亚甲蓝分光光度法测阴离子表面活性剂的不确定度分析

亚甲蓝分光光度法测阴离子表面活性剂的不确定度分析
亚甲蓝分光光度法测阴离子表面活性剂的不确定度分析

亚甲蓝分光光度法测阴离子表面活性剂的不确

定度分析

根据实际工作中所测饮用水中LAS含量较低,而LAS为常规必检项目, 本文通过亚甲蓝分光光度法测阴离子表面活性剂的方法,得出本方法的不确定度以定量表达本方法的可信程度,数值只有包含了不确定度才真正有意义。

1.实验部分

1.1 原理

阴离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。

1.2试剂与仪器

在测定过程中,使用分析纯试剂和蒸馏水,7230G可见光分光光度计, 配有10 mm光程的比色皿。氯仿(CHCl3),分析纯,十二烷基苯磺酸钠标准溶液(1000mg/L)。当天配制10.0mg L的标准贮备液。亚甲蓝溶液和洗涤液按GB5750-85.16.1配制。

1.3 实验方案及过程

按照《生活饮用水标准检验法》GB5750-85-16.1的步骤进行实验,于250mL 容量瓶中分别加入适量的水,再移取系列直链烷基苯磺酸钠标准溶液于

250mL分液漏斗中,加水刚好100mL,以酚酞为指示剂,滴加NaOH溶液至刚好呈桃红色,再滴加0.5mol/L硫酸至桃红色刚好消失。加入25mL亚甲蓝溶液,用氯仿萃取三次,萃取液用洗涤液洗涤,定容50mL,用分光光度计于波长652nm处测吸光度。

1.4测量的数学模型

1)回归曲线:y=a+bx

2)浓度计算公式:c=m/v

3)根据样品测定计算公式的独立分量,根据不确定度的传播规律,亚甲蓝分光光度法测定水中直链烷基苯磺酸钠标准溶液测量的合成相对标准不确定度公式表达为:

式中:u rel (C)—水中LAS 浓度的相对标准不确定度;

u rel (C LAS )—LAS 标准贮备液中引入的相对标准不确定度;

u rel (f)—将贮备液稀释至使用液引入的相对标准不确定度;

u rel (m)—标准网线拟合求得LAS 含量时引入的相对标准不确定度;

u rel (A)—重复测定时引入的相对标准不确定度;

u rel (R)—回收率引入的相对标准不确定度;

2. 不确定度的评定

2.1 LAS 标准溶液引入的不确定度

u 1标液浓度:1.000±0.020mg/mL

其不确定度为:U 11=0.020/3=0.011547mg/mL 、灵敏度系数c 11=0.02。 在使用过程中,取2 mL 标准物到100mL 容量瓶中,在稀释过程中使用了2 mL 移液管,最大允许误差为±0.01ml 。

U 12=0.01/3=0.00577、灵敏度系数c 12=0.005

稀释过程中使用了100mL 容量瓶,最大误差为±0.1mL 则:

U 13=0.1/3=0.0577,灵敏度指数c 13=-1.0×10-4mg/mL

由于实验室温度基本恒定为20℃,所以温度引入的不确定度可不计,所以:

U 1=212

212212212211211u c u c u c ?+?+?=2.333×10-4mg/mL 2.2 光度法测量导致的吸光度A 的不确定度分量u 2

光度计的测量误差为±0.001

按均匀分布:u 2=0.001/3=0.0005774mg/mL

标准系列溶液中,LAS 质量引入的不确定度1.306μg

)

()()()()(22222R u A u m u f u c u u rel rel rel rel LAs rel rel ++++=

水质 阴离子表面活性剂的测定 亚甲蓝分光光度法GB 7494-37 方法确认

水质阴离子表面活性剂的测定亚甲蓝分光光度法GB 7494-37 方法确认 1.目的 通过分光光度法测定水中阴离子表面活性剂的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格。 2. 适用范围 本标准适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS)。亦即阴离子表面活性物质。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影 响试验结果的意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果。 4.分析方法 4.1 测量方法简述 4.1.1空白试验:按同试样完全相同的处理步骤进行空白实验,仅用100ml蒸馏水代替试样。 4.1.2测定 4.1.2.1将所取试份移至分液漏斗,以酚酞为指示剂,逐滴加入1mol/L氢氧化

钠溶液至水溶液呈桃红色,再滴加0.5mol/L硫酸到桃红色刚好消失。 4.1.2.2加入25ml亚甲蓝溶液,摇匀后再移入10ml氯仿,激烈振摇30s,注意放气。过分的摇动会发生乳化,加入少量异丙醇(小于10ml)可消除乳化现象。加相同体积的异丙醇至所有标准中,再慢慢旋转分液漏斗,使滞留在内壁上的氯仿液珠降落,静置分层。 4.1.2.3将氯仿层放入预先盛有50ml洗涤液的第二个分液漏斗,用数滴氯仿淋洗第一个分液漏斗的放液管,重复萃取三次,每次用10ml氯仿。合并所有氯仿至第二个分液漏斗中,激烈振摇30s,静置分层。将氯仿层通过玻璃棉或脱脂棉,放入50ml容量瓶中。再用氯仿萃取洗涤液两次(每次用5ml),此氯仿层也并入容量瓶中,加氯仿到标线。 4.1.2.4每一批样品要做一次空白试验及一种校准溶液的完全萃取。 4.1.2.5每次测定前,震荡容量瓶内的氯仿萃取液,并以此液洗三次比色皿,然后将比色皿充满。在652nm处,以氯仿清洗比色皿。 以试份的吸光度减去空白试验的吸光度后,从校准曲线上查得LAS的质量。 4.1.3校准曲线:取一组分液漏斗10个,分别加入100、99、95、93、91、89、87、85、80ml水,然后分别移入0、1.00、3.00、 5.00、7.00、9.00、11.00、13.00、15.00、20.00ml直链烷基苯磺酸钠标准溶液,摇匀。按(4.1.2)处理每一标准,以测得的吸光度扣除试剂空白值(零标准溶液的吸光度)后与相应的LAS量(ug)绘制校准曲线。 4.2 计算方法: c=m/V 式中:c—水样中亚甲蓝活性物(MBAS)的浓度,mg/L;

17种常用表面活性剂分析

17种常用表面活性剂 月桂基磺化琥珀酸单酯二钠(DLS) 一、英文名: Disodium Monolauryl Sulfosuccinate 二、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa 四、产品特性 1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体; 2. 泡沫细密丰富;无滑腻感,非常容易冲洗; 3. 去污力强,脱脂力低,属常见的温和性表面活性剂; 4. 能与其它表面活性剂配伍,并降低其刺激性; 5. 耐硬水,生物降解性好,性能价格比高。 五、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES 一、英文名:Disodium Laureth(3) Sulfosuccinate 二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、乳化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、用途与用量: 1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。广泛用于涂料、皮革、造纸、油墨、纺织等行业。

阴离子表面活性剂(最终)

阴离子表面活性剂的分类 周升辉 湖南工学院材料与化学工程系化学工程与工艺0901班 摘要:阴离子表面活性剂在低温下较难溶解,随温度升高溶解度加大,溶解度达到极限时会析出表面活性剂的水合物。但是,水溶液加热至一定温度时,表面活性剂分子发生缔合,溶解度会急剧增大。 阴离子表面活性剂亲水基团的种类有局限,而疏水基团可以由多种结构构成,故种类很多。阴离子表面活性剂一般具有良好的渗透、润湿、乳化、分散、增溶、起泡、抗静电和润滑等性能,用作洗涤剂有良好的去污能力。 关键词:阴离子表面活性剂表面活性性质 1.磷酸酯盐 磷酸酯盐表面活性剂具有良好的乳化、分散、抗静电、洗涤和防锈性能,对酸、碱的稳定性好,易被生物降解,又由于它易溶于有机溶剂,故用途极为广泛。 1.1磷酸酯盐阴离子表面活性剂可分为脂肪醇磷酸酯盐和脂肪醇聚氧乙烯醚磷酸酯盐两类阴离子表面活性剂。 1.1.1脂肪醇磷酸酯盐 1.1.1.1化学通式 脂肪醇磷酸酯盐有单酯盐和双酯盐两种,它们的化学通式分别为: 式中,R为烷基;M为一价正离子。 1.1.1.2性质 1.1.1. 2.1溶解性 脂肪醇磷酸酯盐的溶解性与疏水基的性质、脂肪醇链的长短、酯化程度及中和试剂密切相关。单脂肪醇磷酸酯盐的溶解性大于双脂肪醇磷酸酯盐的溶解性。单酯盐中,短链脂肪醇磷酸酯盐的溶解性大于长链脂肪醇磷酸酯盐的溶解性。不同的盐中,三乙醇胺盐的溶解性最大,其次是钾盐,钠盐最差。 1.1.1. 2.2表面张力 脂肪醇磷酸酯盐的表面张力与疏水基的构型、酯化度有关。单脂肪醇磷酸酯盐的表面张力较双脂肪醇磷酸酯盐高得多。正构碳链磷酸酯盐的表面张力高于异构碳链的磷酸酯盐。碳链增大,表面张力下降。 1.1.1. 2.3起泡性能 脂肪醇磷酸酯盐的起泡性能与脂肪醇链的长短有关,短链烷醇(如C7~C9烷醇)磷酸酯盐的起泡能力高于长链的C10~C18烷醇磷酸酯盐,但后者的泡沫稳定性较好。脂肪醇磷酸酯的一钠盐的起泡能力高于二钠盐,其原因是由于一钠盐的表面张力低,而二钠盐的表面张力高导致的。 1.1.1. 2.4洗涤性能 脂肪醇磷酸酯盐的洗涤性能与脂肪醇的碳链长短,正、异构情况,以及酯化度有关。碳链为C10时,脂肪醇磷酸酯盐的洗涤性能最好。碳数相同时,支链多的脂肪醇磷酸酯盐的洗

T 环境空气 硫化氢的测定 亚甲蓝分光光度法

FHZHJDQ0147 环境空气硫化氢的测定亚甲蓝分光光度法 F-HZ-HJ-DQ-0147 环境空气—硫化氢的测定—亚甲蓝分光光度法 1 范围 本方法规定了用亚甲蓝分光光度法测定居住区空气中硫化氢的浓度。 本方法适用于居住区空气硫化氢浓度的测定,也适用于室内和公共场所空气中硫化氢浓度的测定。 10mL吸收液中含有1μg硫化氢应有0.155±0.010吸光度。 检出下限为0.15μg/10mL。若采样体积为30L时,则最低检出浓度为0.005mg/ m3。 测定范围为10mL样品溶液中含0.15~4μg硫化氢。若采样体积为30L时,则可测浓度范围为0.005~0.13mg/m3。如硫化氢浓度大于0.13mg/m3,应适当减小采样体积,或取部分样品溶液,进行分析。 由于硫化镉在光照下易被氧化,所以采样期和样品分析之前应避光,采样时间不应超过1h,采样后应在6h之内显色分析。空气SO2浓度小于1mg/m3,NO2浓度小于0.6mg/m3,不干扰测定。 2 原理 空气中硫化氢被碱性氢氧化镉悬浮液吸收,形成硫化镉沉淀。吸收液中加入聚乙烯醇磷酸铵可以减低硫化镉的光分解作用。然后,在硫酸溶液中,硫化氢与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝。根据颜色深浅,比色定量。 3 试剂 本法所用试剂纯度为分析纯,所用水为二次蒸馏水,即一次蒸馏水中加少量氢氧化钡和高锰酸钾再蒸馏制得。 3.1 吸收液:称量 4.3g硫酸镉(3CdSO4·8H2O)和0.3g氢氧化钠以及10g聚乙烯醇磷酸铵分别溶于水中。临用时,将三种溶液相混合,强烈振摇至完全混溶,再用水稀释至1L。此溶液为白色悬浮液,每次用时要强烈振摇均匀再量取,贮于冰箱中可保存—周。 3.2 对氨基二甲基苯胺溶液: 3.2.1 储备液:量取50mL浓硫酸,缓慢加入30mL水中,放冷后,称量12g对氨基二甲基苯胺盐酸盐[N,N-dimethyl-p-phenylenediamine dihydrochloride,(CH3)2NC6H4·2HCl]溶液中。置于冰箱中,可保存一年。 3.2.2 使用液:量取2.5mL储备液,用1+1硫酸溶液稀释至100mL。 3.3 三氯化铁溶液:称量100g三氯化铁(FeCl3·6H2O)溶于水中,稀释至100mL。若有沉淀,需要过滤后使用。 3.4 混合显色液:临用时,按1mL对氨基二甲基苯胺使用液和1滴(0.04mL)三氯化铁溶液的比例相混合。此混合液要现用现配,若出现有沉淀物生成,应弃之不用。 3.5 磷酸氢二铵溶液:称量40g磷酸氢二铵[(NH4)2HPO4]溶于水中,并稀释至100mL。 3.6 0.0100mol/L硫代硫酸钠标准溶液;准确吸量100mL 0.1000N硫代硫酸钠标准溶液,用新煮沸冷却后的水稀释至1L。配制和浓度标定方法见附录A。 3.7 碘溶液c(1/2I2)=0.1mol/L,称量40g碘化钾,溶于25mL水中,再称量12.7g碘,溶于碘化钾溶液中,并用水稀释1L。移入容量色瓶中,暗处贮存。 3.8 0.01mol/L碘溶液:精确吸量100mL 0.1mol/L 碘溶液于1L棕色容量瓶中,另称量18g 碘化钾溶于少量水中,移入容量瓶中,用水稀释至刻度。 3.9 0.5g/100mL淀粉溶液:称量0.5g可溶性淀粉,加5mL水调成糊状后,再加入100mL沸水中,并煮沸2~3min,至溶液透明,冷却,临用现配。 3.10 1+1盐酸溶液:50mL浓盐酸与50mL水相混合。

LAS阴离子表面活性剂及其处理工艺

阴离子表面活性剂处理 目前我国生产的表面活性剂多属于阴离子表面活性剂,以直链烷基苯磺酸钠(LAS)为主。表面活性剂废水的来源很多,LAS除用于洗涤用品外,也广泛用于制革、纺织等工业的洗涤和脱脂。因此,家庭厨房废水、酒店宾馆废水、洗衣房废水中均含有LAS,洗涤、化工、纺织等行业也产生大量含LAS的废水;LAS 生产厂也排放大量表面活性剂废水。 1表面活性剂废水的特点 (1)表面活性剂废水成分复杂,废水中除了含有表面活性剂和其乳化携带的胶体污染物外,还含有助剂、漂白剂和油类物质等;废水中的LAS以分散和胶粒表面吸附两种形式存在。 2)表面活性剂废水一般呈弱碱性,pH约8-11;但是部分LAS生产废水的pH 为4-6,呈酸性;餐饮废水、洗浴废水和洗衣废水的LAS质量浓度一般为1- 10mg/L,而LAS生产废水的质量浓度一般为200mg/L左右;CODcr差异也很大,从100-100mg/L甚至达10的5次方mg/L。 (3)废水中的表面活性剂会造成水体起泡、产生毒性,且表面活性剂在水中起泡会降低水中的复氧速率和充氧程度,使水质变坏,影响水生生物的生存,使水体自净受阻。 此外它还能乳化水体中其他的污染物质,增大污染物质的浓度,造成间接污染。 2表面活性剂废水对环境的危害 LAS属于生物难降解物质,它的广泛使用,不可避免地对水环境造成了污染,在我国环境标准中把它列为第二类污染物质。表面活性剂被使用后最终大部分形成乳化胶体状物质随着废水排入自然界,其首要污染物LAS进入水体后,与其他污染物结合在一起形成具有一定分散性的胶体颗粒,对工业废水和生活污水的物化、生化特性都有很大影响。阴离子表面活性剂具有抑制和杀死微生物的作用,而且还抑制其他有毒物质的降解,同时表面活性剂在水中起泡而降低水中复氧速率和充氧程度,使水质变坏,若不经处理直接排入水体,将

硫化氢 亚甲基蓝分光光度法(打印版 《空气和废气监测分析方法》第

硫化氢亚甲基蓝分光光度法 《空气和废气监测分析方法》(第四版增补版) 1.原理 硫化氢被氢氧化镉-聚乙烯醇磷酸铵溶液吸收,生成硫化镉胶状沉淀。聚乙烯醇磷酸铵能保护硫化镉胶体,使其隔绝空气和阳光,以减少硫化物的氧化和光分解作用。在硫酸溶液中,硫离子与对氨基二甲基苯胺溶液和三氯化铁溶液作用,生成亚甲基蓝,根据颜色深浅,用分光光度法测定。 方法检出限为0.07μg/10ml(按与吸光度0.01相对应的硫化氢浓度计),当采样体积为60L 时,最低检出浓度为0.001mg/m3。 2.仪器 ①大型气泡吸收管:10ml。 ②具塞比色管:10ml ③空气采样器:0~1L/min ④分光光度计 3.试剂 1)吸收液:4.3g硫酸镉(3CdSO4·8H2O)、0.30g氢氧化钠和10.0g聚乙烯醇磷酸铵,分别溶于少量水后,并混合,强烈振摇混合均匀,用水稀释至1000ml。此溶液为乳白色悬浮液。在冰箱中可保存一周。 2)三氯化铁溶液:50g三氯化铁(FeCl3·6H2O),溶解于水中,稀释至50ml。 3)磷酸氢二铵溶液:20g磷酸氢二铵[(NH4)2HPO4],溶解于水,稀释至50ml。 4)硫代硫酸钠溶液C(Na2S2O3)=0.1mol/L:称取25g硫代硫酸钠(Na2S2O3·5H2O),溶于1000ml新煮沸并已冷却的水中,加0.20g无水碳酸钠,贮于棕色细口瓶中,放置一周后标定其浓度,若溶液呈现浑浊时,应该过滤。

5)硫代硫酸钠标准溶液C(Na2S2O3)=0.0100mol/L:取50.00ml标定过的0.1mol/L硫代硫酸钠溶液,置于500ml容量瓶中,用新煮沸并已冷却的水稀释至标线。 6)碘贮备液C(1/2 I2)=0.10mol/L:称取12.7g碘于烧杯中、加入40g碘化钾、25ml水,搅拌至全部溶解后,用水稀释至1000ml,贮于棕色细口瓶中。 7)碘溶液C(1/2 I2)=0.010mol/L:量取50ml碘贮备液,用水稀释至500ml,贮于棕色细口瓶中。 8)0.5%淀粉溶液:称取0.5g可溶性淀粉,用少量水调成糊状,搅拌下倒入100ml沸水中,煮沸至溶液澄清,冷却后贮于细口瓶中。 9)0.1%乙酸锌溶液:0.20g乙酸锌溶于200ml水中。 10)(1+1)盐酸溶液。 11)对氨基二甲基苯胺溶液(NH2C6H4N(CH3)2·2HCl): ①贮备液:量取浓硫酸25.0ml,边搅拌边倒入15.0ml水中,待冷。称取6.0g对氨基二甲基苯胺盐酸盐,溶解于上述硫酸溶液中,在冰箱中可长期保存。 ②使用液:吸取2.5ml贮备液,用(1+1)硫酸溶液稀释至100ml。 ③混合显色剂:临用时,按1.00ml对氨基二甲基苯胺使用液和一滴(约0.04ml)三氯化铁溶液的比例相混合。若溶液呈现浑浊,应弃之,重新配制。

实验二十七 亚甲蓝分光光度法测定阴离子洗涤剂

实验二十八亚甲蓝分光光度法测定阴离子洗涤剂 一﹑实验目的 1.学习萃取和索氏提取的基本操作。 2.学习测定水样中阴离子洗涤剂的方法。 二﹑实验原理 阴离子洗涤剂主要指直链烷基苯磺酸钠和烷基磺酸钠类物质。洗涤剂的污染会造成水面产生不易消失的泡沫,并消耗水中的溶解样。 水中阴离子洗涤剂测定方法,常用的有亚甲蓝分光光度法和液相色谱法,前者操作简便,但选择性较差,后者需要有专用设备。 阴离子染料亚甲蓝与阴离子表面活性剂(包括直链烷基苯磺酸钠﹑烷基磺酸纳和脂肪醇硫酸钠)作用,生成蓝色的离子对化合物,这类能与亚甲蓝作用的物质统称亚甲蓝活性物质(MBAS)。生成的显色物可被三氯甲烷萃取,其色度与浓度成正比,并可用分光光度计在波长652nm 处测量三氯甲烷层的吸光度。 由于测定对象是水中溶解态的阴离子表面活性剂,样品在测定前需经中速定性滤纸过滤以除去悬浮物。因此,吸附在悬浮物上的表面活性剂不计在内。 三﹑实验仪器 1.分光光度计 2.250mL分液漏斗 3.索氏抽提器(150mL平底烧瓶,φ35×160 mm抽提桶,蛇型冷凝管)。四﹑试剂 1.4%氢氧化钠溶液 2.3%硫酸 3.三氯甲烷 4.直链烷基苯磺酸钠标准储备溶液:称取0.100g标准物LAS(平均分子量344.4,称准至0.001g),溶于50mL水中,转移到100mL容量瓶中,稀释至标线,混匀,每毫升含1.00mgLAS。保存于4℃冰箱中。如需要,每周配制一次。 5.直链烷基苯磺酸钠标准溶液:准确吸取10.00mL直链烷基苯磺酸钠标准储备溶液,用水稀释至1000mL,每毫升含10.0μgLAS。当天配制。 6.亚甲蓝溶液:称取50g磷酸二氢钠(NaH 2PO 4 ·H 2 O)置于烧杯中,溶于水, 缓慢加入6.8mL浓硫酸,混匀,转移入1000mL容量瓶中。另称取30mg亚甲蓝(指示剂级),用50mL水溶解后也移入容量瓶中,用水稀释至标线,摇云。此溶液储

紫外分光光度法在药物分析中的应用

紫外分光光度法在药物分析中的应用 蒋贤森临床52 2152001037 摘要 药物分析是分析化学的一个重要应用领域,在药物分析工作中经常出现含复杂成分的药物或复方药物,对此经典的容量分析,重量分析等化学分析方法往往难于处理,一般都要借助于仪器分析方法,我国在药物分析方法上的研究经过几十年的发展已经有了很大的进步,用于药品质量控制的分析方法日益增多,使用的仪器类型日趋先进,并且仪器分析所占的比率越来越大,常用的仪器分析方法有紫外红外分光光度法气相色谱法液相色谱法毛细管电泳质谱法热分析法等,这些方法都有各自的特点和应用范围,紫外分光光度法由于具有方法简便灵敏度和精确度高重现性好可测范围广等明显优点,加之其仪器价格相对低廉易于维护因而越来越为分析工作者所重视,发展成为仪器分析方法中应用最广泛的方法以我国历版药典为例,紫外分光光度法的应用在其中占据很大的比例,高居各种仪器分析方法之首。虽然不断有新的分析方法出现,但紫外分光光度法因为具有灵敏度高快速准确等特点一直是制剂含量测定的首选方法,紫外分光光度法可广泛应用于分析合成药物,生物药品以及中药制剂等各种药物。 对紫外分光光度法,在飞速发展的现代药物分析领域中的可靠性

和作用作了总结,以大量的文献和数据说明紫外分光光度法仍然是有效可行的一种药物分析方法,紫外分光光度法发展到今天已经成为一种非常成熟的方法,衍生出许多种具体的应用方法如:双波长和三波长分光光度法差示分光光度法导数分光光度法薄层扫描紫外光谱法光声光谱法热透镜光谱分析法催化动力学分光光度法速差动力学分光光度法流动注射分光光度法以及化学计量学辅助的紫外分光光度法等等。 这些方法大都可用于药物分析的含量测定之中。 在此仅介绍其中的几种方法。 关键词:紫外分光光度法双波长三波长分光光度法差示分光光度法导数分光光度法 双波长三波长分光光度法 普通的单波长分光光度法要求试样透明无浑浊,对于吸收峰相互重叠的组分,或背景很深的试样分析往往难以得到准确的结果,双波长分光光度法简称双波长法,是在传统的单波长分光光度法的基础上发展起来的。使用二个单色器得到二个不同波长的单色光,它取消了参比池,通过波长组合在一定程度上能消除浑浊背景和重叠谱图的干扰,双波长法一般要求有二个等吸光度点,而三波长法,则只需在吸收曲线上任意选择三个波长 1 2 3 处测量吸光度,由这三个波长处的吸光度 A1 A2 A3计算 A A 与待测物浓度成正,因而可通过 A-C

阴离子表面活性剂

水质阴离子表面活性剂的测定 亚甲蓝分光光度法本标准制定了测定水溶液中的阴离子表面活性剂的亚甲蓝分光光度法。 阴离子表面活性剂是普通合成洗涤剂的主要活性成分,使用最广泛的阴离子表面活性剂是直链烷基苯磺酸钠(LAS)。本方法采用LAS作为标准物,其烷基碳链在C10-C13之间,平均碳数为12,平均分子量为344.4。 一、适用范围 本方法适用于测定饮用水、地面水、生活污水及工业废水中的低浓度亚甲蓝活性物质(MBAS),亦即阴离子表面活性物质。在试验条件下,主要被测物是LAS、烷基磺酸钠和脂肪醇硫酸钠,但可能存在一些正的和负的干扰。 当采用10mm光程的比色皿,试份体积为100ml,本方法的最低检 0.05mg/LLAS,检测上限为2.0mg/LLAS。 二、原理 阳离子燃料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,统称亚甲蓝活性物质(MBAS)。该生成物可被氯仿萃取,其色度与浓度呈正比,用分光光度计在波长652nm处测量氯仿层的吸光度。 三、试剂 在测定过程中,仅使用公认的分析纯试剂和蒸馏水,或具有同等纯度的水。 3.1 氢氧化钠(NaOH): 1mol/L 3.2 硫酸(H2SO4):0.5mol/L 3.3 氯仿(CHCL3) 3.4 直链烷基苯磺酸钠储备溶液 称取0.100g标准物LAS(平均分子量344.4),储备至0.001g,溶于50ml水中,转移到100ml容量瓶中,稀释至标线并混匀。每毫升含1.00mgLAS。保存于4℃冰箱中。如需要,每周配置一次。 3.5 直链烷基苯磺酸钠标准溶液 准确吸取10.00ml直链烷基苯磺酸钠储备溶液(3.4),用水稀释至1000ml,每毫升含10ugLAS。当天配制。 3.6 亚甲蓝溶液 先称取50g一水磷酸二氢钠(NaH2PO4.H2O)溶于300ml水中,转移到1000ml 容量瓶内,缓慢加入6.8ml浓硫酸(H2SO4,ρ=1.84g/ml),摇匀。另称取30mg亚甲蓝(指示剂级),用50ml水溶液后也移入容量瓶,用水稀释至标线,摇匀。此溶液储存于棕色试剂瓶中。 3.7 洗涤液 称取50g一水磷酸二氢钠(NaH2PO4.H2O)溶于300ml水中,转移到1000ml 容量瓶内,缓慢加入6.8ml浓硫酸(H2SO4,ρ=1.84g/ml),用水稀释至标线。 3.8 酚酞指示剂溶液 将1.0g酚酞溶于50ml乙醇【C2H5OH,95%(V/V)】中,然后边搅拌边加入50ml水,滤去形成的沉淀。 3.9 玻璃棉或脱脂棉 在索氏抽提器(4.3)中用氯仿(3.3)提取4h后,取出干燥,保存在清洁的玻璃瓶中待用。

常用表面活性剂

6501 用椰子油为原料,经精炼后直接或间接与二乙醇胺反应合成,就是高品质得 非离子表面活性剂。 一、 英文名:Coconut diethanolamide 二、 化学名:椰油酸二乙醇酰胺6501 三、 化学结构式:RC0N(CH2CH20H)2 四、 产品特性: 具有显著得增稠、增泡、稳泡性能; 具有显著得乳化、去污能力; 同其它表面活性剂有良好得复配性与协同效应; 具有抗静电、防锈、防腐蚀等性能; 特别适于配制透明产品; 就是性能价格比很高得品种之一。 型 外 游离脂肪酸(幻 W0、5 W0、5 W0、5 游 离 胺(mgkoH/g) W30、0 W80、0 W30、0 色 泽(APHA) W250 W250 W300 PH 值(lOg/LIO%乙醇)9、0-11, 0 9、0-11. 0 9、0-11. 0 六、用途与用量: 1、 用途:添加于香波、沐浴球、洗洁精、洗衣液、洗手液等产品中作 增泡剂、稳泡剂、增稠剂,乳化去油去污剂。 2、 推荐用量:2—6% 本品属于非离子表面活性剂,没有浊点。性状为淡黄色至琥珀色粘稠液 体,易溶于水、具有良好得发泡、稳泡、渗透去污、抗硬水等功能。属非 离子表面活性剂,在阴离子表面活性剂呈酸性时与之配伍增稠效果特别明 显,能与多种表面活性剂配伍。能加强清洁效果、可用作添加剂、泡沫安 定剂、助泡剂、主要用于香波及液体洗涤剂得制造。在水中形成一种不透 明得雾状溶液,在一定得搅拌下能完全透明,在一定浓度下可完全溶解于不 同种类得表面活性剂中,在低碳与高碳中也可完全溶解。 TX-10/NP-10 别名:NP-10, TX-10,NPE-10 英文名称:Po 丨 yoxyethy I ene (10) nony I pheny I ether 2 、 3 、 4、 五、 技术指标 号1 : 1 1 :仁5特级不含甘油型 观 常温下(25°C)为淡黄色透明液体 味无异味

硫化氢——亚甲基蓝分光光度法方法确认

硫化氢——亚甲基蓝分光光度法 《空气和废气监测分析方法》(第四版)第三篇第一章十一(二)方法确认 1.目的 通过分光光度法测定吸收液中硫化氢的浓度,分析方法检出限、回收率及精密度,判断本实验室的检测方法是否合格。 2.适用范围 本标准方法规定了测定空气中硫化氢的亚甲基蓝分光光度法。 本标准方法适用于空气中硫化氢的测定。 3. 职责 3.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的 意外因素,掌握检出限、方法回收率与精密度的计算方法。 3.2 复核人员负责检查原始记录、检出限、方法回收率及精密度的计算方法。 3.3技术负责人负责审核检测结果及检出限、方法回收率、精密度分析结果。 4.分析方法 4.1标准曲线的绘制 向各管加入混合显色剂1.00ml,立即加盖,倒转缓慢混匀,放置30min。加1滴磷酸氢二铵溶液,以排除三价铁离子的颜色,混匀。在波长665nm处,用2cm比色皿,以水为参比,测定吸光度。以吸光度对硫化氢含量(μg),绘制标准曲线。 4.2样品测定 采样后,加入吸收液使样品溶液体积为10.0ml,以下步骤同标准曲线的绘制。 4.3计算 W/ 硫化氢(H2S,mg/m3)=Vn 式中:W——样品溶液中硫化氢的含量,μg; Vn——标准状态下的采样体积,L。

5. 结果分析 5.1检出限 选取10份空白样品,按4进行测试。结果见附表。由附表可知,检出限满足此标准方法的要求。 5.2方法回收率与精密度 选取6份样品加标,使加标浓度均为1.00mg/L,按4进行测试。结果见附表。由附表可知,回收率在97.7%-100.3%之间,满足要求。

几种常见阴离子表面活性剂使用指南

几种常见阴离子表面活性剂使用指南 1,脂肪醇聚氧乙烯醚硫酸盐AES 优点:抗硬水能力好,产品本身是由AEO-2,3获得,因此有较好的除油性能。 AES做出的产品较粘稠,具有一定的增稠作用。 缺点:水溶性差,天气寒冷季节使用不方便,尤其在北方。 产品渗透性能较差。 AES分散性能较差,容易导致污垢反沾污。 生产:基本国内生产,如:台湾和桐、浙江赞宇、湖南丽臣等。 2,十二烷基苯磺酸及其钠盐ABS 优点:渗透性能好,价格便宜,具有一定的除油性能,是我国产量最大的表面活性剂。 具有生产工艺简单,原料易得等优点。 缺点:泡沫极高。 不耐硬水,需要搭配使用软水作用的产品。 分散性能差,容易导致污垢反沾污。 生产:台湾和桐、南京佳佳、天津三智等产能较大。生产工艺简单,在国内也有非常多的小型厂家生产苯磺酸,很多贸易商在销售苯磺酸。市场上的产品也可谓鱼龙混杂。有的颜色深,有的颜色浅,有的含量不及90%,有的氨味特别大。 3,仲烷基磺酸钠SAS-60 优点:渗透性能好,并且环保。如果想提高产品的渗透性,SAS是最佳选择。 缺点:不耐碱,净洗力一般,也很贵(只有60%的含量,性价比不高)。 本身泡沫很高,跟非离子复配后泡沫会变得更高。 只可做渗透剂用,不适合净洗用,SAS的净洗性能是比不过LAS。 水溶性差,使用不方便。 生产:国内现在没有生产,在上世纪九十年代河北轻化工厂曾经生产该产品,遗憾的是,1998年4月28日发生爆炸事故,厂毁人亡。目前只有沙索与科莱恩生产该产品。 SAS由于生产工艺复杂,产品价格较贵,性价比不及其它阴离子净洗剂,九十年代以后SAS逐渐受到冷落,产品已经开始减产,目前沙索和科莱恩已经将产能降到最低,沙索甚至关停了生产SAS的装置。其它的化工企业诸如三井、巴斯夫、陶氏等并不看好SAS的前景,始终没有在SAS领域投资。仲烷基磺酸钠SAS在净洗中的使用已经很少。 4,脂肪酸甲酯乙氧基化物磺酸盐FMES 优点:脂肪酸甲酯乙氧基化物的磺酸盐FMES是表面活性剂里面性能比较均匀的产品。净洗、渗透、乳化、分散性能均衡。净洗性能极佳,是阴离子类型表面活性剂里面净洗力和乳化力最高产品,并具备一定耐碱性能。 该产品在欧美清洗领域颇为流行,因为FMES各种性能均衡,在很多的应用领域无需复配其它产品,就可以直接使用。 缺陷:渗透性不及仲烷基磺酸钠与十二烷基苯磺酸 泡沫较低,不适用于要求高泡沫的应用领域,如日化洗面奶、工业废纸鼓泡脱墨等。 生产:该产品在国内没有生产厂家,只有中国日化研究院在实验室开发此产品,2010年中国日化研究院与辽宁石化联合试生产,但国内距离产业化还需要较长时间。 国外生产厂家主要有墨西哥喜赫石油、美国马拉松石油、阿纳达科石油等几家生产商。 5,脂肪酸甲酯磺酸盐MES 优点:脂肪酸甲酯磺酸盐MES采用绿色天然棕榈酸或椰子酸不经过乙氧基化,直接磺化产品。该产品最大的特点就是绿色环保,对于崇尚自然的日化亲肤产品领域是未来发展趋势。 缺陷:其净洗、乳化等各种性能均不及其它阴离子产品。

天然气中硫化氢含量的测定及安全防护(精)

维护得到技术上的保证。 (4该仪表监测量程宽、自动化程度高、安装方便、操作简单易学,由于微机能将分离器的管道压力、含水情况及时显示出来,并能够对特殊情况作报警,使得分离器操作人员能随时了解分离器的工作状态,给现场操作人员带来诸多方便,使油田原油计量水平上了一个台阶。 (5该仪表是低剂量同位素工业仪表,对γ射线采用了严密的辐射屏蔽,没有任何剂量的泄漏,仪表周围任意距离的γ剂量大大低于国家安全剂量标准。 此外,仪表防爆等级为d ⅡB T4,保证环境和工作人员的绝对安全。 [参考文献] [1]戴光曦.实验原子核物理学[M ].北京:原子能出版社, 1995. [2]徐克尊.粒子探测技术[M ].上海:科技出版社,1981.[3]魏宝文.原子核物理实验方法[M ].北京:原子能出版 社,1990. [4]中国大百科全书总编辑委员会.中国大百科全书—物理 学卷[M ].北京:中国大百科全书出版社,1987. [编辑:薛敏] 天然气中硫化氢含量的 测定及安全防护 晁宏洲,柯庆军

(塔里木油田公司开发事业部,新疆库尔勒841000 [收稿日期]2005-05-13 [作者简介]晁宏洲(1972-,男,陕西宝鸡人,助理工程师,毕业于西安石油学院,从事企业计量工作。[摘要]文章阐述了天然气中硫化氢含量的测定方法,介绍了作业现场硫化氢监测仪器及其检定,提出了含硫化氢 环境中人身安全防护措施。 [关键词]硫化氢含量;检测仪;安全防护 [中图分类号]TH 83[文献标识码]B [文章编号]1002-1183(200505-0028-03 由地层采出的天然气通常除含有水蒸气外,往往 还含有一些酸性气体。这些酸性气体一般是硫化氢、二氧化碳、硫醇、硫醚等气相杂质。其中,硫化氢是酸性天然气中毒性最大的酸性组分,准确测定天然气中的硫化氢含量,采取先进的天然气处理工艺、使其在天然气中的含量符合管道输送和商品贸易的条件,不但可以减轻金属腐蚀,而且对人身安全的防护也是极其重要的。 1硫化氢形成的地质原因 (1生物原因 生物作用生成硫化氢的一个主要途径是通过硫酸盐还原作用直接形成,此类硫化氢形成的先决条件是有硫酸盐和硫酸盐还原菌的存在。硫酸盐还原菌进行厌氧的硫酸盐呼吸作用,将硫酸盐还原生成硫化氢,这是天然气中硫化氢最主要的成因和来源。 (2热化学原因 硫化氢热化学成因从形成机理上分为两种类型。

17种常用表面活性剂介绍汇总

17种常用表面活性剂介绍 作者:佚名 文章来源:本站原创 点击数: 864 更新时间: 2006-8-24 22:05:26 月桂基磺化琥珀酸单酯二钠(DLS ) 一、英文名: Disodium Monolauryl Sulfosuccinate 二、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa 四、产品特性 1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体; 2. 泡沫细密丰富;无滑腻感,非常容易冲洗; 3. 去污力强,脱脂力低,属常见的温和性表面活性剂; 4. 能与其它表面活性剂配伍,并降低其刺激性; 5. 耐硬水,生物降解性好,性能价格比高。 五、技术指标: 1.外观(25℃): 纯白色细腻膏状体 2.含量 (%): 48.0—50.0 3.Na2SO3(%): ≤0.50 4.PH 值(1%水溶液): 5.5—7.0 六、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES 一、英文名:Disodium Laureth(3) Sulfosuccinate 二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、乳化、分散、润湿、增溶性能; 2. 刺激性低,且能显著降低其他表面活性剂的刺激性;

3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、技术指标: 1.外观(25℃):无色至浅黄色透明粘稠液体 2.活性物(%):30.0±2.0 3.PH值(1%): 5.5—6.5 3.色泽(APHA):≤50 4.Na2SO3 (%):≤0.3 5.泡沫(mm):≥150 六、用途与用量: 1、用途:制造洗发香波、泡沫浴、沐浴露、洗手液、外科手术清洗及其它化妆品、洗涤日化产品等,还可作为乳化剂、分散剂、润湿剂、发泡剂等。广泛用于涂料、皮革、造纸、油墨、纺织等行业。 2、推荐用量:在香波中为8-12%,在浴液中用量为10-15%,其它化妆品中为0.5-5%。应用时PH值不应超过7。 椰油酸单乙醇酰胺磺基琥珀酸单酯二钠DMSS 一、英文名:Disodium Cocoyl Monoethanolamide Sulfosuccinate 二、化学名称:椰油酸单乙醇酰胺磺基琥珀酸单酯二钠 三、结构式:RCONHCH2CH2OCOCHCH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、乳化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;稳泡性能优于醇醚型磺基琥珀酸单酯二钠; 4.有优良的钙皂分散和抗硬水性能; 5.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、技术指标: 1.外观(25℃):微黄色透明液体 2.活性物(%):≥30.0

阴离子表面活性剂的生产现状及发展趋势

科学与财富 纤就可以虚拟成多根光纤使用,便于灵活调度,提高了业务开通速度,同时降低了开通成本。 (2)、建设阶段 在光缆建设中,根据之前的规划图,通过网管中心下发电子工单,施工人员在现场一次批量跳接,连接起所有共享光缆,由于所有光纤端口都有独一无二的ELD电子标签,可明确界定每根跳纤的连接关系,把所有光纤一步跳接到位,之后根据业务发展情况,可以做“加法”或“减法”,灵活适配光纤网络业务的发展,由于现场施工人员的每个动作都是在网管控制下进行,可确保资源数据的完全准确。 (3)、使用阶段 通过引入智能光纤管理系统,当某区域有业务需求时,运营商可直接从网管中心查找可用光路由进行挑选。读出适配情况选择合适的光路由,并从已连接好的共享光缆中选取吻合的光纤;之后由网管下发施工工单,仅在靠近用户侧和局端设备侧各进行一次跳接即可开通业务。中间无需任何跳接,大大缩短了响应时间,为快速抢占专线业务提供了有力支撑。 配合智能ODN网管,业务部门已经使用了哪些光纤链路,哪些链路目前闲置……这些实际数据,网管中心可随时提取。统计出光纤利用率等重要网络指标。如果某根光缆质量出现恶化,光纤衰减增大,光纤故障诊断系统会自动诊断并发出警告;网管收到告警信息,会重新分配一条新的光路由给受影响的用户;同时,精确定位故障点,指导运维快速修复故障。故障修复后,可大胆做“减法”。从网管上释放可用的光纤资源,化整为零重新整合再利用,从而提高光纤利用率。 (4)、调整阶段 光纤网络可灵活调整,动态匹配业务发展。由于业务发展的不平衡,当某一区域的业务量很大,前期规划的共享光缆即将使用完毕时,网络中心会提前收到资源使用预警;而另一区域业务一直很少,前期规划的光缆太多,这时运营商可以经过网优仅仅改动未使用的端口,把更多的共享光纤分配给业务量大的区域,在项目专家团队审核通过后,一次生成批量跳接工单,完成共享光缆的调整,最终形成均匀的光纤利用率。 结束语: 运营商通过引入ODN智能光纤管理系统,资源数据实现一键采集和自动录入,减少了数据的人工校验和录入;同时通过实时监控和定时巡检,确保了光纤资源数据100%准确;管线资源信息、设备信息、端口状态等可在ODN网管上清晰显示,光缆资源使用情况一目了然,提高了业务发放效率,缩短了故障处理时间,实现了光纤资源零浪费、业务发放零等待、业务开通零返工,极大地节省运维费用。■ 阴离子表面活性剂的生产现状及发展趋势 王海燕1王佐2朱小亮1 (1.江苏新源水务有限公司223809;2.江苏颖盛化工有限公司) 表面活性剂是上世纪三十年代发展起来的一门新型化学工业,是国内外化学工业中发展最迅速的专门化学品领域中知识密集型、技术开发型行业。近年来,随着石油化学工业的迅速发展,为表面活性剂的生产提供了丰富的原料,使世界表面活性剂的产量迅速增长,商品种类越来越多,其应用范围也越来越广,成为国民经济的基础工业之一。有“工业催化剂”、 “工业味精”之称。表面活性剂最常用的分类方法是按分子结构中带电性的特征分为阴离子型、离子型、阳离子型和两性表面活性剂四大类。阴离子表面活性剂由于其性质、性能和价格方面的优势,无论在工业应用方面还是在民用产品方面都得到了广泛应用,在众多配方中被用做主要活性组分,而阴离子表面活性剂又分为羧酸盐、硫酸酯盐、磺酸盐和磷酸酯盐四大类,具有良好的去污、发泡、分散、乳化、润湿等特征。广泛用作洗涤剂、起泡剂、润湿剂、乳化剂和分散剂。而磺酸盐类表面活性剂又是阴离子表面活性剂中产量最大、应用领域最广的一种。 下面就磺酸盐类表面活性剂得合成现状和主要发展趋势做主要概述: 一、生产现状 磺酸盐表面活性剂按亲油基或磺化分为(一)石油磺酸盐(磺酸基在芳环或环烷上)(二)烷基芳基磺酸盐(磺酸基在芳环上)(三)烷基和烯基磺酸盐(四)聚氧乙烯醚磺酸盐(磺酸基在氧乙基链端)(五)多环芳环磺酸盐缩合物(磺酸基在芳环上)等。除此之外,还有烷基苯醚磺酸盐。目前常用的表面活性剂有三种:石油磺酸盐、烷基苯磺酸盐和烯烃磺酸盐。 1、石油磺酸盐和烷基苯基磺酸盐这两种传统的磺酸盐表面活性剂的合成及性质有大量的文献进行了报道。石油磺酸基型阴离子表面活性剂由富芳烃原油或馏分磺化得到的产物,烷基苯基磺酸盐包括烷基磺酸盐、烷基苯基磺酸盐、重烷基苯基磺酸盐等。在磺酸盐型阴离子表面活性剂中,以石油磺酸盐型最普遍。石油磺酸盐作为化学采油用剂具有表面活性高、原料易得、生产工艺简单、成本较低、配伍性好等特点,受到普遍关注,进入了先导性实验。烷基炭数为C14-C16的重烷基苯磺酸盐可与我国大多数油田的原油形成超低界面张力体系,因而成为重要的趋油用表面活性剂。 2、α-烯烃磺酸盐(AOS)它的主要成分是:烯烃磺酸盐和羧基磺酸盐,早在20世纪60年代末α-烯烃磺酸盐就已经通过烯烃的磺化反应而工业化了,AOS与钙镁离子生成的盐仍然是一种较好地表面活性剂。AOS具有抗盐性好、油/水界面张力低、良好的起泡力和泡沫稳定性等特点,其生物降解性比烷基苯磺酸盐好,与烷基硫酸盐(AS)接近,因而对人体和环境温和,尤其适用于配制重垢低磷或无磷洗衣粉。此外,又由于AOS热稳定性好,乳化能力强,在工业清洁,石油开发及输送等领域具有相当可观的应用前景。 二、发展趋势 当前,世界表面活性剂市场呈现稳定而缓慢的增长趋势,根据国外一些大公司及专家的预测,未来表面活性剂工业的发展趋势主要是:1、提高表面剂的生物降解性。表面活性剂对环境生态的影响仍然是个重要问题,因此解决表面活性剂的生物降解性和毒性仍是今后一大课题,减少对环境的污染,使表面活性剂生产和使用更加安全。2、大力开发和利用天然资源,开发和利用天然脂肪醇和棕榈油,糖类、淀粉松香及其衍生物为原材料制造表面活性剂,使其符合生态与环保要求。3、醇系表面活性剂需求量将持续增长,在家用洗涤剂中,醇系表面活性剂耗量大幅增加,其主要原因是洗涤剂新品种开发使其活性物含量增加;醇系表面活性剂的性能优越,天然油脂开发和利用提供充足和价格平稳的高炭醇资源。4、功能性和有效性将成为表面活性剂的开发动向。在家用洗涤剂与化妆品中要求提供温和性、低刺激、去污力好、相容性佳的表面活性剂,满足低温、硬水少用助剂要求的表面活性剂以及特种用途用表面活性剂等。5、表面活性剂在高新技术领域的应用,随着高科技的不断发展,表面活性剂在高新技术领域的应用越来越广,其中包括在能源、新材料、生物、生命科学、分离、微电子技术、宇宙、海洋等领域的应用。 三、结束语 在工业生产和日常生活中,随着环保意识的增强,人们对表面活性剂的开发提出了更高的要求,要求产品具有高表面活性剂的同时,还要生物降解性好、无(或低)毒、无刺激、多功能性,并且采用再生资源进行清洁生产。由于表面活性剂应用于各种合成洗涤剂及个人护理用品中,所以对表面活性剂温和型、无刺激性的要求越来越高。在表面活性剂的实际应用中,成本仍然是决定性因素,如何降低生产成本应是表面活性剂的研究重点。因此,低成本、绿色、温和型的表面活性剂将会有更广阔的市场前景,也是目前表面活性剂研究方面的热点课题。■ 科学研究 4

亚甲蓝分光光度法测阴离子表面活性剂的不确定度分析

亚甲蓝分光光度法测阴离子表面活性剂的不确 定度分析 根据实际工作中所测饮用水中LAS含量较低,而LAS为常规必检项目, 本文通过亚甲蓝分光光度法测阴离子表面活性剂的方法,得出本方法的不确定度以定量表达本方法的可信程度,数值只有包含了不确定度才真正有意义。 1.实验部分 1.1 原理 阴离子染料亚甲蓝与阴离子表面活性剂作用,生成蓝色的盐类,该生成物可被氯仿萃取,其色度与浓度成正比,用分光光度计在波长652nm处测量氯仿层的吸光度。 1.2试剂与仪器 在测定过程中,使用分析纯试剂和蒸馏水,7230G可见光分光光度计, 配有10 mm光程的比色皿。氯仿(CHCl3),分析纯,十二烷基苯磺酸钠标准溶液(1000mg/L)。当天配制10.0mg L的标准贮备液。亚甲蓝溶液和洗涤液按GB5750-85.16.1配制。 1.3 实验方案及过程 按照《生活饮用水标准检验法》GB5750-85-16.1的步骤进行实验,于250mL 容量瓶中分别加入适量的水,再移取系列直链烷基苯磺酸钠标准溶液于 250mL分液漏斗中,加水刚好100mL,以酚酞为指示剂,滴加NaOH溶液至刚好呈桃红色,再滴加0.5mol/L硫酸至桃红色刚好消失。加入25mL亚甲蓝溶液,用氯仿萃取三次,萃取液用洗涤液洗涤,定容50mL,用分光光度计于波长652nm处测吸光度。 1.4测量的数学模型 1)回归曲线:y=a+bx

2)浓度计算公式:c=m/v 3)根据样品测定计算公式的独立分量,根据不确定度的传播规律,亚甲蓝分光光度法测定水中直链烷基苯磺酸钠标准溶液测量的合成相对标准不确定度公式表达为: 式中:u rel (C)—水中LAS 浓度的相对标准不确定度; u rel (C LAS )—LAS 标准贮备液中引入的相对标准不确定度; u rel (f)—将贮备液稀释至使用液引入的相对标准不确定度; u rel (m)—标准网线拟合求得LAS 含量时引入的相对标准不确定度; u rel (A)—重复测定时引入的相对标准不确定度; u rel (R)—回收率引入的相对标准不确定度; 2. 不确定度的评定 2.1 LAS 标准溶液引入的不确定度 u 1标液浓度:1.000±0.020mg/mL 其不确定度为:U 11=0.020/3=0.011547mg/mL 、灵敏度系数c 11=0.02。 在使用过程中,取2 mL 标准物到100mL 容量瓶中,在稀释过程中使用了2 mL 移液管,最大允许误差为±0.01ml 。 U 12=0.01/3=0.00577、灵敏度系数c 12=0.005 稀释过程中使用了100mL 容量瓶,最大误差为±0.1mL 则: U 13=0.1/3=0.0577,灵敏度指数c 13=-1.0×10-4mg/mL 由于实验室温度基本恒定为20℃,所以温度引入的不确定度可不计,所以: U 1=212 212212212211211u c u c u c ?+?+?=2.333×10-4mg/mL 2.2 光度法测量导致的吸光度A 的不确定度分量u 2 光度计的测量误差为±0.001 按均匀分布:u 2=0.001/3=0.0005774mg/mL 标准系列溶液中,LAS 质量引入的不确定度1.306μg ) ()()()()(22222R u A u m u f u c u u rel rel rel rel LAs rel rel ++++=

相关文档
最新文档