(扩展功能)

在主画面下,按[5]键进入此画面,如图7

本测试仪提供母线三相电流不平衡度测量,光标停留在A、B、C相电流上时,分别记下相应电流值,测量完毕后计算出三相电流不平衡度。用[选择]键在各行之间循环。

Ia= 10.02A

Ib= 10.01A

Ic= 10.03A

不平衡度=0.00%

图7 不平衡度测量

注意:三相电流测量时存在不同步性,不平衡度值仅作为参考。

5.7调试

在主画面下,按[6]键进入此画面。

此功能为产品出厂前调试使用。

六、注意事项

6.1要仔细阅读高压钳表的使用要则(见附录),注意高压钳表的使用。

6.2钳型互感器在夹电流导线时钳口张开要适度,钳口啮合时要自然,遇到障碍时要重新夹好。

6.3 必须保持钳表铁芯接触面的清洁,否则会给测量带来误差。

6.4当主机显示屏模糊时,请及时为主机充电。

附录:高压钳表的使用要则

1.电池的充电

确认电源键处于关闭状态(电源指示灯灭),然后把充电器的直流输出端插入仪器的充电插座,另一端接市电AC220V,这时充电器的指示灯为“红色”,表示正在充电。当指示灯变“绿色”,表示电池充满。

注意:为防止电池的容量降低,您每年至少将电池充电两次。2. 测试准备

2.1确认本表没有构造异常后,打开电源。

2.2检查电池有无足够的电。

3.测试方法

3.1本钳表内部量程可以根据实际测量电流大小自动切换。

3.2根据高压CT的安装位置,伸缩高压绝缘操作杆长度。

3.3利用开闭柄打开钳型CT,完全夹住线路的一根线(须注意单根)。

3.4将高压钳表从电线拔离开。

3.5测试结束后,一定要关掉电源。

注意:测试高压电流时,一定要注意拉出伸缩棒,使之变长。但须注意不要猛然使力,以免伸缩棒被弄坏。

3.6高压钳表使用中的注意点

1) 用于10KV以上线路的测试时要十分注意。

2)高压线路的测试具有一定的危险性,操作者一定要具备专门知识。

3)不使用时,务请关闭电源。

4)本表虽具有防滴漏构造,但被水弄湿状态不要使用。

6) 长时间不使用时,请密封好保存。

7)当电池电压不足标志灯亮时,请尽快充电。

8)不要自行拆开本表。

3.8高压钳表结构图

警告:不要用此表测试200A以上的电流!

警告:不要在雨中使用。

电压互感器参数说明书

10/√3:0.1/√3:0.1/√3:0.1/3 指的是变比一次线压10KV 相压除以√3 电压互感器二次第一组线压0.1KV 相压除以√3 第二组线压0.1KV 相压除以√3 第三组三相0.1KV 单相除以3 0.2/0.5/3P 指的是精度二次一二三绕组一次0.2 0.5 3P 60/60/100VA 指的是容量 Yn/yn/yn/△指的是接线方式一次星型二次一二三依次是星型星型一般是开口三角(你写的是个三角估计你是打不出那个开口三角的符号吧) 问什么? 6/√3:0.1/√3也就是6000V/√3:100V/√3说明你的互感器是用在6000V的系统中的线电压二次值是100V的,三个冒号也就是二次圈有三组.6/√3的意思是6000V/√3就是相电压 了,0.1/√3也就是100V/√3同理是二次侧的相电压, 0.2/0.5/3P 对应的第一组是0.2级的也就是计量用的,第二组是0.5级的也就是测量用的,第三组是3p级的也就是保护用的. 20/30/100是这三组圈的容量. 不知道你想问什么?这样解释行不行 分母上是根号3吧。 10/根号3,是原边(即输入端)数据,指线电压为10KV ,相电压为(10/根号3)KV.这个电压互感器有三个副边,线电压均为100V,各自的相电压为(100/根号3)V。 联接组别是指原副边三相线圈的接法,原边和两个副边均为YN接线,即将三个绕组的一端接到一起再接到地,另一端分别接线路或测量表计的三相上。第三个副边的三个绕组依次串接起来,将最终的两端接到一个电压表(一般),用于测线路的零序电压。 20/30/100VA是三个副边的额定容量(即提供的电压与电流的代数积),准确级是指三个副边测量的精度,误差的大小,这个值越小,说明准确度越高。 这个概念是供电中的。 开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。 此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。 正常情况下,开口三角上没有电压,当发生系统单相接地时,电压互感器一次绕组就会有一相上无电压,造成对应的二次绕组上也无电压,则开口三角上就会出现电压。通过检测开口三角上的电压,就可以知道高压系统是否有接地现象,这在系统上被称为“接地监察

电流互感器变比

一.按一次侧计算电流占电流互感器一次侧额定电流的比例 根据<<电气装置的电测量仪表装置设计规范>>(GBJ63-90)的规定,在额定值的运行条件下,仪表的指示在量程的70%~100%处,此时电流互感器最大变比应为: N=I1RT /(0.7*5); I1RT ----变压器一次侧额定电流, A; N----电流互感器的变比;显然按此原则选择电流互感器变比时,变比将很小,下面列出400~1600kVA变压器按此原则选择时,电流互感器的最大变比: 向左转|向右转 从上表可以看出, 对于630kVA变压器,电流互感器的最大变比为15,当取50/5=10时,额定电流仅占电流量程3.64/5=72.8%。这可能是一些设计人员把630kVA变压器的供电出线断路器处电流互感器变比取50/5的一个原因,另外在许多时候,设计时供电部门往往不能提供引至用户处的电源短路容量或系统阻抗,从而使其他几个条件的校验较难进行,这可能是变比选择不当得另一个原因。从下面的分析中,我们将发现按此原则选择时,变比明显偏小,不能采用。 二.按继电保护的要求 为简化计算及方便讨论,假设: (1)断路器出线处的短路容量,在最大及最小运行方式下保持不变; (2)电流互感器为两相不完全星型接线; (3)过负荷及速断保护采用GL-11型过电流继电器; (4)操作电源为直流220V,断路器分闸形式为分励脱扣。 1. 过负荷保护 过负荷保护应满足以下要求: IDZJ=Kk*Kjx*Kgh*I1RT/(Kh*N) IDZJ----过负荷保护装置的 动作电流;. Kk ----可*系数,取1.3; Kjx ----接线系数,取1; Kgh ----过负荷系数; Kh----继电器返回系数,取0.85;

电流互感器变比检验的简便方法(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 电流互感器变比检验的简便方法 (2021版)

电流互感器变比检验的简便方法(2021版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到(需大容量调压器);其二,需要的标准电流互感器或升流器的体积大,造价

10kV电流互感器(分享借鉴)

LZZBJ9-10电流互感器(A,B,C) LZZBJ9-10W1C、LZZBJ9-10Q 一、产品概述 LZZBJ9-10、LZZBJ9-10Q、电流互感器是户内环氧树脂浇注支柱式全工况型产品,在额定频率50Hz、额定电压10kV及以下的电力系统作电流、电能计量或继电保护使用,适用于中置式开关柜及其它型式的开关柜,本型号的产品还可根据用户要求生产二、三绕组复变比结构。目前准确级有0.5、0.2、0.5S、0.2S级,保护级10P10、10P20等,另可以定制非标产品,详细请来电咨询。 二、LZZBJ9-10型电流互感器结构及特点 LZZBJ9-10W1C(A,B,C)型电流互感器由于采用了环氧树脂全封闭浇注所以产品耐潮湿、耐污秽、尺寸小、重量轻,适合于任何位置、任意方向安装。 三、产品技术参数 1、LZZBJ9-10额定绝缘水平:12/42/75kV ; 2、负荷的功率因数:COSφ=0.8(滞后); 3、额定二次电流:5A或1A; 4、表面爬电距离:满足II级污秽等级要求; 5 、产品标准:GB1208-2006《电流互感器》。 6 、仪表保安系数:FS≤10; 7、其它技术参数见表 1

2 四、产品选型参数表 电流变比(LZZBJ9-10A 、LZZBJ9-10B 、LZZBJ9-10C ) 准确级组合 准确级及额定输出 保护级 一秒热稳 定电流(KA) 动稳定电流(KA) 0.2 0.5 额定输出 准确级及限值系数 5/5 0.2S/0.5 0.2/0.5 0.2S/10P10 0.2/10P10 0.5S/10P10 0.5/10P10 0.5/10P20 10va 10va 15va 10P10 10P20 5P10 5P20 0.8 1.9 10/5 1.5 3.8 15/5 2.3 5.8 20/5 3 7.5 30/5 4.5 11.2 40/5 6 15 50/5 7.5 18.8 75/5 11.5 29 100/5 15 37.5 150/5 200/5 22.5 56.5 300/5、400/5、500/5、 600/5 45 112.5 800/5、1000/5、1200/5、 1500/5、2000/5、2500/5 63 157.5 3000/5 80 160

互感器变比极性测试仪使用方法

https://www.360docs.net/doc/6b11191121.html,互感器变比极性测试仪 互感器变比极性测试仪使用方法 1、电流互感器变比测量使用方法: 接线方法:红,黑两芯线对应接仪器面板的一,二次插孔,另一端分别接电流互感器对应的一,二次。红线接极性端(P1或L1),黑线接电非极性端。若互感器一次为穿心形式,则红色线从极性端(P1或L1)穿进,再与黑线短接。接好线后,打开电源开关。 点击触摸屏,进入下一界面:

https://www.360docs.net/doc/6b11191121.html,互感器变比极性测试仪 根据被试互感器的二次电流,在“电流互感器”上点击相关项,进入测量: 点击“测量”后,开始测量,等待测量结果。 如果要重复测量时,直接点击“测量”,即可进行再次测量。 2、电压互感器变比测量使用方法:

https://www.360docs.net/doc/6b11191121.html,互感器变比极性测试仪接线方法:红,黑两芯线对应接仪器面板的一,二次插孔,另一端分别接电压互感器对应的一次和二次。红线极性端(A),黑线非极性端; 测量方法请参照电流互感器的操作方法。 3、界面提示: 显示此界面,说明仪器电量不足,不能进行测量,必须对仪器进行充电。 4、按键以及充电接口: “CT”、“PT”、“复位”按键,其中“CT”、“PT”是在触摸失效,或触摸屏破裂之后的备用键,也可以作为测量按键使用。按“CT”键,默认参考二次电流为5A,按“PT”键,默认参考二次电压为100V。 充电接口,对仪器充电时,仪器将停止工作。仪器在充电中,

https://www.360docs.net/doc/6b11191121.html,互感器变比极性测试仪充电器的指示灯为红。仪器充满时,充电器的指示灯变绿。三、技术指标: 变比测量范围: 5A/5A------25000A/5A;5A/1A-------5000A/1A。 电磁式电压互感器全系列。 测量精度:0.2% 体积:280mm*230mm*100mm 重量:3Kg

电流互感器检查变比电流电压方法

电流互感器变比检查电流法电压法 文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。 不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。 电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。 从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。 电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。 1试验方法分析 现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。 1.1电流法 1.1.1 试验原理 电流法检查电流互感器变比试验接线图如图1所示。

电流互感器变比试验

电流互感器变比试验 电压法 1.电压法试验原理 电压法检查电流互感器变比试验接线图如图3所示。 电压法的试验接线图 电压源(1 台调压器);L 1 、L 2电流互感器一次线,圈2个端子;K 1 、K 2电流互感器二次线圈2个端子;V电压表,测量电流互感器二次电压;mV毫伏表,测量电流互感器一次电压。 电压法检查电流互感器变比等值电路图如图 4所示。 电压法的等值电路 电压源;V电压表;mV毫伏表;I 0电流互感器激磁电流;U 1电流互感器一次电压; U 2 折算到一次侧的电流互感器二次电压; r 1 、x 1电流互感器一次线圈电阻、漏抗; r 2 ′、x 2 ′——折算到一次侧的电流互感器二次线圈电阻、漏抗; Z m 电流互感器激磁阻抗。 当电压法测电流互感器变比时,一次线圈开路,铁心磁密很高,极易饱和。电压 U 2 ′稍高,励磁电流I 0 增大很多。

从等值电路图可得下式: U 2 ′+I 0 ×(r 2 ′+jx 2 ′)=U 1 从式中可知引起误差的是 I 0 ×(r 2 ′+jx 2 ′),变比较小、额定电流5A 的电流互感器二次线圈电阻和漏抗一般小于1Ω,变比较大、额定电流为1A的电流互感器二次线圈电阻和漏抗一般1~15Ω。以1台 220 kV、2500A/1 A电流互感器现场试验数据为例:二次线圈施加电压250 kV,一次线圈测得电压100 mV,此时二次线圈激磁电流约2mA,二次线圈电阻和漏抗约15Ω,I 0 ×(r 2 ′+jx 2 ′)=30 mV。30mV与250 V相比不可能引起误差。 从上述分析可知:电压法测量电流互感器变比时只要限制激磁电流I 0 为mA 级,即可保证一定的测量精度。 2.电压法试验的特点 电压法的最大的优点是试验设备重量较轻,适合现场试验,只需要1个小调压器、1块电压表、1块毫伏表。仅仅是要注意限制二次线圈的励磁电流小于10mA,即可保证一定的准确度。

电压互感器的变比分析完整版

电压互感器的变比分析 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电压互感器的变比分析 在110kV及以上电压等级的中性点直接接地系统中,通常采用的电压互感器有两个二次绕组:主二次绕组和辅助(开口三角)二次绕组,如图1所示。其中主二次绕组额定相电压为100/√3V,辅助(开口三角)二次绕组额定相电压为100V。电压互感器变比Ku(Un/√3)/(100/√3)/100,其中Un为一次系统的额定电压。 在35kV及以下电压等级的中性点非直接接地系统中,通常采用的电压互感器也有两个二次绕组,其中主二次绕组额定相电压为100/√3V,辅助(开口三角)二次绕组额定相电压为100/3V。电压互感器变比Ku为(Un/√3)/(100/√3)/(100/3)。 用Ka1,x1表示电压互感器的一次绕组与开口三角二次绕组的变比。不难看出,在以上两种系统中,电压互感器变比Ku和Ka1,x1因辅助(开口三角)二次绕组额定相电压不同而不同,下面用两种方法分析其原因。 1 用常规分析的方法 电网正常运行时,三相电压对称,开口三角绕组引出端子上的电压额定相电压Ua1为三相二次电压的相量和,其值为零,但实际因漏磁的影响等,Ua1,x1的大小不为零,而有几伏的不平衡电压。 可以运用常规的分析方法,分别求出在上述两种系统中,发生单相接地时的一次侧零序电压U0=Un/√3。即可求出电压互感器的一次绕组与开口三角二次绕组的变比Ka1,x1。但这种方法不够直观。 2 用相量分析的方法 用Ua,Ub和Uc表示正常运行时电压互感器一次绕组的相电压,Ua′, Ub′和Uc′表示电网发生单相接地时,电压互感器一次绕组的相电压,如图2和如图3所示。 中性点直接接地系统中 正常情况下,因为Ua+Ub+Uc=0, 所以,Ua1,x1=(Ua+Ub+Uc)/Ka1,x1=0 发生单相接地(例如A相)时有, Ua′=0,Ub′=Ub,Uc′=Uc,Ua,x1=100V,各相电压相量见图3。 则Ua1,x1=Ua/Ka1x1+Ub/Ka1x1+Uc/Ka1x1=(Ua+Ub+Uc)/ Ka1x1=(-Ua)/Ka1x1 故有Ua/Ka1x1=100V,所以开口三角二次绕组额定相电压为100V。 中性点非直接接地系统中

10KV电压互感器试验报告

电压互感器试验报告 名称H03 PT 柜号H03 试验日期2016年12月30日额定电压比10/V 3/0.1/V 3/0.1/3kV 型号JDZX22-10C1 端子标志a-n da-dn 制造日期2016年11月准确级次0.5 3P 制造厂 额定输出(VA) 50 50 ABB 出厂编勺A相203551606 B相203841606 C相203811606 直流电阻及变比测试: 二次组别项目名称A相B相C相 a— n 额定变比100 100 100 实测变比99.87 100.11 99.89 相对误差(%)-0.13 0.11 -0.11 直流电阻(Q) 0.259 0.255 0.257 一次侧直流电阻(Q) 2215 2308 2276 绝缘电阻:(M Q) 高对低及地:A 2500 B 2500 C 2500 低对地:A. 1a. 1n : 500 da. dn:500 B. 1a. 1n : 500 da. dn 500 C. 1a. 1n : 500 da.dn:500 耐压(KV ): 二次侧2KV 一分钟无异常 结论: 合格

电压互感器试验报告 名称H06 PT 柜号H06 试验日期2016年12月30日额定电压比10/V 3/0.1/V 3/0.1/3kV 型号JDZX22-10C1 端子标志a-n da-dn 制造日期2016年11月准确级次0.5 3P 制造厂 额定输出(VA) 50 50 ABB 出厂编勺A相209331608 B相209291608 C相209301608 直流电阻及变比测试: 二次组别项目名称A相B相C相 a— n 额定变比100 100 100 实测变比100.32 99.77 100.37 相对误差(%)0.32 -0.23 0.37 直流电阻(Q) 0.266 0.265 0.255 一次侧直流电阻(Q) 2238 2365 2269 绝缘电阻:(M Q) 高对低及地:A 2500 B 2500 C 2500 低对地:A. 1a. 1n : 500 da. dn:500 B. 1a. 1n : 500 da. dn 500 C. 1a. 1n : 500 da.dn:500 耐压(KV ): 二次侧2KV 一分钟无异常结论: 合格

高低压CT变比测试仪

高低压CT变比测试仪 一、概述 高低压CT变比测试仪是本公司凭借生产智能化仪表的多年经验积累,适应用户现场需求而推出的。可在现场不拆线、不断电的情况下测量35KV及以下系统高压计量装置的高压一次电流、低压二次电流,并可计算出变比值。 安装在高压绝缘杆端部的高压钳形表(以下简称钳表)所采集的电流信号,将采用无线传输方式发送到手持式终端,终端则直接采集高压电流互感器二次电流。手持式终端将根据钳表两侧信号,实时计算电流互感器一次,二次电流及变比,以保证操作过程的安全性与可靠性。抽拉式高压绝缘操作杆伸长可达5米,确保操作过程的人身安全。 本仪器具有新型实用、外形美观、携带方便、抗干扰能力强、运行稳定可靠等突出特点。 1.1 主要功能: 1.1.1 可测量高压一次电流,低压二次电流; 1.1.2 可计算出变比值及变比误差; 1.1.3 可储存、可查询; 1.1.4 具备时钟功能; 1.1.5 可以测量母线三相电流不平衡度(扩展功能)。

1.2 性能特点 1.2.1 大屏幕液晶汉显,体积小、重量轻; 1.2.2 采用先进的电子技术和高速数字处理器; 1.2.3 手持式终端与钳表均采用高性能锂电池供电,一次充电可持续工作8小时; 1.2.4 高压钳表的电流信号采用无线传输,绝对确保操作的安全性。 二、主要技术指标 2.1 钳表信息无障碍传输距离:100米; 2.2 高压电流:钳型表输入0~200A; 2.3 低压电流:钳型互感器输入0~5A ; 2.4 测量精度 2.4.1 高压电流1.0%; 2.4.2 低压电流 0.5%; 2.4.3 变比1.0%; 2.5 变比测量范围:1~300; 2.5 工作温度:-10℃~50℃; 2.6 功耗:高压钳表约0.5w,主机约1w; 2.7 预热时间:0.5分钟; 2.8 耐压:70000V/1分钟。 三、面板及接线端口 3.1 按键

电流互感器变比的选择

电流互干器该如何选择? [求助]:电流互干器该如何选择? 好象没听说过要考虑短路电流的, 如果发生短路,断路器应该瞬跳的, 瞬时过电流应该对互感器影响不大吧, 这是俺的个人理解,不知对否? 根据负荷电流选择电流互感器,根据短路电流校验电流互感器的动热稳定。 电流互感器变比的选择 在10kV配电所设计的过程中,10kV电流互感器变比的选择是很重要的,如果选择不当,就很有可 能造成继电保护功能无法实现、动稳定校验不能通过等问题, 应引起设计人员的足够重视。10kV电流互感器按使用用途可分为两种,一为继电保护用,二为测 量用;它们分别设在配电所的进线、计量、出线、联络等柜内。 在设计实践中,笔者发现在配变电所设计中,电流互感器变比的选择偏小的现象不在少数。例如 笔者就曾发现:在一台630kV A站附变压器(10kV侧额定一次电流 为36.4A)的供电回路中,配电所出线柜内电流互感器变比仅为50/5(采用GL型过电流继电器、直 流操作),这样将造成电流继电器无法整定等一系列问题。 对于继电保护用10kV电流互感器变比的选择,至少要按以下条件进行选择:一为一次侧计算 电流占电流互感器一次侧额定电流的比例; 二为按继电保护的 要求; 三为电流互感器的计算一次电流倍数mj s小于电流互感器的饱和倍数mb1; 四为按热稳定; 五为按动稳定。而对于测量用10kV电流互感器的选择,因其是 用作正常工作条件的测量,故无上述第二、第三条要求;下面就以常见的配电变压器为例,说明 上述条件对10kV电流互感器的选择的影响,并找出影响电流互 感器变比选择的主要因素。 一.按一次侧计算电流占电流互感器一次侧额定电流的比例 根据<<电气装置的电测量仪表装置设计规范>>(GBJ63-90)的规定,在额定值的运行条

电压互感器的变比分析

电压互感器的变比分析 Final revision on November 26, 2020

电压互感器的变比分析 在110kV及以上电压等级的中性点直接接地系统中,通常采用的电压互感器有两个二次绕组:主二次绕组和辅助(开口三角)二次绕组,如图1所示。其中主二次绕组额定相电压为100/√3V,辅助(开口三角)二次绕组额定相电压为100V。电压互感器变比Ku(Un/√3)/(100/√3)/100,其中Un为一次系统的额定电压。 在35kV及以下电压等级的中性点非直接接地系统中,通常采用的电压互感器也有两个二次绕组,其中主二次绕组额定相电压为100/√3V,辅助(开口三角)二次绕组额定相电压为100/3V。电压互感器变比Ku为(Un/√3)/(100/√3)/(100/3)。 用Ka1,x1表示电压互感器的一次绕组与开口三角二次绕组的变比。不难看出,在以上两种系统中,电压互感器变比Ku和Ka1,x1因辅助(开口三角)二次绕组额定相电压不同而不同,下面用两种方法分析其原因。 1 用常规分析的方法 电网正常运行时,三相电压对称,开口三角绕组引出端子上的电压额定相电压Ua1为三相二次电压的相量和,其值为零,但实际因漏磁的影响等,Ua1,x1的大小不为零,而有几伏的不平衡电压。 可以运用常规的分析方法,分别求出在上述两种系统中,发生单相接地时的一次侧零序电压U0=Un/√3。即可求出电压互感器的一次绕组与开口三角二次绕组的变比Ka1,x1。但这种方法不够直观。 2 用相量分析的方法 用Ua,Ub和Uc表示正常运行时电压互感器一次绕组的相电压,Ua′, Ub′和Uc′表示电网发生单相接地时,电压互感器一次绕组的相电压,如图2和如图3所示。 中性点直接接地系统中 正常情况下,因为Ua+Ub+Uc=0, 所以,Ua1,x1=(Ua+Ub+Uc)/Ka1,x1=0 发生单相接地(例如A相)时有, Ua′=0,Ub′=Ub,Uc′=Uc,Ua,x1=100V,各相电压相量见图3。 则Ua1,x1=Ua/Ka1x1+Ub/Ka1x1+Uc/Ka1x1=(Ua+Ub+Uc)/ Ka1x1=(-Ua)/Ka1x1 故有Ua/Ka1x1=100V,所以开口三角二次绕组额定相电压为100V。 中性点非直接接地系统中

电流互感器变比检验的简便方法(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电流互感器变比检验的简便方 法(最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

电流互感器变比检验的简便方法(最新版) 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW 的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流

法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到(需大容量调压器);其二,需要的标准电流互感器或升流器的体积大,造价高,若降低被测电流互感器一次电流进行试验,那么其变比误差会很大,试验就毫无意义。所以电流法测量电流互感器变比的方法,在施工现场越来越受到限制。笔者在电流法的基础上介绍另一种电流互感器变比的试验方法——电压法。该方法适用于施工现场对电流互感器变比检验。电压法具有适用范围广,使用设备少,设备简单的优点,是一种简单方便试验方法。 1电压法测量电流互感器变比的原理 电压法测量电流互感器变比的方法适合现场试验,其优点是设备少,线路简单,易操作。试验接线图如图1所示。 电压表V监测被测电流互感器二次电压,毫伏表mV监测被测电流互感器一次侧电压,此方法类似于测量铁芯感应电势的方法。 理想电流互感器的变比:K=N2/N1=E2/E1,而实际测量变比:K 实=U2/U1=E2/U1,由上式可见,理想电流互感器变比与实际变比之

电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电1

电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。 使用 1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载电流互感器 串联2)按被测电流大小,选择合适的变化,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故3)二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危机工作人员的安全及仪表的绝缘性能。另外,一次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。因此,电流互感器二次侧都备有短路开关,防止一次侧开路。在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停车处理。一切处理好后方可再用。4)为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中6)为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧7)为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障,用于测量仪表的电流互感器宜装在发电机中性点侧。 互感器原理 在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。微型电流互感器也有人称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。)微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。如图绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n 微型电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 接线方式 电流互感器的接线方式按其所接负载的运行要求确定。最常用的接线方式为单相,三相星形和不完全星形(图4a、b、c)。电流互感器 电流互感器接线方式电流互感器接线方式

电流互感器变比检验的简便方法通用范本

内部编号:AN-QP-HT560 版本/ 修改状态:01 / 00 The Procedures Or Steps Formulated T o Ensure The Safe And Effective Operation Of Daily Production, Which Must Be Followed By Relevant Personnel When Operating Equipment Or Handling Business, Are Usually Systematic Documents, Which Are The Operation Specifications Of Operators. 编辑:__________________ 审核:__________________ 单位:__________________ 电流互感器变比检验的简便方法通用 范本

电流互感器变比检验的简便方法通用范 本 使用指引:本操作规程文件可用于保证本部门的日常生产、工作能够安全、稳定、有效运转而制定的,相关人员在操作设备或办理业务时必须遵循的程序或步骤,通常为系统性的文件,是操作人员的操作规范。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条

10kV电流互感器变比的选择

10kV电流互感器变比的选择 在10kV配电所设计的过程中,10kV电流互感器变比的选择是很重要的,如果选择不当,就很有可能造成继电保护功能无法实现、动稳定校验不能通过等问题,应引起设计人员的足够重视。10kV电流互感器按使用用途可分为两种,一为继电保护用,二为测量用;它们分别设在配电所的进线、计量、出线、联络等柜内。在设计实践中,笔者发现在配变电所设计中,电流互感器变比的选择偏小的现象不在少数。例如笔者就曾发现:在一台630kVA站附变压器(10kV侧额定一次电流为36.4A)的供电回路中,配电所出线柜内电流互感器变比仅为50/5(采用GL型过电流继电器、直流操作),这样将造成电流继电器无法整定等一系列问题。 对于继电保护用10kV电流互感器变比的选择,至少要按以下条件进行选择:一为一次侧计算电流占电流互感器一次侧额定电流的比例; 二为按继电保护的要求; 三为电流互感器的计算一次电流倍数mjs小于电流互感器的饱和倍数mb1; 四为按热稳定; 五为按动稳定。而对于测量用10kV电流互感器的选择,因其是用作正常工作条件的测量,故无上述第二、第三条要求;下面就以常见的配电变压器为例,说明上述条件对10kV电流互感器的选择的影响,并找出影响电流互感器变比选择的主要因素。 一. 按一次侧计算电流占电流互感器一次侧额定电流的比例 根据<<电气装置的电测量仪表装置设计规范>>(GBJ63-90)的规定,在额定值的运行条件下,仪表的指示在量程的70%~100%处,此时电流互感器最大变比应为: N=I1RT /(0.7*5);

I1RT ----变压器一次侧额定电流, A; N----电流互感器的变比; 显然按此原则选择电流互感器变比时,变比将很小,下面列出400~1600kVA 变压器按此原则选择时,电流互感器的最大变比: 400kVA I1RT =23A N=6.6 取40/5=8 500kVA I1RT =29A N=8.3 取50/5=10 630kVA I1RT =36.4A N=10.4 取75/5=15 800kVA I1RT =46.2A N=13.2 取75/5=15 1000kVA I1RT =57.7A N=16.5 取100/5=20 1250kVA I1RT =72.2A N=20.6 取150/5=30 1600kVA I1RT =92.4A N=26.4 取150/5=30 从上表可以看出, 对于630kVA变压器,电流互感器的最大变比为15,当取50/5=10时,额定电流仅占电流量程3.64/5=72.8%。这可能是一些设计人员把630kVA变压器的供电出线断路器处电流互感器变比取50/5的一个原因,另外在许多时候,设计时供电部门往往不能提供引至用户处的电源短路容量或系统阻抗,从而使其他几个条件的校验较难进行,这可能是变比选择不当得另一个原因。从下面的分析中,我们将发现按此原则选择时,变比明显偏小,不能采用。

电压互感器变比、极性及直阻测量

电压互感器变比、极性及直阻测量 电压互感器变比、极性及直阻测量可以选用单独的产品测量,也可以采用电压互感器现场校验仪的附带功能测量,相对来说单独的测试仪器技术参数更宽泛,测量速度更快,电压互感器中直流电阻测量最大范围:50Ω,测量最大变比范围:50000/1,如果您是专门测量变比极性建议选用SJBC-Y全自动变比组别测试仪或直流电阻测试仪,下面介绍一下它们的接线方式和参数设置。 电压互感器现场校验仪 接通电源,打开测试仪主机开关,进入变比记性测试界面,按“↑”、“↓”键,把光标移到“变比直阻测量”上,按“确定”,进入变比、极性及直阻测量:

点击测试,测试进入测试界面,页面右下角为仪器测量进程显示,当不显示“等待测量”和“测量完成”时,表明仪器正在测量当中,在此过程中,请勿断开仪器和被测互感器的接线,以及切勿触摸被测互感器与测试夹! “一次开路”被测互感器与二芯线处于开路状态。 “二次开路”被测互感器与四芯线处于开路状态。 “测量完成”仪器测量结束。 “等待测量”仪器等待测量。 当页面内显示“测量完成”时,说明仪器测量结束。显示相应的结果。此时,蜂鸣器长响一次,提示测量完成。 按“↑”、“↓”键,移动光标到“打印”选项上,按“确定”键则执行打印功能。再次测量,页面将进行数据清除,显示初始界面。 测试完成关闭测试仪,拔掉电源插头即可。 测试注意事项

本界面是基于本公司开发的通用平台,显示部分与测量部分分开。当测量某个项目时,虽然可以按“取消”键退出当前测量项目的页面,但是仪器还在进行这个项目的测量,此时切勿触摸被测品以及测试夹。 由于仪器的显示部分与测量部分分开,当任一界面显示全为星号,则本仪器内部不能正常通讯,若重复“复位”与关机不能修复时,仪器已损坏,请与我公司售后部门联系。

电流互感器变比检验的简便方法通用版

操作规程编号:YTO-FS-PD192 电流互感器变比检验的简便方法通用 版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

电流互感器变比检验的简便方法通 用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 电流互感器是一种专门用作变换电流的特种变压器,在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器作为电力系统中的重要设备,对其进行电气性能试验是很重要的,对于电流互感器而言,变比试验是绝不可少的试验项目,电流互感器变比关系到计量的准确性与保护的可靠性。电流互感器现场变比检验一般采用电流法,用电流法测量电流互感器变比,实际上是模拟在额定电流情况下的实际运行条件,是一种很理想的试验方法,测量的精度高,但随着电力系统的不断发展,单台发电机的容量越来越大,其出口电流已经达到数万安培。例如800MW的发电机组,额定电压为20kV,额定电流为:800/(20×31/2)=23.094kA,相应使用的电流互感器一次电流很大,若用电流法测量一次电流为几万安培的电流互感器变比,在现场很难做到:其一,额定大电流很难达到

10KV电磁式电压互感器试验

10KV电磁式电压互感器 试验项目、标准、方法、注意事项 1 试验项目及程序 1.1 电磁式电压互感器的绝缘试验包括以下试验项目: a) 绕组的直流电阻测量; b) 绝缘电阻测量; c) 极性检查; d) 变比检查; e) 励磁特性和空载电流测量; f) 交流耐压试验; 2试验方法及主要设备要求 2.1绕组的直流电阻测量 2.1.1使用仪器 测量二次绕组一般使用双臂直流电阻电桥,测量一次绕组一般使用单臂直流电阻电桥。 2.1.2试验结果判断依据 与出厂值或初始值比较应无明显差别。 2.1.3注意事项 试验时应记录环境温度。 2.2绕组的绝缘电阻测量 2.2.1使用仪器 2500V绝缘电阻测量仪(又称绝缘兆欧表)。 2.2.2测量要求 测量一次绕组和各二次绕组的绝缘电阻。测量时各非被试绕组、底座、外壳均应接地。 2.2.3试验结果判断依据 绕组绝缘电阻不应低于出厂值或初始值的70%。 2.2.4注意事项 试验时应记录环境湿度。测量二次绕组绝缘电阻的时间应持续60s,以替代二次绕组交流耐压试验。 2.3极性检查 2.3.1使用仪器 电池、指针式直流毫伏表(或指针式万用表的直流毫伏档)。

2.3.2检查及判断 各二次绕组分别进行。将指针式直流毫伏表的“+”、“-”输入端接在待检二次绕级的端子上,方向必须正确:“+”端接在“a”,“-”端接在“n”;将电池负极与电压互感器一次绕组的“N”端相连,从一次绕组“A”端引一根电线,用它在电池正极进行突然连通动作,此时指针式直流毫伏表的指针应随之摆动,若向正方向摆动则表明被检二次绕组极性正确。反之则极性不正确。 2.3.3注意事项 接线本身的正负方向必须正确。检查时应先将毫伏表放在直流毫伏的一个较大档位,根据指针摆动的幅度对挡位进行调整,使得既能观察到明确的摆动又不超量程撞针。电池连通2一3S后立即断开以防电池放电过量。 2.4变比检查 2.4.1使用仪器设备 调压器、交流电压表(1级以上)、交流毫伏表(1级以上)。 2.4.2检查方法 待检电压互感器一次及所有二次绕组均开路,将调压器输出接至一次绕组端子,缓慢升压,同时用交流电压表测量所加一次绕组的电压U1,用交流毫伏表测量待检二次绕组的感应电压U2,计算U1/U2的值,判断是否与铭牌上该绕组的额定电压比(U1n / U2n)相符。 2.4.3注意事项 各二次绕组及其各分接头分别进行检查。 2.5励磁特性和空载电流测量 2.5.1使用仪器设备 调压器、交流电压表(1级以上)、交流电流表(1级以上)、测量用电流互感器(0.2级以上)。 2.5.2试验方法 空载电流测量是高电压试验,试验时要保证被试品对周围人员、物体的安全距离,并必须在试验设备及被试品周围设围栏并有专人监护。 各二次绕组n端单端接地,一次绕组N端单端接地。 将调压器的电压输出端接至某个二次绕组(应尽量选择二次容量大的二次绕组),在此接人测量用电压表、电流表(一般需要用到测量用电流互感器)。 接好线路后合闸,缓慢升压,当电压升至该二次绕组额定电压时读出并记录电压、电流值。继续升压至高限电压(中性点非有效接地系统为1.9U m/√3,中性点有效接地系统为1.5 U m/√3)下,迅速读出并记录电压、电流值并降压,断开电源刀闸。 励磁特性测量点至少包括额定电压的0.2、0.5、0.8、1.0、1.2、1.5、1.9、2.5倍 2.5.3结果判别 2.5. 3.1空载电流 1) 2)在下列试验电压下,空载电流不大于最大允许电流,中性点非有效接地系统为3 U,中性点接 9.1m /

相关文档
最新文档