超级电容器的主要应用领域

超级电容器的主要应用领域
超级电容器的主要应用领域

超级电容器的主要应用领域

超级电容器发展展望:

超级电容器也叫做电化学电容器,是介于传统电容器和充电电池之间的一种新型储能装置,比容量为传统电容器的20~200倍,比功率一般大于1000W/kg,循环寿命大于100000次,可储蓄的能量比传统电容要高得多,并且充电快速。由于它们的使用寿命非常长,可被应用于终端产品的整个生命周期。而且超级电容器对环境无污染,可以说,超级电容器是一种高效、实用、环保的能量储蓄装置。当高能量电池和燃料电池与超级电容器技术相结合时,可实现高比功率、高比能量特性和长的工作寿命。近年来,由于超级电容器在新能源领域所表现出的朝阳产业趋势,许多发达国家都已经把超级电容器项目作为国家重点研究和开发项目,超级电容器的国内外市场正呈现出前所未有的蓬勃景象。

依照美国国家能源局的数据预测,超级电容器在全球市场的容量预计将从2007年的4亿美元发展到2013年的120亿美元(见下图1),其中,在电动汽车/新能源汽车领域的市场规模有望在2013年达到40亿美元,在消费电子领域的市场规模有望在2013年达到30亿美元,在工业(风力发电、轨道交通、重型机械等)领域的市场规模有望在2013年达到40亿美元。

根据中商情报预测,截至2014年,我国超容产业的增长率都在30%以上。

超级电容器的主要应用领域:

1.超级电容器在太阳能能源系统中的应用

太阳能源的利用最终归结为太阳能利用和太阳光利用两个方面。太阳能发电分为光伏发电和光热发电,其中光伏发电就是利用光伏电池将太阳能直接转化为电能。光伏发电不论在转化效率、设备成本和发展前景尚都远远强于光热发电。

自从实用型多晶硅的光伏电池问世以来,世界上就便开始了太阳能光伏发电的应

用。

目前,太阳能光伏发电系统有三个发展方向:独立运行、并网型和混合型光伏发电系统。在独立运行系统中,储能单元一般是必须有的,它能将由日照时发出的剩余电能储存起来供日照不足或没有日照时使用。目前,国际光伏能源产业的需求开始由边远农村和特殊应用向并网发电与建筑结合供电的方向发展,光伏发电已有补充能源向替代能源过渡。国内光伏能源系统仍主要是用在边远的无电地区和城市路灯、草坪灯、庭院灯、广告牌等独立光伏发电系统。通过蓄电池组构成的储能系统,能够熨平太阳光照强度波动导致的电能波动,还可以补偿电网系统中的电压骤降或突升,但是由于其充放电次数有限、大电流充放电时间较慢等因素,因此其使用寿命较短,成本较高。因此,在太阳能光伏发电系统中采用超级电容器组将使其并网发电更具有可行性。

2 超级电容器在风力发电系统应用分析

风力发电作为当前发展最快的可再生能源发电技术,具有广阔的应用前景。但是,风能是一种随机变化的能源,风速变化会导致风电机组输出功率的波动,对电网的电能质量会产生影响。

目前,风电有功功率波动多采用直接调节风力涡轮机运行状态的方法来平缓其输出功率,但是该方法的功率调节能力有限;无功功率波动通常采用并联静止无功补偿装置进行无功调节,但无功补偿装置无法平抑有功功率波动。通过附加储能设备,既可以调节无功功率、稳定风电场母线电压,又能在较宽范围内调节有功功率。而风力发电研究表明位于0.01Hz-1Hz 的波动功率对电网电能质量的影响最大,平抑该频段的风电波动对电网电能质量的影响最大,平抑该频段风电波动采用较短时间的能量储存就可以达到目的,因此能够实现短时能量存储的小

容量储能设备对风力发电的应用价值很高。超级电容器因其具有数万次以上的充放电循环寿命、大电流充放电特性,能够适应风能的大电流波动,它能在白天阳光充足或风力强劲的条件下吸收能量,在夜晚或风力较弱时放电,从而能够熨平风电的波动,实现更有效的并网。

2.1 2009-2010 年中国风电装机容量分析

2009 年中国(不含台湾省)新增风电装机10129 台,容量13803.2MW,年同比增长124%;累计风电装机21581 台,容量25805.3MW,年同比增长114%。台湾省当年新增风电装机37 台,容量77.9MW;累计风电装机227 台,容量436.05MW。中国新增装机容量的排名达到了世界第一位,已经成为世界风电的重要市场。

中国风电累计装机容量趋势图

截止到2009 年12 月31 日,中国风电累计装机超过1000MW 的省份超过9个,其中超过2000MW 的省份4 个,分别为内蒙古(9196.2MW)、(2788.1MW)、(2425.3MW)、(2063.9MW)。内蒙古2009 年当年新增装机5545.2MW,累计装机9196.2MW,实现150%的大幅度增长。

3 超级电容器在新能源汽车发展中机遇

在新能源汽车领域,超级电容器可与二次电池配合使用,实现储能并保护电

池的作用。通常超级电容器与锂离子电池配合使用,二者完美结合形成了性能稳定、节能环保的动力汽车电源,可用于混合动力汽车及纯电动汽车。锂离子电池解决的是汽车充电储能和为汽车提供持久动力的问题,超级电容器的使命则是为汽车启动、加速时提供大功率辅助动力,在汽车制动或怠速运行时收集并储存能量。超级电容器在汽车减速、下坡、刹车时可快速回收并存储能量,将汽车在运行时产生的多余的不规则的动力安全转化为电池的充电能源,保护电池的安全稳定运行;启动或加速时,先由电池将能量转移入超级电容器,超级电容器可在短时间内提供所需的峰值能量。

在国内涉足新能源汽车的厂商中,已有众多厂商选择了超级电容器与锂离子电池配合的技术路线。例如安凯客车的纯电动客车、海马并联纯电动轿车Mpe 等车型采用了锂离子电池/超级电容器动力体系;厦门金龙旗下的厦门金旅生产的45 辆油电混合动气公交车采用了720 套全球领先的超级电容器厂商——美国MAXWELL 公司的超级电容器模组,该45 辆混合动力公交车于2008 年下半年投入杭州运营,因节油效果明显受到赞誉。2009 年4 月22 日,MAXWELL 公司公告称收到了来自三家中国领先的运输巴士生产商总价值约1,350 万美元的BOOSTCAP(R) 超级电容器模组采购订单。MAXWELL 公司预计,目前已有超过150辆混合动力巴士采用了该公司的超级电容器,到2009 年底将达到1000 辆以上。

4 智能分布式电网系统

4.1 超级电容器在智能电网中的应用研究分析

当今社会对能源和电力供应的质量以及安全可靠性的要求越来越高,传统的

大电网供电方式由于其本身的缺陷已经不能满足这种要求。能够集成分布式发电的新型电网——微电网应运而生,它能够节省投资、降低能耗、提高系统安全性和灵活性,是未来的发展方向。电容作为微电网中必不可少的储能系统,发挥着十分重要的作用。超级电容器作为一种新型的储能器件,以其无可替代的优越性,成为微电网(Microgrid)储能的首选装置之一。微电网由微电源、负荷、储能以及能量管理器等组成。储能在微电网中发生作用的形式有:接在微电源的直流母线上、包含重要负荷的馈线上或者微电网的交流母线上。其中,前两种可称为分布式储能,最后一种叫做中央储能。当并网运行时,微电网内的功率波动由大电网进行平衡,此时储能处于充电备用状态。当微电网由并网运行切换到孤网运行时,中央储能立即启动,弥补功率缺额。微电网孤网运行时负荷的波动或者微电源的波动则可以由中央储能或者分布式储能平衡。其中,微电源的功率波动有两种平衡方式,将分布式储能和需要储能的微电源并联接在某馈线上,或者将储能直接接入该微电源的直流母线上。

1、提供短时供电

微电网存在两种典型的运行模式:正常情况下,微电网与常规配电网并网运行,称为并网运行模式;当检测到电网故障或电能质量不满足要求时,微电网将及时与电网断开从而独立运行,称为孤网运行模式。微电网往往需要从常规配电网中吸收部分有功功率,因而微电网在从并网模式向孤网模式转换时,会有功率缺额,安装储能设备有助于两种模式的平稳过渡。

2、用作能量缓冲装置

由于微电网规模较小,系统惯性不大,网络及负荷经常发生波动就显得十分严重,对整个微电网的稳定运行造成影响。我们总是期望微电网中高效发电机(如

燃料电池)始终工作在它的额定容量下。但是微电网的负荷量并非整日保持不变,相反,它会随着天气变化等情况发生波动。为了满足峰值负荷供电,必须使用燃油、燃气的调峰电厂进行高峰负荷调整,由于燃料价格很高,这种方式的运行费用太昂贵。超级电容器储能系统可以有效地解决这个问题,它可以在负荷低落时储存电源的多余电能,而在负荷高峰时回馈给微电网以调整功率需求。超级电容器功率密度大、能量密度高的特性使它成为处理尖峰负荷的最佳选择,而且采用超级电容器只需存储与尖峰负荷相当的能量。

3、改善微电网的电能质量

储能系统对微电网电能质量的提高起到了十分重要的作用。通过逆变器控制单元,可以调节超级电容器储能系统向用户及网络提供的无功及有功,从而达到提高电能质量的目的。由于超级电容器可快速吸收、释放大功率电能,非常适宜将其应用到微电网的电能质量调节装置中,用来解决系统中的一些暂态问题,如针对系统故障引发的瞬时停电、电压骤升、电压骤降等问题,此时利用超级电容器提供快速功率缓冲,吸收或补充电能,提供有功功率支撑进行有功或无功补偿,以稳定、平滑电网电压的波动。

4 智能分布式电网系统超级电容器必不可少

从智能电网的未来发展趋势看,智能分布式电网系统将是未来电网系统的主流。而要实现智能分布式电网系统的构建,则必须具有分布式的储能装置和中央储能装置等缓冲设备。在能源产生过程不稳定的情况下,需要一个缓冲器来存储能量。在能源产生的过程是稳定的而需求是不断变化的情况下,也需要使用储能装置。燃料电池与风能或太阳能不同,只要有燃料,它就能够持续输出稳定的电能。然而,负荷需求随着时间的变化有很大的不同。如果没有储能装置,燃料电

池就要做得很大以满足峰值能量需求,成本显得过高。通过将过剩的能量存储在储能装置中,就可以在短时间内通过储能装置提供所需的峰值能量。

在分布式电网系统中,电力系统的暂态冲击在所难免,而超级电容器的优越性能,使其可以降低暂态冲击对整个系统性能的影响。因此,在未来的智能分布式电网系统中,超级电容器组储能系统必不可少。

4.1 超级电容器在智能电网中的应用前景

理想的供电电压应该是纯正弦波形,具有标称的幅值和频率。然而,由于供电电压的非理想性、线路的阻抗、供电系统所承受的各种扰动、负荷的时变性与非线性等,供电电压常常呈现各种各样的电能质量问题。电压型电能质量问题通常表现为幅值或波形的异常:电压暂降、三相不平衡、电压波动与闪变、谐波及频率变动等。在所有的这些电能质量问题中,电压暂降和电压短时中断对用电设备所造成的危害尤其严重,短短几个周期的电压暂降都可能严重影响设备的正常工作。在欧美发达国家,电压暂降一次的经济损失可以达到几百万美元,而电压短时中断的后果更加严重。目前,电压暂降已经上升为最重要的电能质量问题。在对电能质量的诸多问题投诉中,由电压暂降引起的用户投诉占总投诉量的80%以上,而由谐波、开关操作过电压等引起的电能质量问题投诉不到20%。换个角度考虑,电压暂降和短时中断之所以危害很大,就是因为很多用电设备对其太过敏感。降低设备对电压暂降和短时中断的敏感度,提高其抗扰动的能力,就可以让用户把损失降到最小,甚至可以完全避免由于电压暂降和短时中断所带来的损失。

目前,解决方法主要有加装UPS 电源、多路供电、加装DVR(动态电压恢复器)等。在这几种措施中,大功率UPS 的造价太高,多路供电也不能完全避

免电压暂降和短时中断所造成的损失,DVR(动态电压恢复器)的研究在中国才刚刚起步。从提高负荷抗干扰的能力考虑,可以根据用户的需求来定制不同的装置,这就是所谓的用户电力技术。用户电力技术是20 世纪90 年代开发的新技术,是指把大功率电力电子技术和配电自动化技术综合起来,以用户对电力可靠性和电能质量要求为依据,为用户配置所需要的电力。这其中的主要产品有固态断路器+静态补偿器(STATCOM)、动态电压恢复器(DVR,Dynamic VoltageRestorer)等,可以解决电压暂降、凸起、瞬时间断等配电系统扰动所引起的的各种问题。当前针对电压补偿的技术产品主要有DVR(动态电压恢复器)和UPQC(统一电能质量控制器,动态电压恢复器(DVR)和有源滤波器(APF))。世界上第一台DVR(动态电压恢复器)装置由美国西屋公司研制成功,并于1997 年8 月在美国Duke 电力公司投入运行。APF 并联于线路,而DVR 串联于线路,这样做的目的是APF 专注于电流型电能质量问题的治理,而DVR 则专注于电压型电能质量问题。两装置共用储能单元和能量接口,都可以单独运行实现其自身的功能。

目前的困难在于,传统的储能装置难以快速响应这种电能的暂态波动。而通过加入超级电容器组,就能够较为顺利的解决上述技术难题。因此,作为智能电网系统最核心端口的用户电能质量问题的解决,该设备具有广阔的市场前景。

5 分布式储能系统

5.1电力储能系统的分类及主要作用

20 世纪80 年代以来,世界电力工业开始电力体制改革,其核心就是实现电力企业的私有化和构建竞争性电力市场。电力市场是电力系统中的发电、输电、供电、用电各部分组织协调运行并进行电力交易的综合体。

1992 年,电力部正式提出建立国内的电力市场。随着中国电力体制改革的

进一步深化,电力行业被重组为两大电网公司和五大发电公司,国家电力监管会正式挂牌运转,电力市场正在逐步形成。

电能作为商品,电能质量自然就成为其重要的特征参数。IEEE 给出电能质量问题的一般解释为:在供电过程中导致电气设备出现误操作或故障损坏的任何异常现象。电能质量包括电压质量、电流质量、供电质量和用电质量,涉及到电压、频率、波形和三相平衡等方面的用电可靠性、连续性、可操作性等方面。

目前,美国西屋电气公司、德国西门子公司、日本三菱电气公司、瑞典ABB 公司等各大电力设备制造商都制造出相应的产品。电压是电能质量的重要指标之一,影响电能质量的电压干扰,主要包括电压偏移、三相不平衡、电压波动与闪变、电压的谐波分量、电压跌落和瞬时断电等。

在提高电能质量的过程中,储能系统正起着越来越大的作用。根据容量大小的区别,储能系统的主要作用也各有不同。

(1)大型储能系统:主要用作电力网的可调节发电电源,对电力网进行控制和调节,如频率控制、备用容量控制、动态快速响应、削峰填谷调平负荷以及防止系统解列和瓦解等。

(2)中型储能系统:主要用于大功率远距离输变电系统,其主要功能有提高输电稳定性、维持电压稳定、抑制谐波、调节负荷等。

(3)小型储能系统:主要用于调节电能质量和提高供电可靠性,其主要功能有电压控制、抑制电压波动与闪变、抑制电压下跌、瞬时断电供电等。

6 超级电容在军用设备领域的应用

在移动通信基站、卫星通信系统、无线电通信系统中,都需要有较大的脉冲放电功率,而超级电容器所具有的高功率输出特性,可以满足这些系统对功率的

要求。

另外,激光武器也需要大功率脉冲电源,若为移动式的,就必须有大功率的发电机组或大容量的蓄电池,其重量和体积会使激光武器的机动性大大降低。超级电容器可以高功率输出并可在很短时间内充足电,是用于激光武器的最佳电源。另外,超级电容器还可以用于战术性武器(电磁炸弹)中,作为炸弹发电机(FCC)的核心部件。

7 在城市轨道交通中应用研究分析

与道路、航空等交通方式相比,轨道交通运输具有运量大、定时、安全、环保、节能等显著优点。在全球倡导保护环境、防止地球温暖化的今天,轨道交通的环保、节能的优点已越来越受到人们的重视,今后应大力发展轨道公共交通已成为世界各国的共识。

从20 世纪80 年代开始,随着电力电子技术的飞速发展,交流牵引传动技术开始在轨道交通车辆上得到应用,并迅速得到普及。轨道交通车辆采用交流传动技术后,再生制动成为列车常用制动时的主要制动方式,由于再生制动能量可供相同供电区间内的其他力行状态的列车利用,这就进一步降低了列车的运行能耗,使轨道交通在节能运行方面的优势越发突出。然而,再生制动的前提是线路上必须有足够的负载来吸收再生能量,否则就容易造成再生制动的列车受电弓电压升高超过允许值,引发主电路断开,导致再生制动失效的现象发生。近年,随着2 次电池、飞轮、超级电容( EDLC)、超导等储能技术的发展,如何利用储能技术来解决列车制动失效、改善列车受电弓电压、节约列车运行能量等问题得到世界轨道交通界的广泛关注。

目前国内外常采用在地面牵引变电所内设置再生制动能量吸收装置解决该

问题,其中电阻耗能型吸收装置应用较为普遍,该装置仅将制动能量消耗,未将能量加以利用,且只解决了网压升高问题却没有考虑网压下降的问题。若采用储能装置将制动能量储存起来,并在列车起动取流时将所储存能量释放至电网,减少直流电网电流,则网压波动问题将迎刃而解。

储能装置的储能方式有多种,如飞轮储能、蓄电池储能及超级电容器储能等。通过各种储能方式的比较,提出车载超级电容储能装置来解决以上问题。考虑到列车制动能量较大,而超级电容组的吸收能力有限,因此为保证网压稳定,采用以电容吸收为主,电阻消耗为辅的吸收方案。该储能装置若能成功应用到城市轨道交通中,在合理解决网压波动问题的基础上,必能创造出巨大的经济效益,因此对城市轨道交通储能装置的研究具有十分重要的现实意义。

8 超级电容在运动控制领域的应用

在现代高层建筑中,电梯的耗能仅次于空调。以往的电梯采用机械制动的方法,将这部分能量以热的形式散发掉,这不但浪费,而且多余热量使机房温度升高,增加散热的负担和成本。如果能够回收多余的动能及势能,电梯系统真正消耗的能量就只限于电能转换中的损耗和机械损耗,其中主要包括变频器、牵引电机及其机械损耗。

因此,在电梯设计、配置中最迫切需要解决的问题是要全面考虑节能措施。采用节能环保型电梯是未来节能建筑领域的必然趋势。通过分析电梯系统的运动特性,我们可以发现节能的方向:电梯在升降过程结束时,经常会有制动刹车,产生巨大的制动电流,这是可以回收的;另外,在建筑高层,电梯和电梯使用者都具有很大的势能,也可以进行回收。由于超级电容器具有大电流充放电等优良的特性,可在电梯系统中作为能量回收装置回收能量。

超级电容器还可以应用于建筑领域的通风、空调、给排水系统中,作为启动装置。另外,超级电容器还可以应用于电站、变流以及铁路系统中,包括电磁阀门控制系统、配电屏分合闸、铁路的岔道控制装置等。

作为能源最大消耗者之一的港口机械设备,港口机械如场桥、岸桥中的吊具载运货物上升时需要很大的能量,而下降时自动产生的势能很大,这部分势能在传统机械设备中没有得到合理利用。除了在固定港口机械设备中,在流动机械中也同样存在上述问题。通过采用超级电容器,能够实现上升过程中的制动能量回收,下降过程中的势能回收。

超级电容器能用作飞机上柴油机启动系统工作电源的辅助电源,能提供飞机发动机瞬间所需的冲击大电流,另外还可以解决422 系列电源车启动飞机瞬间功率不足的问题,从而在启动瞬间对直流电源车发电系统尤其是内燃机具有很大的保护作用。

总之,超级电容器能用于优化主要的运动控制系统的暂态响应性能,实现节能的目标。

附:超级电容器目前已有主要应用案例

1.纯电动车或混合电动车

超级电容器纯电动汽车,每隔2-3英里就会在指定的充电站---兼具公交车站的功能---进行充电,只需几分钟,位于公交车座位下的超级电容器就充电完成了。超级电容器公交车也可以从刹车系统中获取能量,这类公交车使用的电力比无轨电车少40%,能耗仅为燃油车的1/3。

混合电动汽车采用多能源系统提供动力,以燃油发动机作为主要动力,以二次电源作为辅助动力。混合电动汽车最大的优点就是在加速期间或爬坡时,要从由电池和超级电容组成的能量储存系统吸取电力,当车辆的动力需求较低时,该能量储存系统被充电。这样不仅增加了能量效率,而且车辆能够通过再生制动,在减速时能量重新回收,加速时付出,即省了油又减少了污染。混合电动汽车能节油30%~50%,减少污染70%~90%。

2.车辆低温启动

超级电容器与蓄电池并联应用可以提高机车的低温启动性能。在提高汽车在冷天的起动性能(更高的起动转矩),超级电容器具有非常重要的意义。在-20℃

时,由于蓄电池的性能大大下降,很可能不能正常启动或需多次启动才能成功,而超级电容器可以在-40 ℃与蓄电池并联时则仅需一次点火,其低温优点非常明显。

3.轨道车辆能量回收

在城市轨道交通工程中,车辆的制动方式为电制动(再生制动)加空气制动,运行中以电制动为主,空气制动为辅。列车在运行过程中,由于站间距较短,列车启动、制动频繁,制动能量相当可观。超级电容器应用于轨道车辆中,在轨道车辆制动的时候,回收制动能量,存储于超级电容器中,当车辆再加速时,超级电容器将这些能量释放出来,节省了30%的能量。

4.航空航天

超级电容器为为飞机开启门提供爆发动力,使用寿命可达25年,140000飞行小时,已经通过空中客车公司资质证明,于2004年测试,设计产品是BCAP0140 。在地面上,正常操作和紧急操作时,门必须被打开,在飞行时,门必须被关上并锁紧,滑道必须在紧急情况被需要的时候膨胀。

5.电动叉车

现在混合动力叉车及电动叉车大都采用由超级电容器作为驱动传动机构,传送和接收峰值功率,进行能量回收,节省燃料,实现更长工作时间。

6.起重机

利用大容量超级电容器,可以短周期大电流充电和放电,在起动时能迅速大电流放电,下降时能迅速大电流充电,将能量吸收,起到节能环保的作用。

7.太阳能

随着地球资源的日益贫乏,基础

能源的投资成本日益攀高,各种安全

和污染隐患是无处不在。太阳能作为

一种“取之不尽,用之不竭”的安全、

环保新能源越来越受到重视。将超级

电容器和太阳能结合使用,其应用前

景非常广阔。

8.电动工具

电动工具一般需要能够提供瞬间高功率及长寿命,并且要求快速充电。装有超级电容器的电动工具电源装置能使满足应用的需求性能。超级电容器一次充电能满足100次的切割工作。而且这种设备还要求不带电线外供电,方便携带。

9.电动玩具

在电子玩具中,有些常要求瞬时大电流,而电池无法提供,将超级电容器与电池组合可以解决此问题,超级电容器也可以作为电源对电子玩具供电,不仅降低使用成本而且减轻质量。

11. UPS(Uninterruptible Power Supply)不间断电源

UPS起作用往往是在掉电或电网电压瞬时塌波的最初几秒到几分钟内起决定作用,需要蓄电池在这段时间提供电能,蓄电池自身的缺点需定期维护、寿命短,使UPS在运行时需要时刻检测蓄电池的状态。在数据保护的备份系统中,需UPS提供的时间相对很短。超级电容的优势尤为明显,其输出电流几乎没有延迟地上升到高达数百安培甚至上千安培,而且可以快速地充电,在很短的时间内就可以实现能量存储,而且具有5万次循环寿命,十年不需要护理,使UPS 真正实现免维护。

12. 电信

电信工业采用超级电容器是一种新颖的应用,结合超级电容器电子电路开发的电能超高速缓冲存储器(Powercache)储能模式,创造一种模仿48V电池工作的装置,它只提供几秒钟的备用电源。同时,它还桥接长期电源。这种以超级电容器技术为基础的电信产品具有十分卓越的优点——不须维修地工作10年,能快速再充电和抗干扰能力强。

超级电容器电极材料的研究进展

2011年第3期 新疆化工 11 超级电容器电极材料的研究进展 摆玉龙 (新疆化工设计研究院,乌鲁木齐830006) 摘要:超级电容器既具有超大容量,又具有很高的功率密度,因此它在后备电源、替代电源、大功率输出等方面都有极为广泛的应用前景。超级电容器的性能主要取决于电极材料,近年来各国学者对于超级电容器的电极材料进行了大量的研究。 关键词:超级电容器;电极材料 1 前言 超级电容器的种类按其工作原理可以分为双电层电容器、法拉第准电容器(也称为赝电容电容器)以及二者兼有的混合电容器。双电层电容器基于双电层理论,利用电极和电解质之间形成的界面双电层电容来储存能量。法拉第准电容器则基于法拉第过程,即在法拉第电荷转移的电化学变化过程中产生,不仅发生在电极表面,而且可以深入电极内部。根据这两种原理,目前作为超级电容器的电极材料的主要分为三类[1]:碳材料、金属氧化物及水合物材料、导电聚合物材料。 2 碳材料类电极材料 在所有的电化学超级电容器电极材料中,研究最早和技术最成熟的是碳材料。其研究是从1957年Beck发表的相关专利开始的。碳电极的研究主要集中在制备具有大的比表面积和较小内阻的多孔电极材料上,可用做超级电容器电极的碳材料主要有:活性炭、纳米碳纤维、玻璃碳、碳气凝胶、纳米碳管等。 活性炭(AC)是超级电容器最早采用的碳电极材料[2]。它是碳为主,与氢、氧、氮等相结合,具有良好的吸附作用。其特点是它的比表面积特别大,比容量比铂黑和钯黑高五倍以上[3]。J.Gamby[4]等对几种不同比表面积的活性炭超级电容器进行测试,其中比表面积最大为2315m2·g的样品得到的比容量最高,达到125F/g,同时发现比表面积和孔结构对活性炭电极的比容量和内阻有很大影响。 活性炭纤维(ACF)是性能优于活性炭的高效活性吸附材料和环保工程材料。ACF的制备一般是将有机前驱体纤维在低温(200℃~400) ℃下进行稳定化处理,随后进行炭化、活化(700℃~1000) ℃。日本松下电器公司早期使用活性炭粉为原料制备双电层电容器的电极,后来发展的型号则是用导电性优良、平均细孔孔径2~5nm、细孔容积0.7~1.5m3/g、比表面积达1500~3000m2/g的酚醛活性炭纤维[5],活性炭纤维的优点是质量比容量高,导电性好,但表观密度低。H. Nakagawa采用热压的方法研制了高密度活性炭纤维(HD-ACF)[6],其密度为0.2~0.8g/m3,且不用任何粘接剂。这种材料的电子导电性远高于活性炭粉末电极,且电容值随活性炭纤维密度的提高而增大,是一种很有前途的电极材料。用这种HD-ACF 制作超级电容器电极[7],结果表明,对于尺寸相同的单元电容器,采用HD-ACF为电极的电容器的电容明显提高。 炭气凝胶是一种新型轻质纳米级多孔性非晶炭素材料,其孔隙率高达80%~98%,典型孔隙尺寸<50nm,网络胶体颗粒尺寸3~20nm,比表面积高达60~1000m2/g,密度为0.05~0.80g/m3,是一种具有许多优异性能(如导电性、光导性和机械性能等)和广阔的应用前景的新型材料[8]。孟庆函,

超级电容器研究综述

一、超级电容器的发展与进步 (一)概述 在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。然而这一效应的缘由直到18世纪中叶方被人们理解。140年后,人们开始对电有了分子原子级的了解。早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。 电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。 超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。 超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。 (二)超级电容器的原理 超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。一方面,与传统电容器相比,超级电容器的电极材料往往选用高比表面积材料,如活性碳,通过静电作用在固/液界面形成对峙的双电层存储电荷,因此超级电容器拥有比传统电容器高的能量密度,静电容量能够达到千法拉至万法拉级;另一方面,与电池能量存储机理类似,超级电容器可以通过法拉第氧化还原反应完成电荷存储和释放,由于主要依靠电极表面或近表面的活性材料存储电荷,超级电容器与电池相比,能量密度较低,但是具有高的功率密度和循环稳定性。 1 传统电容器 传统的平行板电容器是所有静电电容器储能的基础,传统电容器电能的储存来源于电荷在两极板上聚集而产生电场。平行板电容器的静电电容的计算公式为: r是两极板材料的相对介电常数,0是真空介电常数,A是电极板的正对面积,d 是两极板的距离。 2 双电层超级电容器 双电层电容器是通过静电电荷分离,依靠固/液界面的双电层效应完成能量的存储和转化。电解液离子分布可为两个区域——紧密层和扩散层。其双电层电容可视为由紧密层电容和扩散层电容串联而成。双电层电容器正是基于上述理论发展起来的。充电时,电子经外电

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

超级电容器在电动车上的应用

中心议题: 超级电容器基本原理 与传统电容器、电池的区别 解决方案: 超级电容器在刹车时再生能量回收 在启动和爬坡时快速提供大功率电流 现在,城市污染气体的排放中,汽车已占了70%以上,世界各国都在寻找汽车代用燃料。由于石油短缺日益严重人们都渐渐认识到开发新型汽车的重要性,即在使用石油和其它能源的同时尽量降低废气的排放。 超级电容器功率密度大,充放电时间短,大电流充放电特性好,寿命长,低温特性优于蓄电池,这些优异的性能使它在电动车上有很好的应用前景。 在城市市区运行的公交车,其运行线路在20公里以内,以超级电容为唯一能源的电动汽车,一次充电续驶里程可达20公里以上,在城市公交车将会有广阔的应用前景。 电动汽车属于新能源汽车,包括纯电动汽车,BEV)、混合动力电动汽车和燃料电池电动汽车(FuelCellElectricVehicle,FCEV)三种类型。它集光、机、电、化各学科领域中的最新技术于一体,是汽车、电力拖动、功率电子、智能控制、化学电源、计算机、新能源和新材料等工程技术中最新成果的集成产物。电动汽车与传统汽车在外形上没有什么区别,它们之间的主要区别在于动力驱动系统。 电动汽车采用蓄电池组作储能动力源,给电机驱动系统提供电能,驱动电动机,推动车轮前进。虽然电动汽车的爬坡度、时速不及传统汽车,但在行驶过程中不排放污染,热辐射低,噪音小,不消耗汽油,结构简单,使用维修方便,是一种新型交通工具,被誉为“明日之星”,受到世界各国的青睐。 超级电容器简介 超级电容器又称为电化学电容器,是20世纪年代末出现的一种新产品,电容量高达法拉级。以使用的电极材料来看,目前主要有3种类型:高比表面积碳材料超级电容器、金属氧化物超级电容器、导电聚合物超级电容器。 1基本原理 根据电化学电容器储存电能的机理的不同,可以将它分为双电层电容器,EDLC)和赝电容器(Pesudocapaeitor)。碳基材料超级电容器能量储存的机理主要是靠碳表面附近形成

超级电容器电极材料研究现状及存在问题

功能材料课程报告 指导老师: 学院:材料科学与工程学院专业:材料加工工程 姓名: 学号: 日期: 2012 年7 月13 日

超级电容器电极材料研究现状及存在问题 摘要:电极材料是决定电容器性能的重要因素,高性能电极材料的开发是超级电容器研发的重点。本文主要讨论了超级电容器阳极材料的研究现状及存在问题,这些材料包括:碳材料、贵金属氧化物、导电聚合物和一些其他材料。复合或混合型电极材料可以显著提高超级电容器的综合性能,已经成为超级电容器电极材料发展的主要趋势。 关键词:超级电容器;电极材料;研究现状;存在问题

1电极材料的研究现状 1.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 1.1.1碳材料碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及以上的空间才能形成双电层,从而进行有效的能量储存。而制备的碳材料往往存在微孔(小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性能也有影响[1]。 碳电极电容器其电容的大小和电极的极化电位及电极比表面积大小有关,故可以通过极化电位的升高和增大电极比表面积达到提高电容大小的目的。电极/电解质双电层上可贮存的电量其典型值约为15~40μF·cm-2。选用具有高表面积的高分散电极材料可以获得较高的电容。对理想可极化体系而言,可通过无限提高充电电压而大量储存能量。但是,对于实际体系却受电极材料和电解液组成的电极系统的可极化性和溶剂分解的限制,可通过加大电极比表面积来增加电容值。电容C可由下式给出 C=ε·ε0Ad 式中:ε ε为电导体和内部赫姆霍兹面间区域的相对0为自由空间的绝对介电常数, 介电常数,A为电极表面积,d为导体与内赫姆霍兹面之间的距离。 近年来研究主要集中在提高碳材料的比表面积和控制碳材料的孔径及孔径分布,并开发出许多不同类型的碳材料,主要有: 多孔碳材料、活性碳材料、活性碳纤维、碳气溶胶以及最近才开发的碳纳米管等[2]。 多孔碳材料、活性碳材料和活性碳纤维:这个排列基本代表了碳材料为提高有效比表面积的发展方向。之所以发展为活性碳,主要是在于通过活化处理(如水蒸汽)后,可以增加微孔的数量,增大比表面积,提高活性碳的利用率。这些材料随制作电极工艺的不同先后出现过:活性碳粉与电解液混合制成的糊状电

超级电容器原理和应用

超级电容器原理和应用 分类:移动互联的基本知识或讲座 2007.6.13 20:14 作者:kimberye | 评论:0 | 阅读:5029 超级电容器简介(图) 作者:Maxwell Technologies Bobby Maher 随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因为其无可替代的优越性,越来越受到人们的重视。在一些需要高功率、高效率解决方案的设计中,工程师已开始采用超级电容器来取代传统的电池。 电池技术的缺陷 Li离子、NiMH等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。 超级电容器的特点和优势 超级电容器的原理并非新技术,常见的超级电容器大多是双电层结构,同电解电容器相比,这种超级电容器能量密度和功率密度都非常高。同传统的电容器和二次电池相比,超级电容器储存电荷的能力比普通电容器高,并具有充放电速度快、效率高、对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点。 除了可以快速充电和放电,超级电容器的另一个主要特点是低阻抗。所以,当一个超级电容器被全部放电时,它将表现出小电阻特性,如果没有限制,它会拽取可能的源电流。因此,必须采用恒流或恒压充电器。 10年前,超级电容器每年只能卖出去很少的数量,而且价格很贵,大约1~2美元/法拉,现在,超级电容器已经作为标准产品大批量供应市场,价格也大大降低,平均0.01~0.02美元/法拉。在最近几年中,超级电容器已经开始进入很多应用领域,如消费电子、工业和交通运输业等领域。

超级电容器前景及应用

超级电容器发展现状及发展前景分析 超级电容器研究国世界分布图 超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。 超级电容器的尴尬现状 超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

超级电容器“全家福” 使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显 著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国 为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。 然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获 得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金 支持,技术的进步和发展也就受到很大程度地制约。另外,超级电容器成本高、能量密度 低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。 先驱EEStor公司勇于挑战却惨遭败北 尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。一部分厂商面对超 级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个 涉足此领域并获得成功的例子。另外一部分厂商则坚信,只要超级电容器的生产成本实现 大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。美国超级电容器生产商EEStor就属于后者。 上世纪90年代,美国超级电容器生产商EEStor为改变超级电容器的市场现状,曾用 好几年的时间将大量财力物力投向如何提高超级电容能量密度的研发上,期望能通过自身

超级电容器的研究进展

超级电容器的研究进展

超级电容器的研究进展 摘要:超级电容器是一种新型储能装置,它具有功率密度高、充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。近年来,各种新兴材料 的发展,为超级电容器电极材料的选取提供了更多的选择条件,促进了超级电 容器的快速发展。本文总结了超级电容器的特点,重点介绍了超级电容器的工 作原理、分类以及超级电容器的材料。并简要展望了超级电容器电极材料的发 展方向和前景。 关键词:超级电容器碳电极贵金属氧化物导电聚合物 Abstract: Super capacitor is a new type of energy storage device. It has the characteristics of high power density, short charging time, long service life, good temperature characteristics, energy saving and green environmental protection. In recent years, the development of a variety of new materials, for the selection of the super capacitor electrode materials to provide more options to promote the rapid development of the super capacitor. This paper summarizes the characteristics of the super capacitor, and introduces the working principle of the super capacitor, classification and the material of the super capacitor. And briefly discussed the developing direction of super capacitor electrode materials and prospect. Key words: Super capacitor Carbon electrode Precious metal oxide Conducting polymer 一、引言 超级电容器是建立在德国物理学家亥姆霍兹(1821~1894)提出的界面双 电层理论基础上的一种全新的电容器,又叫电化学电容器(Electrochemcial Capacitor, EC)、黄金电容、法拉电容,通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。超级电容器可以被视为悬浮在电

超级电容器的工作原理

超级电容器的工作原理 根据存储电能的机理不同,超级电容器可分为双电层电容器(Electric double layer capacitor, EDLC)和赝电容器(Pesudocapacitor)。 2.1 双电层电容器原理 双电层电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件,当电极与电解液接触时,由于库仑力、分子间力、原子间力的作用,使固液界面出现稳定的、符号相反的双层电荷,称为界面双层。 双电层电容器使用的电极材料多为多孔碳材料,有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、碳纳米管。双电层电容器的容量大小与电极材料的孔隙率有关。通常,孔隙率越高,电极材料的比表面积越大,双电层电容也越大。但不是孔隙率越高,电容器的容量越大。保持电极材料孔径大小在2,50 nm 之间提高孔隙率才能提高材料的有效比表面积,从而提高双电层电容。 2.2 赝电容器原理 赝电容,也叫法拉第准电容,是在电极材料表面或体相的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。由于反应在整个体相中进行,因而这种体系可实现的最大电容值比较大,如吸附型准电容为2 000×10–6 F/cm2。对氧化还原型电容器而言,可实现的最大容量值则非常大[9],而碳材料的比容通常被认为是20×10–6 F/cm2,因而在相同的体积或重量的情况下,赝电容器的容量是双电层电容器容量的10,100 倍。目前赝电容电极材料主要为一些金属氧化物和导电聚合物。

金属氧化物超级电容器所用的电极材料主要是一些过渡金属氧化物, 如:MnO2、V2O5、 2、NiO、H3PMo12O40、WO 3、PbO2和Co3O4等[10]。金属氧化物作为超级电容器电RuO2、IrO 极材料研究最为成功的是RuO2,在H2SO4电解液中其比容能达到700,760 F/g。但RuO2稀有的资源及高昂的价格限制了它的应用。研究人员希望能从MnO2及NiO等贱金属氧化物中找到电化学性能优越的电极材料以代替RuO2。用导电聚合物作为超级电容器的电极材料是近年来发展起来的。聚合物产品具有良好的电子电导率,其典型的数值为1,100 S/cm。一般将共轭聚合物的电导性与掺杂半导体进行比较,采用术语“p掺杂”和“n掺杂”分别用于描述电化学氧化和还原的结果。导电聚合物借助于电化学氧化和还原反应在电子共轭聚合物链上引入正电荷和负电荷中心,正、负电荷中心的充电程度取决于电极电势[9]。导电聚合物也是通过法拉第过程大量存储能量。目前仅有有限的导电聚合物可以在较高的还原电位下稳定地进行电化学n型掺杂,如聚乙炔、聚吡咯、聚苯胺、聚噻吩等。现阶段的研究工作主要集中在寻找具有优良的掺杂性能的导电聚合物,提高聚合物电极的充放电性能、循环寿命和热稳定性等方面。 超级电容器作为一种新型的储能元件,具有如下优点: (1)超高的容量。超级电容器的容量范围为0.1,6 000 F,比同体积的电解电容器容量大2 000,6 000倍。 (2)功率密度高。超级电容器能提供瞬时的大电流,在短时间内电流可以达到几百到几千安培,其功率密度是电池的10,100倍,可达到10×103 W/kg左右。 (3)充放电效率高,超长寿命。超级电容器的充放电过程通常不会对电极材料的结构产生影响,材料的使用寿命不受循环次数的影响,充放电循环次数在105以

2016年国内外超级电容行发展现状及未来趋势分析

2016年国内外超级电容行发展现状及未来趋势分析 一、超级电容的定义 超级电容又名电化学电容器,双电层电容器是通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 二、超级电容有哪些特点 (1)充电速度快,充电几秒-几分钟就可充满; (2)循环使用寿命长,深度充放电循环使用次数可达1-50万次,远高于充电电池的充放电使用寿命; (3)功率密度高,可以快速存储释放电荷,可达300W/KG-5000W/KG,相当于电池电量的5-10倍; (4)大电流放电能力强,能量转换效率高,循环过程能量损失小,循环效率≥90%; (5)贮存寿命长,因为充电过程没有化学反应,电极材料相对稳定; (6)低温特性好,温度范围宽-40℃~+70℃,随着温度的降低,锂电池放电性能显著下降;(7)可靠性高。 缺点:成本高,功率密度较高,能量密度低。 法拉(farad),简称“法”,符号是F 1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V 1库仑是1A电流在1s内输运的电量,即1C=1A·S。 1法拉=1安培·秒/伏特 一个12伏14安时的电瓶放电量=14×3600×1/12=4200法拉(F),图中一个30000F的超级电容的电量相当于7个12伏14安时的电瓶放电量,够大吧。 三、超级电容的种类 按储存电能的机理,超级电容器可分为以下2种:包括双电层电容器和赝电容器。 四、超级电容的用途 超级电容可以广泛应用于辅助峰值功率、备用电源、存储再生能量、替代电源等不同的应用场景,在工业控制、风光发电、交通工具、智能三表、电动工具、军工等领域具有非常广阔的发展前景,特别是在部分应用领域具有非常大的性能优势。 1、电子设备最早应用:例如我们电脑的内存系统、照相机的闪光灯,音响设备后备存储电源。 2、汽车工业中:插电式混合动力汽车中超级电容主要和电池相配合形成智能启停控制系统。(1)超级电容可以迅速高效地吸收电动汽车制动产生的再生动能; (2)加速和爬坡时超级电容为智能启停控制系统电机提供电能,延长了电池的使用寿命。 3、大尺寸超级电容器可用在火车和地铁的刹车制动系统上,可以节省30%的能量。 4、超级电容轻轨列车 超级电容轻轨列车是一种新型电力机车。2012年8月10日,世界第一列超级电容轻轨列车在湖南省株洲市下线。这种新型电力机车最多能运载320人,不再需要沿途架设高压线,停站30秒钟就能快速充满电。列车充电后能高速驶向相距2公里左右的另一个站点,再上下客并充电,如此周而复始。 5、全球首创超级电容储能式现代电车

超级电容器研究进展

超级电容器研究进展 XXX 摘要:超级电容器是一种介于化学电池与普通电容器之间的新型储能装置。本文主要介绍了超级电容器的原理、电极材料和电解质研究进展。 关键词:超级电容器电极材料电解质 Research Progress of Super Capacitor Abstract:Super capacitor is a new energy storage device between battery and conventional capacitor. In this paper, super capacitor’s principle,research progress on electrode materials and electrolytes were introduced. Key Word: super capacitor electrode materials electrolytes 1 引言 超级电容器是最近几十年来,国内外发展起来的一种新型储能装置,又被称为电化学电容器。超级电容器兼具有静电电容器和蓄电池二者优点。它既具有普通静电电容器那样出色的放电功率,又具备蓄电池那样优良的储备电荷能力。与普通静电电容器相比较,超级电容器具有法拉级别的超大电容、非常高的能量密度和较宽的工作温度区间[1-3]。此外由于超级电容器材料无毒[4]、无需维护,有极长的循环充放电寿命,可作为一种绿色环保、性能优异的的储能装备在便携式仪器设备、数据记忆存储系统、电动汽车电源等[5]方面有着广泛的应用前景。超级电容器从出现到成熟,经历漫长的发展过程。当今世界,越来越多的科研机构和商业公司致力于超级电容器的研制与开发工作。美国、日本、俄罗斯超级电容器界的三大巨头,其产品几乎占据了超级电容器市场的绝大部分。与这些超级电容强国相比,我国超级电容器研发工作起步晚,发展快,如今已初具规模,并渐趋成熟,但仍存在一定差距。 2 超级电容器工作原理 当前得到大家广泛认可的超级电容器的工作原理主要是双电层电容理论和

超级电容器的发展与应用

常州信息职业技术学院 学生毕业设计(论文)报告 系别:电子与电气工程学院 专业:微电子技术 班号:微电071 学生姓名:徐天云 学生学号:0706033131 设计(论文)题目:超级电容器的发展与应用指导教师:刘民建 设计地点:常州信息职业技术学院起迄日期:2009.7.1—2009.8.20

毕业设计(论文)任务书 专业微电子信技术班级微电071姓名徐天云 一、课题名称:超级电容器的发展与应用 二、主要技术指标:额定容量、额定电压、额定电流、最大存储能量、能量密度、功率密度、使用寿命、循环寿命、等效串联电阻、漏电流等技术指标 三、工作内容和要求:本文先从普通电容器入手,进而引出超级电容器的产生。从而以此为基础,阐释了超级电容器的构造、定义、以及工作原理。接着从超级电容器的性能技术介绍其使用特点和注意事项,然后又介绍了超级电容器的发展与现状以及其在生产生活中的应用。最后还进行其以后发展的广阔前景。 四、主要参考文献:[1]夏熙、刘洪涛,一种正在发展的储能装置—超电容器(2)[J]电池工业,2004,9(4):181-188; [2]钟海云,李荐,戴艳阳,等,新型能源器件—超级电容器研究发展最新动态[J]电源技术,2004,25(5):367-370; [3]薛洪发,超大容器器在铁路运输生产中的应用[J]中国铁路2000(5):52.。 学生(签名)2009年6 月26 日 指导教师(签名)2009年6 月26 日 教研室主任(签名)2009年6 月27 日 系主任(签名)2009年6 月28 日

毕业设计(论文)开题报告 设计(论文)题目 一、选题的背景和意义: 超级电容器发展始于20世纪60年代,起先被认为是一种低功率、低能量、长使用寿命的器件。但到了20世纪90年代,由于混合电动汽车的兴起,超级电容器才受到广泛的关注并迅速发展起来。现今,大功率的超级电容器被视为一种大功率物理二次电源,各发达国家都把对超级电容器的研究列为国家重点战略研究项目。目前,超级电容器在电力系统中的应用越来越受到关注。此外,超级电容器还活跃在电动汽车、消费类电子电源、军事、工业等高峰值功率场合。 二、课题研究的主要内容: 主要介绍了超级电容器的构造、定义以及其工作原理,还阐释了超级电容器的特点和使用注意事项,以及超级电容器的发展与现状。最后介绍了超级电容器在生产生活中的应用。 三、主要研究(设计)方法论述: 通过查阅书籍了解超级电容器的基本概念等信息,结合以前所学的电子专业知识认真研究课题。借助强大的网络功能,借鉴前人的研究成果更好的帮助自己更好地理解所需掌握的内容。通过与老师与同学的讨论研究,及时地发现问题反复地检查修改最终完成

超级电容器电极制备实验前言

1超级电容器 1.1电池技术的缺陷 Li电池等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。 1.2超级电容器的简介 超级电容器(又称电化学电容器、电双层电容器)是一种能量存储装置,属新一代绿色能源。它主要依靠在电极与电解液界面形成电双层贮存电能,性能介于普通电容器和可充电电池之问,在较宽的温度范围内(—40~60。C)工作,可以在大电流(10~1000A)下充放电。与可充电电池(包括镍氢电池和锂电池)相比,超级电容器具有更高的功率密度和更长的循环寿命。与普通电容器相比,超级电容器的能量密度要高出100倍以上。可见,超级电容器集高能量密度、高功率密度、长寿命等特性于一身,具有工作温度宽、可靠性高、可快速循环充放电或快速充电长时间放电等特点。超级电容器可用于大电流瞬时供给、中电流短时问后备电源、小电流长时间后备电源和低频微波吸收等。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。超级电容器有如下特点: (1)电容量大。超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3-4个数量级,目前单体超级电容器的最大电容量可达5000F。

超级电容器的主要应用领域

超级电容器的主要应用领域 超级电容器发展展望: 超级电容器也叫做电化学电容器,是介于传统电容器和充电电池之间的一种新型储能装置,比容量为传统电容器的20~200倍,比功率一般大于1000W/kg,循环寿命大于100000次,可储蓄的能量比传统电容要高得多,并且充电快速。由于它们的使用寿命非常长,可被应用于终端产品的整个生命周期。而且超级电容器对环境无污染,可以说,超级电容器是一种高效、实用、环保的能量储蓄装置。当高能量电池和燃料电池与超级电容器技术相结合时,可实现高比功率、高比能量特性和长的工作寿命。近年来,由于超级电容器在新能源领域所表现出的朝阳产业趋势,许多发达国家都已经把超级电容器项目作为国家重点研究和开发项目,超级电容器的国内外市场正呈现出前所未有的蓬勃景象。 依照美国国家能源局的数据预测,超级电容器在全球市场的容量预计将从2007年的4亿美元发展到2013年的120亿美元(见下图1),其中,在电动汽车/新能源汽车领域的市场规模有望在2013年达到40亿美元,在消费电子领域的市场规模有望在2013年达到30亿美元,在工业(风力发电、轨道交通、重型机械等)领域的市场规模有望在2013年达到40亿美元。

根据中商情报预测,截至2014年,我国超容产业的增长率都在30%以上。 超级电容器的主要应用领域: 1.超级电容器在太阳能能源系统中的应用 太阳能源的利用最终归结为太阳能利用和太阳光利用两个方面。太阳能发电分为光伏发电和光热发电,其中光伏发电就是利用光伏电池将太阳能直接转化为电能。光伏发电不论在转化效率、设备成本和发展前景尚都远远强于光热发电。 自从实用型多晶硅的光伏电池问世以来,世界上就便开始了太阳能光伏发电的应

电化学工作站研究超级电容及其应用 v1.1

电化学工作站研究超级电容及其应用 德国Zahner电化学工作站 https://www.360docs.net/doc/6b1414738.html,

电化学工作站研究超级电容及其应用 1 前言 超级电容器是介于普通电容器和化学电池之间的储能器件,兼备两者的优点,如功率密度高、能量密度高、循环寿命长等,并具有瞬时大电流放电和对环境无污染等特性。双电层电容器是建立在双电层理论基础之上的。1879年,Helmholz 发现了电化学界面的双电层电容性质;1957年,Becker申请了第一个由高比表面积活性炭作为电极材料的电化学电容器方面的专利;1962年,标准石油公司生产了以活性炭为电极材料的、硫酸水溶液作为电解质的超级电容器;1979年,NEC公司使超级电容器商业化。作为一种绿色环保、性能优异的新型储能器件,超级电容器在众多领域有广泛的应用。近年来,我国的科研人员和相关部门对此也极度关注。 2 超级电容器的定义及特点 2.1 定义 超级电容器(Super capacitors),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Double-Layer Capacitor)。是从上世纪七、 八十年代发展起来的通过极化电解质来储能的一种电化学元件。它不同于传统 的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要 依靠双电层和氧化还原电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正如此超级电容器可以反复充放电数十万次。 图1是超级电容的原理图[1],其基本原理和其它种类的双电层电容器一样,都 是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。

超级电容器展现状及前景分析

超级电容器发展现状及前景分析 一、超级电容器的概念 超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源,它是根据电化学双电层理论研制而成的,所以又称双电层电容器。 超级电容器基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。 超级电容器实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。目前,超级电容器已形成系列产品,实现电容量0.5-1000F(法),工们电压12-400V,最大放电电流400-2000A。 超级电容器的性能特点: ①.具有法拉级的超大电容量; ②.比脉冲功率比蓄电池高近十倍; ③.充放电循环寿命在十万次以上; ④.能在-40℃-70℃的环境温度中正常使用; ⑤.有超强的荷电保持能力,漏电源非常小; ⑥.充电迅速,使用便捷; ⑦.无污染,真正免维护。 二、超级电容器行业市场分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为小于5F、5F~200F、大于200F,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中;而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件;另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。这三种超级电容器在全球和国内的生产规模情况分别见表1和表2 所示。

超级电容的结构和工作原理

超级电容的结构和工作原理 超级电容器又称双电层电容器、黄金电容、法拉第电容,是一种新型的储能原件,它兼有物理电容器和电池的特性,能提供比物理电容器更高的能量密度,比电池具有更高的功率密度和更长的循环寿命,并且这种电容器己在工业领域实现产业化和实际应用。如在考虑到环保需要而设计开发的电动汽车和复合电动汽车的动力系统中,若单独使用电池将无法满足动力系统的要求,然而将高功率密度电化学电容器与高能量密度电池并联组成的混合电源系统既满足了高功率密度的需要,又满足了高能量回收的需要。高能量密度、高功率密度的电化学电容器正在成为人们研究的热点。 1.超级电容器的结构 超级电容器结构上的具体细节依赖于对超级电容器的应用和使用。由于制造商或特定的应用需求,这些材料可能略有不同。所有超级电容器的共性是,他们都包含一个正极,一个负极,及这两个电极之间的隔膜,电解液填补由这两个电极和隔膜分离出来的两个的孔隙。 超级电容器的结构如图1所示.是由高比表面积的多孔电极材料、集流体、多孔性电池隔膜及电解液组成。电极材料与集流体之间要紧密相连,以减小接触电阻;隔膜应满足具有尽可能高的离子电导和尽可能低的电子电导的条件,一般为纤维结构的电子绝缘材料,如聚丙烯膜。电解液的类型根据电极材料的性质进行选择。 图1 超级电容器的基本结构 上图中各部分为:(1):聚四氟乙烯载体;(2)(4):活性物质压在泡沫镍集电极上;(3):聚丙烯电池隔膜。 超级电容器的部件从产品到产品可以有所不同。这是由超级电容器包装的几何结构

决定的。对于棱形或正方形封装产品部件的摆放,内部结构是基于对内部部件的设置,即内部集电极是从每个电极的堆叠中挤出。这些集电极焊盘将被焊接到终端,从而扩展电容器外的电流路径。 对于圆形或圆柱形封装的产品,电极切割成卷轴方式配置。最后将电极箔焊接到终端,使外部的电容电流路径扩展。 图1.2超级电容器电极 2.超级电容器的工作原理 由于储能机理的不同,人们将超级电容器分为:(1)基于高比表面积电极材料与溶液问界面双电层原理的双电层电容器;(2)基于电化学欠电位沉积或氧化还原法拉第过程的赝电容器。赝电容与双电层电容的形成机理不同,但并不相互排斥。大比表面积准电容电极的充放电过程会形成双电层电容,双电层电容电极(如多孔炭)的充放电过程往往伴随有赝电容氧化还原过程发生,实际的电化学电容通常是两者共存的宏观体现,要确认的只是何者占主要的问题。实践过程中,人们为了达到提高电容器的性能,降低成本的目的,经常将赝电容电极材料和双电层电容电极材料混合使用,制成所谓的混合电化学电容器。混合电化学电容器可分为两类,一类是电容器的一个电极采用赝电容电极材料,另一个电极采用双电层电容电极材料,制成不对称电容器,这样可以拓宽电容器的使用电压范围,提高能量密度;另一类是赝电容电极材料和双电层电容电极材料混合组成复合电极,制备对称电容器。 (1)双电层电容器 一对浸在电解质溶液中的固体电极在外加电场的作用下,在电极表面与电解质接触的界面电荷会重新分布、排列。作为补偿,带正电的正电极吸引电解液中的负离子,负极吸引电解液中的正离子,从而在电极表面形成紧密的双电层,由此产尘的电容称为双电层电容。双电层是由相距为原子尺寸的微小距离的两个相反电荷层构成,这两个相对

相关文档
最新文档