电脑主板的结构和工作原理

电脑主板的结构和工作原理
电脑主板的结构和工作原理

主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数十个生产厂家,有近百种之多,如何从这么多种类的主板中选择呢?本节将从主板的原理与结构方面出发,揭开主板的神秘面纱,使读者对主板能有一个清晰的认识,对选购和装机都不无益处。

奔腾级AT主板的结构及工作原理

奔腾级主板的结构

下面是奔腾级主板的结构框图。由图中可以看到主板上的一些主要部分。

FDC:软驱控制器(接口)

USB:通用串行总线(接口)

SIMM:72线内存条插槽

DIMM:168线内存条插槽

PS/2:PS/22鼠标接口

BIOS:基本输入输出系统

LPT:并行接口(打印口)

COM1、COM2:串行接口

显然,主板主要由三类构件组成:集成电路、各种插槽插座和一大块多层电路板。在主板上的众多集成电路中,有着重要程度上的差别。图中有阴影的几个集成电路决定了主板的性能,这几个集成电路称为“芯片组”或“套片”,包括PCM芯片、LBX芯片、SIO芯片。

奔腾主板的工作原理 PCI ISA总线奔腾主板中,CPU只与套片(芯片组)直接打交道,套片作为CPU的全权代表,处理CPU与内存、高速缓存、PCI插卡、ISA插卡、硬盘等外部设备的通信。各芯片的作用如下:

1.PCI、内存、Cache控制器(PCMC)芯片

PCMC是“PCI、Cache and Memory Controller”的缩写,从名字上就可以看出来,它的作用是:管理PCI总线、管理Cache、管理内存。

由于PCMC内的二级Cache控制器只支持256KB或512KB的二级Cache,于是采用Intel套片的主板就没有提供其它容量Cache。如果你听到某个主板声称

自己支持1024KB的Cache,那就说明它用的肯定不是Intel的套片。

另外,在PCMC内还集成有DRAM控制器,负责DRAM的刷新、读写和被Cach e。因此,主板支持的内存种类、内存的最大容量也不是任意的,主板生产商在这方面依然只能服从这些限制。

2.局部总线加速器(LBX)芯片

LBX是“Local Bus Accellerator”的缩写,它具有下列主要功能:

◇提供64位的DRAM界面,支持猝发式读写。支持的内存读写方式和读写周期也会影响主板的性能。

◇提供32位的PCI界面。LBX与PCMC一起作为CPU总线到PCI总线的桥梁,提供了PCI总线。

◇提供CUP与内存、CPU与PCI总线、内存与PCI总线之间的读写缓冲,提高数据传输速度。这些缓冲的大小将影响主机板的性能。FX套片性能不如HX、V X套片,部分原因就在于其读写缓冲较小。

◇某些版本的LBX还支持内存校验和纠错。

3.系统I/O(SIO)芯片

SIO是“System I/O”的缩写,具有下列主要功能:

◇作为PCI总线到ISA总线的桥梁,提供ISA总线,并且负责ISA设备的仲裁。

◇集成82C54实时钟,用于系统时钟、内存刷新、扬声器发声。

◇支持X工具总线。X工具总线的作用是连接多功能I/O芯片、键盘、实时钟和BIOS片选。多功能I/O芯片提供了双串口、一并口、软驱接口。有的I /O芯片还提供了游戏杆接口。

◇集成2个82C59中断控制器,管理系统硬件中断。

◇支持CPU的系统管理模式,用于绿色功能,能让CPU进入省电的休眠状态或者在需要的时候唤醒CPU。

◇提供2个增强型DMA控制器,支持多种DMA功能。

◇最新的SIO还支持USB总线接口。

奔腾级ATX主板的结构及工作原理

下图是ATX主板的结构框图。是当前的主流机采用的主板。

1.ISA扩展槽

这种扩展槽的颜色一般是黑的,在80X86系列电脑中,除了最早的XT机的主板,几乎所有主板都有数个ISA扩展槽,图中的主板具有4个ISA槽。顾名思义,扩展槽是用来扩展计算机功能用的。比如,购买了一块声卡,需要一个扩展槽,购买了一块解压卡,也需要将它插到一个扩展槽里。插在Pentium机ISA

槽内的卡除了上述两种外,常见的还有:网卡、SCSI卡、内置Modem等。

2.I/O芯片

几乎所有的Pentium主板都自带I/O电路。Pentium主板上的I/O芯片最常见的是Winbond公司的W83787和W83786。I/O芯片的功能是提供软驱接口、串并行通信口等等。

3.PCI扩展槽

同ISA扩展槽相比,PCI扩展槽的长度要短得多,而且颜色一般都是白的。仔细观察,PCI扩展槽内引线与引线的距离比较近,因此PCI卡上面的引线并不少于ISA卡。常见的PCI卡有PCI显示卡、PCI接口的SCSI卡和网卡。

4.168线内存插槽

168线内存可以提供64位线宽的数据,因此使用一条就可以启动Pentium 系统。图中的主板有3个168线内存槽,目前新的主板一般有两个或四个168

线内存槽,扩展内存很方便。常见的168线内存大多是SDRAM(Synchronous DR AM,同步内存),其效率要比EDO和FPM内存高,使得整个系统性能也有一定的提升。目前常见的SDRAM的速度是66MHz的,83MHz和100MHz的也开始上市。

5.72线内存槽

与168线内存相比,其长度显然短多了。一条72线的内存可提供32位线宽的数据,由于Pentium芯片是64位的,因此,除了少数特别设计的Pentium主板,大部分都需要两条72线内存条才能启动系统。该主板只有四个72线槽。目前,72线条内存正象30线内存条一样遭到淘汰。72线内存常见的有EDO RAM(E xtended Data Outup RAM,EDO内存)和FPM RAM(Fast Page Mode RAM,普通内存)。一般EDO RAM的速度为40~60ns,FPM RAM速度为60~70ns。注意,虽然很多系统声称支持SD RAM和EDO RAM混用,但最好不要这样做,这对系统的稳定和安全不利。

电脑主板供电电路图分析

电脑主板供电电路图分 析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生 一、四大供电的产生 1、CPU供电: 电源管理芯片: 场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。 CPU供电核心电压在上管的S极或者电感上测量。 2、内存供电: DDR400内存供电的测量点: (1)、VCCDDR(7脚位):VDD25SUS MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图: VDD25SUS测量点在Q18的S极。 (2)、总线终结电压的产生 (3)参考电压的产生 VDD25SUS经电阻分压得到的。 3、总线供电:通过场管Q15产生VDD_12_A. 4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。 5、其他供电 (1)AGP供电:A1脚12V供电,A64脚:VDDQ 2、结合跑线分析intel865pcd主板电路 因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。 一、Cpu主供电(Vcore) cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。 二、内存供电 1、内存第7脚,场管Q6H1S脚测量2.5v电压 参考电路图: 在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在 0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

主板诊断卡工作原理

主板诊断卡工作原理 主板诊断卡也叫POST卡(Power On Self Test加电自检),其工作原理是利用主板中BIOS 部程序的检测结果,通过主板诊断卡代码一一显示出来,结合诊断卡的代码含义速查表就能很快地知道电脑故障所在。尤其在PC机不能引导操作系统、黑屏、喇叭不叫时,使用本卡更能体现其便利,事半功倍。 主板上的BIOS在每次开机时,会对系统的电路、存储器、键盘、视频部分、硬盘、软驱等各个组件时行严格测试,并分析硬盘系统配置,对已配置的基本I/O设置进行初始化,一切正常后,再引导操作系统。其显著特点是以是否出现光标为分界线,先对关键性部件进行测试,关键性部件发生故障强制机器转入停机,显示器无光标,则屏幕无任何反应。然后,对非关键性部件进行测试如有故障机器也继续运行,同时显示器显示出错信息当机器出现故障。当计算机出现关键性故障,屏幕上无显示时,很难判断计算机故障所在,此时可以将本卡插入扩充槽,根据卡上显示的代码,参照计算机所所属的BIOS种类,再通过主板诊断卡的代码含义速查表查出该代码所表示的故障原因和部位,就可清楚地知道故障所在。 诊断卡是一个能告诉我们故障大概发生在部件上的检测维修工具。拥有它可以让我们在确定电脑故障时省时省力少走很多弯路,让我们的工作变得更轻松。

详细概况如下: 一、DEBUG诊断卡的工作原理 DEBUG卡是一种可检测电脑故障的测试卡,本公司应用于台式机的有PCI、ISA和LTP三种接口,笔记本的有miniPCI和LTP两种接口,可以选择方便的接口上使用。当诊断卡插入相对应的接口后,启动电脑时卡上自带的显示屏就会根据启动的进度显示出各种检测代码。一般过如是: 主板加电后,首先要对CPU进行检测,测试它各个部寄存器是否正常;接着BIOS将对CPU中其他所有的寄存器进行检测,并判断是否正确;然后是检测和初始化主板的芯片组;接下来检测动态存的刷新是否正常;然后将屏幕清成黑屏,初始化键盘;接下来检测CMOS接口及电池状况。如果某个设备没有通过测试,系统就会停下来不再继续启动,而这时,诊断卡上所显示的代码也就不再变化了。这样,我们通过对照说明书查询代码所对应的硬件,就可较容易地判断出故障大概是出现在哪个部件上(不同的主板BIOS版本输出的代码都略有不同,所以有些代码在说明书上可能没有,这样一般只能参考说明书接近的代码查找故障)。所以诊断卡是众多DIY爱好者的必备工具之一。

主板电路详解

主板电路详解 主板可是一台电脑的基石,但是在茫茫主板海洋当中要选择一款好的主板实属难事!一款主板如果要想能够稳定的工作,那么主板的供电部分的用料和做工就显得极为的重要。相信大家对于许多专业媒体上经常看到在介绍主板的时候都在介绍主板的是几相电路设计的,那么主板的几相电路到底是怎样区分的呢?其实这个问题也是非常容易回答的!用一些基本的电路知识就可以解释的清楚。 其实主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定的运行,同时它也是主板上信号强度最大的地方,处理得不好会产生串扰(cross talk)效应,而影响到其它较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单来说,供电部分的最终目的就是在CPU电源输入端达到CPU 对电压和电流的要求,就可以正常工作了。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和技术经验。 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制可以输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。看起来是不是很简单呢!只要是略微有一点物理电路知识的人都能看出它的工作原理。 单相供电一般可以提供最大25A的电流,而现今常用的CPU早已超过了这个

主板的工作原理

第二章主板的工作原理 2.1主板的工作原理概述 2.1.1主板的硬启动过程 主板的硬启动过程如下: ①主板插入ATX电源插头,主板加载SVSB。 ②按下主机上的电源开关(POWER BUTTON),通知南桥,然后南桥发出信号经过转换后产生PS_ON#信号。 ③POWER(ATX电源)输出SV、3.3V、12V等各路供电。 ④电源输出稳定后,发出POWERGOOD信号通知主板。 ⑤主板上产生各芯片和设备需要的电压,如1.5V、2.5V等。同时CPU也得到一个供电,拉低VRM芯片(CPU供电管理芯片)的VID信号。 ⑥VRM芯片控制产生VCORE(CPU核心供电,部分资料也称为VCCP)给CPU。 ⑦稳定的VCORE电压反馈给VRM控制芯片。VRM产生PWRGD信号,部分资料也称为VRM_GD、VCORE_GD等,专指CPU供电电源就绪。 ⑧同时VCORE经转换后,产生CLK-EN送给主板CLK(时钟芯片)电路,时钟电路开始工作,产生各设备所需的时钟。 ⑨南桥收到VRM产生的PWEGD和CLK电路送达的时钟信号后产生PCIRST#。 ⑩PCIRST#送达ACPI控制器或门电路,经转化后分别送出,送达北桥的PCIRST#(新款主板为PLTRST#),送达北桥后,北桥送出CPURST#。 ○11CPU收到CPURST#后,发出一个地址信号,这个地址信号固定为FFFFFFFOH,指向BIOS的入口地址,通过CPU到北桥的前端总线到北桥,北桥将该地址信号,经过HUB-LINK (新款Intel芯片组叫做DMI总线,不同厂家、不同产品的叫法不同)送达南桥。 ○12南桥收到地址信号后,将地址发送给BIOS,然后取得该地址存储的命令,并通过数据线将取得的BIOS命令送到北桥,再至CPU,CPU执行接收到的指令,执行运算和控制,发出一系列指令。

主板开机触发电路维修实例

主板开机触发电路维修实例 6.5.2 主板开机触发电路维修实例 1. 故障现象:硕泰克SL-85DR2主板不加电 维修过程:按照开机电路的检修流程检修发现I/O(67脚)PS OUT(#),输出信号为0.8V,此电压为由南桥提供受I/O 控制,正常情况下点开机时此点由3.3V到0V的跳变,根据笔者多年的维修经验,这种情况大多数是因为南桥待机电压3.3V供电不正常或南桥内部短路造成待机电压过低,加电后用手触摸南桥并没有温度,一般情况下如果是南桥短路在没有开机之前南桥表面会有一定温度,南桥没有发烫应首先从南桥待机电压3.3V 的产生电路开始入手,大多数主板南桥的3.3V待机电压都是由稳压器产生,如1084、1117等,经查找南桥边并无稳压器这类的管子,于是用万用表二极管档查找3.3V供电源头发现其与一八脚芯片相连,仔细观察其型号为A22BA(Q29)如6-3所示,此芯片是一个八脚的场效应管,内部集成两个场效应管,南桥的3.3V待机电压是由此管提供,测量A22BA(Q2)的S极为0.8V,DG为5V,G极为5V,S极输出0.8V是不正常的,这种情况也有可能是Q29输出端短路,测S极的对地数值正常,于是更换Q29加电后再测I/O芯片67脚,PS OUT信号为3.3V点开机时有跳变(3.3-0V)加上显示之后开机正常故障排除。 补充:硕泰克此款主板不加显卡不开机,在AGP接口边有一跳线JP2,跳1-2必须加显卡才能开机,跳2-3,不加显卡也可开机,此跳线没有跳线说明,希望大家在修到此款主板应引起注意,以免造成不必要的麻烦。 如图6-3 SL -85DR2主板开机触发电路 2.故障现象:P6VXM2T(威盛芯片组)主板不加电 检修过程:经检查发现PWR-SW待机电压为1.2V,正常情况下应为3.3V以上,此电压变低大多数为南桥损坏或与其相连的门电路短路,首先用万用表档测PWR开关正极的对地数值为120Ω,正常应为600以上,说明此电路有明显短路的地方,经查找电路PWR正极通过R217 (680)的限流电阻连接R213(472)的上位电阻,在经过C99电容滤波最后进入南桥,首先排除C99短路,拆下C99 再测量PWR正极的对地数值还是120,这种情况可能是南桥短路,为了证实是不是南桥内部短路造成PWR开机电压过低,拆下R217,在测R217两端的对地数值,发现进南桥一边的对地数值为600多,说明故障不在南桥,在仔细查找线路发现PWR正极还与一门电路(U11)相连,此门电路的型号为74HCT74如图6-4所示,更换此门电路芯片,故障排除。由于U11短路造成PWR电压过低,PWR,不能触发。 图6-4 P6VXM2T开机触发电路 3. 故障现象:KTT主板不加电

主板电路工作原理

主板各电路工作原理 主要内容: 1、主板开机电路 含主供电及其他供电电路)) 主板供电电路((含主供电及其他供电电路 2、主板供电电路 3、时钟电路 4、复位电路 5.1 主板开机电路 5.1.1软开机电路的大致构成及工作原理 开机电路又叫软开机电路,是利用电源(绿线被拉成低电平之后,电源其它电压就可以 输出)的工作原理,在主板自身上设计的一个线路,此电路以南桥或I/O为核心,由门电路、电阻、电容、二极管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线5V提供工作电压,并由一个开关来控制其是否工作,(如图4-1) 当操作者瞬间触发开机之后,会产生一个瞬间变化的电平信号,即0或1的开机信号,此信号会直接或间接地作用于南桥或I/O内部的开机触发电路,使其恒定产生一个0或1的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电源的绿线。当电源的绿线被拉低之后,电源就会输出各路电压(红5V、橙3.3V、黄12V等)向主板供电,此时主板完成整个通电过程。

图5-1 主板通电电路的工作原理图 5.1.2学习重点: ①主板软开机电路的大致构成及工作原理; ②软开机线路的寻找; ④主板不通电故障的检修; ⑤实际检修中需注意的特殊现象。 5.1.3实例剖析: 一款MS-6714主板,故障为不能通电,其开机电路如图5-2所示 (图5-2) 通过以上线路发现,开机电路由W83627HF-AW组成整个线路,按照主板不通电故障的检修流程进行检修,测其67脚没有3.3V左右的控制电压,此时就算更换I/O仍是不

能工作的,于是查找相关线路,发现此点的控制电压是由FW82801DB直接发出,再查此南桥的1.5V的待机电压异常,跟寻此点线路,发现南桥旁一个型号为702的场效应管损坏,更换此管后,故障排除。 注:W83627系列I/O在Intel芯片组的主板中从Intel810主板开始,到目前的主板当中,都有广泛的应用,而且在实际维修中极容易损坏. 5.1.4目前主板中常见的几种开机电路图:

显卡构造及工作原理

什么是显卡? 显卡的工作非常复杂,但其原理和部件很容易理解。在本文中,我们先来了解显卡的基本部件和它们的作用。此外,我们还将考察那些共同发挥作用以使显卡能够快速、高效工作的因素。 显示卡(videocard)是系统必备的装置,它负责将CPU 送来的影像资料(data)处理成显示器(monitor) 可以了解的格式,再送到显示屏(screen) 上形成影像。它是我们从电脑获取资讯最重要的管道。因此显示卡及显示器是电脑最重要的部份之一。我们在监视器上看到的图像是由很多个小点组成的,这些小点称为“像素”。在最常用的分辨率设置下,屏幕显示一百多万个像素,电脑必须决定如何处理每个像素,以便生成图像。为此,它需要一位“翻译”,负责从CPU获得二进制数据,然后将这些数据转换成人眼可以看到的图像。除非电脑的主板内置了图形功能,否则这一转换是在显卡上进行的。我们都知道,计算机是二进制的,也就是0和1,但是总不见的直接在显示器上输出0和1,所以就有了显卡,将这些0和1转换成图像显示出来。

显卡的基本原理 显卡的主要部件是:主板连接设备、监视器连接设备、处理器和内存。不同显卡的工作原理基本相同CPU与软件应用程序协同工作,以便将有关图像的信息发送到显卡。显卡决定如何使用屏幕上的像素来生成图像。之后,它通过线缆将这些信息发送到监视器。 显卡的演变自从IBM于1981年推出第一块显卡以来,显卡已经有了很大改进。第一块显卡称为单色显示适配器(MDA),只能在黑色屏幕上显示绿色或白色文本。而现在,新型显卡的最低标准是视频图形阵列(VGA),它能显示256种颜色。通过像量子扩展图矩阵(QuantumExtendedGraphicsArray,QXGA)这样的高性能标准,显卡可以在最高达2040x1536像素的分辨率下显示数百万种颜色。 根据二进制数据生成图像是一个很费力的过程。为了生成三维图像,显卡首先要用直线创建一个线框。然后,它对图像进行光栅化处理(填充剩余的像素)。此外,显卡还需添加明暗光线、纹理和颜色。对于快节奏的游戏,电脑每秒钟必须执行此过程约60次。如果没有显卡来执行必要的计算,则电脑将无法承担如此大的工作负荷。 显卡工作的四个主要部件

电脑供电电路的工作原理

供电电路的工作原理 CPU核心随着制造工艺的提高,核心电压也越来越低。我们用的ATX电源供给主板的1 2V和5V的直流电不能直接给CPU供电,所以需要通过一定的电路转换来把高直流电压 变成低直流电压给CPU的供电。 图1:许多最新的主板都采用了四相供电回路 从电路工作原理上来讲,电源做的越简单越好,单相电路元器件最少。从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。所以供电电路越简单,越能减少出问题的概率。但是主板除了要承受大功率的CPU外,还要承受显卡等其它设备的功耗,做成单相电路需要采用大功率的MOS-FET管,发热量会很恐怖,而且花费的成本也不是小数目。所以,大部分厂商都采用多相供电回路。

图7:Richtek RT9241芯片 PWM芯片的功能在出厂的时候都已经确定,可以根据主板使用的PWM控制芯片的型号来分辨。比如常见的Richtek RT9241芯片。上Richtek的查询产品页面,可以看到RT924 1是一个两相的控制芯片,当然不可能用这块芯片做出三相的供电电路来的。 图4:三相供电电路的示意图 三相供电就是三个单相电路并联而成的,因此理论上可以提供3倍的电流。图4是一个典型的3相供电电路,它和两相供电的原理是一致的,其实就是三个单相电路并联。 如何区分两相和三相供电回路 有些用户很关心怎么从主板上看出到底是两相还是三相供电回路。一般的读者可能会说通过在CPU插槽附近的供电电路有多少电感线圈来判断。这种说法有它的道理,但不太全面。笔者这里提供更加合理的方法供大家借鉴。 1.根据元器件的数量来分辨。

图2:开关电源供电方式的原理图 我们平时用的主板基本都用开关电源供电方式,其原理图如图2。ATX电源提供的12V 电压通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形。然后,经过第二级LC电路滤波形成所需要的CPU核心电压Vcore。这其实就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。由于场效应管工作在开关状态,导通时的内阻和截止时的电流很小,所以自身耗电量很小。

计算机的基本组成及工作原理

计算机的基本组成及工作原理(初中信息技术七年级) 讲课:教技12江旭美【教学设计学科名称】 计算机的基本组成及工作原理是广西教育出版社出版的初中 信息技术七年级教材第一册模块二<计算机的发展》第二节教学内容。 【学情分析】 初一新生刚入学,对信息技术硬件方面的知识知道可能不多,对硬件普遍 有一种神秘感,觉得计算机高深莫测,本节课就是要对电脑软硬件进行深入 “解剖”,并对工作原理做讲解,让学生了解电脑各组成部分,更好的使用 电脑。 【教材内容分析】 本节内容是广西教育出版社初中信息技术七年级第一册模块 二《计算机的发展》第二节教学内容。本节主要让学生掌握计算机的组成, 理解计算机系统中信息的表示,了解计算机的基本工作原理。本节内容以感 性认识为主,增强学生的计算机应用意识,通过大量举例及用眼睛看、用手摸、 用脑想,对计算机的基本组成、软硬件常识、发展有一定了解和比较清晰的认 识。通过学生亲手触摸计算机组件和教师运行自主制作的多媒体课件进行教 学,打破学生对计算机的“神秘感”,觉得计算机并不难学,而且非常实际,认 识到计算机只是普通技能,提高学生学习兴趣。 【教学目标】 知识与技能:掌握计算机的组成,理解计算机系统中信息的表示,了解 计算机的基本工作原理。 过程与方法:向学生展示拆卸的旧电脑部件及未装任何系统的电脑,通过 实际观察加教师讲授的方法完成本节内容。 情感态度与价值观:培养学生的科学态度,激发学生的想象能力和探索精 神。 【教学重难点分析】 教学重点:计算机的组成,计算机系统中信息的表示。 教学难点:计算机的基本工作原理。 【教学课时】 2课时 【教学过程】 图片图片 师:观察图片结合实物并思考:从外观上来看,计算机广.般由哪些部分组成? 生:讨论、思考、回答 [设计意图】通过图片的展示,同学们对计算机的硬件有了直观的印象, 初步的了解。 (二)自主学习,探究新知 1、先请同学们自己看书P17-P20内容,边看书边思考: ①完整的计算机系统由哪两部分组成?

主板CMOS电路工作原理解释与维修实例

主板CMOS电路工作原理解释与维修实例 5.1主板CMOS电路原理分析: 5.1.1主板CMOS电路的构成: 主板的CMOS电路由CMOS电池、CMOS随机存储器、CMOS跳线和实时时钟电路构成。 5.1.2主板CMOS电路工作原理分析: 当主板断电时,主板CMOS电池给CMOS电路提供持续的供电,电流从电池的正极流出,经过一个1K电阻、一个二极管分两路:一路到CMOS跳线,1、2脚插上跳线帽给CMOS随机存储器和实时时钟电路供电,使实时晶振产生32.768KHZ的晶振;另一路给南桥的开机触发模块一个待机电压。 当插上电源时,CMOS电池不工作。SB5V经过个电阻,到一个1117稳压器二脚输出3.3V,再经过二极管输出两路,分别给南桥开面触发模块一个待机电压和CMOS跳线一个电压。 5.2主板CMOS电路重要测试点及跑电路方法 5.2.1主板CMOD电路重要测试点概述: CMOS重要测试点有:CMOS跳线、CMOS电池、1117稳压器、时实晶振。 5.2.2主板CMOS电路跑电路方法: CMOS电路跑电路方法:先从CMOS电池正极到CMOS跳线;然后从电源紫色5V往CMOS 跳线跑(一般经过稳压器具1117、小电阻、三极管)。 5.3主板CMOS电路实践维修方法 5.3.1主板CMOS电路检修流程: 分两种情况: (1)当断开电源时装上电池,测CMOS电池有没有2.2V以上的电压,没有查CMOS 电池正极到跳线之间的元件是否有损坏,更换之间的损坏元件,则电路恢复 正常。 (2)插上ATX电源,测CMOS跳线上有无2.2V以上的电压,无查ATXSB5V到CMOS 跳线之间的元件,更换损坏元件,则电路恢复正常。 5.3.2主板CMOS电路常见故障现象及解决方法 故障现象: (1)不开机解决方法: ①查跳线是否跳错或跳线帽有无氧化,来回插拔几下放电;②查电池有无2.2V 供电,如果有2.2V给CMOS电池放电(放电时必须断开STX电源;③CMOS电 池到跳线之间的元件有损坏也会不开机;④更换实时晶振及和谐电容。 (2)一插电就开机解决方法: 查CMOS跳线有无跳错及电池放电。 (3)开机不显解决方法: 更换CMOS电池或CMOS跳线放电。

电脑主板原理图

1.主板上的英文字母都代表什么 1.L----电感.电感线圈 2.C----电容. 3.BC---贴片电容 4.R----电阻 5.9231 芯片-----脉宽 6.74 门电路-----它在主板南桥旁边 7.PQ----场效应管 8.VT 、Q、V----三级管 9.VD 、D---二级管 10.RN----排阻 11. ZD----稳压二极管 12.W-----电位器 13.IC---稳压块 14.IC 、N、U----集成电路 15.X 、Y、G、Z----晶振 16.S-----开关 17.CM----频率发生器(一般在晶振14.31818 旁边) 2. 计算机开机原理 开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提 供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始 工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。同时ATX 开机电路会 送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。当打开开机开关时, 开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使 南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。使电源开始工作,从而达到 开机目的。(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。 3. 主板时钟电路工作原理 时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一 起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700 欧之间。 在它的两脚各有1V 左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M 。 总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。这两脚叫OSC 测试脚。 也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。

主板的结构工作原理

主板的结构工作原理 主板的结构/工作原理 主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数十个生产厂家,有近百种之多,如何从这么多种类的主板中选择呢?本节将从主板的原理与结构方面出发,揭开主板的神秘面纱,使读者对主板能有一个清晰的认识,对选购和装机都不无益处。 奔腾级AT主板的结构及工作原理 奔腾级主板的结构 下面是奔腾级主板的结构框图。由图中可以看到主板上的一些主要部分。 FDC:软驱控制器(接口) USB:通用串行总线(接口) SIMM:72线内存条插槽 DIMM:168线内存条插槽 PS/2:PS/22鼠标接口 BIOS:基本输入输出系统 LPT:并行接口(打印口) COM1、COM2:串行接口 显然,主板主要由三类构件组成:集成电路、各种插槽插座和一大块多层电路板。在主板上的众多集成电路中,有着重要程度上的差别。图中有阴影的几个集成电路决定了主板的性能,这几个集成电路称为“芯片组”或“套片”,包括PCM芯片、LBX芯片、SIO芯片。 奔腾主板的工作原理 PCI ISA总线奔腾主板中,CPU只与套片(芯片组)直接打交道,套片作为CPU的全权代表,处理CPU与内存、高速缓存、PCI插卡、ISA插卡、硬盘等外部设备的通信。各芯片的作用如下: 1. PCI、内存、Cache控制器(PCMC)芯片 PCMC是“PCI、Cache and Memory Controller”的缩写,从名字上就可以看出来,它的作用是:管理PCI总线、管理Cache、管理内存。 由于PCMC内的二级Cache控制器只支持256KB或512KB的二级Cache,于是采用Intel套片的主板就没有提供其它容量Cache。如果你听到某个主板声称自己支持1024KB 的Cache,那就说明它用的肯定不是Intel的套片。 另外,在PCMC内还集成有DRAM控制器,负责DRAM的刷新、读写和被Cache。因此,主板支持的内存种类、内存的最大容量也不是任意的,主板生产商在这方面依然只能服从这些限制。 2.局部总线加速器(LBX)芯片 LBX是“Local Bus Accellerator”的缩写,它具有下列主要功能: ◇提供64位的DRAM界面,支持猝发式读写。支持的内存读写方式和读写周期也

计算机的基本结构及工作原理

计算机的基本结构及工作原理 教学内容:计算机的基本结构及工作原理 教学目的:了解计算机的分类及其基本结构,知道计算机的基本工作原理。教学过程: 一、学生看书: 二、精讲及板书: 1、计算机的基本结构 2、计算机的基本工作原理 三、小结: 计算机的工作原理 四、练习: 计算机是怎样工作的? 计算机的工作真是ZYB重油煤焦油泵全自动的吗? 第6课时计算机的分类及计算机的文化 教学内容:计算机的分类及计算机的文化 教学目的:了解计算机的分类,了解计算机文化的主要特点。 教学过程: 一、学生看书: 二、精讲及板书: 1、计算机的分类: 按工作用途可以分为通用计算机和专用计算机 按工作原理可以分为数字计算机和模拟计算机 2、计算机文化 所谓计算机文化就是因为计保温沥青泵算机的产生与使用使人类社会的生存方式发生了根本变化从而产生的一种新的文化形态。 三、小结: 计算机分类和计算机文化 四、练习: 1、计算机是怎样分类的? 2、什么是计算机文化? 第7课时计算机的硬件系统和软件系统 教学内容:计算机的硬件系统和软件系统 教学目的:了解计算机的硬件的基本组成,能正确识别计算机上的主要部件,并知道其作用。教学过程: 一、学生看书: 二、精讲及板书: 三、小结: 计算机的硬件系统和软件系统 四、练习: 计算机的硬件系统由那几部份组成? 第8课时学会正确开、关机 教学内容:学会正确开、关机 教学目的和要求 学会开、关机 教学难点:1、了解计算机外设的开、关顺序

2、正确学会开、关机 教学准备:计算机、网络 教学过程: 一、教学导入 同学们,在你们面前看ZYB-B可调压式渣油泵到的是什么呀? 对了,是电脑。 老师告诉你们电脑现在正在睡觉,这个大懒虫,到现在还在睡觉,我们让小朋友把它喊醒,让他和小朋友们一起学习好不好? 二、教学新课 (一)教师示范讲解 在把电脑喊醒之前老师先考考小朋友们一个最最简单的问题,小朋友们早上醒来第一件事是干吗?老师再重复一遍,是第一件事。 刚才小朋友们说了很多,有的说穿衣服,有的小朋友说是洗脸,还有的小朋友说叠被子,但老师却不同意小朋友的意见,再好好想想,我们早上醒来的第一件事是做什么? 对了,首先是睁开眼睛,我们小朋友只有先睁开眼睛然后才能去穿衣服、洗脸、刷牙等等。电脑同样如此,它也要先睁开眼睛,然后才能和小朋友一起学习。所以第一步我们要让电脑睁开眼睛。怎么做? 1、教师示范开显示器,同时提醒电源指示灯的颜色变化 光睁开眼睛怎么行呢?,我KCB齿轮泵们的目的是让他和小朋友们一起做游戏,我们要让他动起来,那第二步我们应该怎么做?其实很简单,就是接通电源。 2、教师出示电源开关“POWER”标志,同时逐台电脑巡视开机情况 按下它之后,我们请小朋友们说一说你发现了什么?;左边的三个灯会同时闪一下,同时第一个灯变绿了,其;3、教师先展示几幅电脑作品,然后用“金山画王笔”;4、教师一步一步示范,手把手教学生关机,并重复几;小朋友早上起来的第一件事是3GR三螺杆泵睁开眼睛;5、教师示范关显示器;(二)、学生练习开、关电脑;在教师的组织下,有步骤的打开电脑和关闭电脑;教师巡视指导;第9 按下它之后,我们请小朋友们说一说你发现了什么? 左边的三个灯会同时闪一下,同时第一个灯变绿了,其它两个灯熄灭了。现在电脑就会和小朋友一起来学习了。比如说画画了 3、教师先展示几幅电脑作品,然后用“金山画王笔”给学生做示范。刚才我们让电脑给我们小朋友画了几幅画,它说他累了,我们还是让他休息吧,下面我们就先来学习如何关机。 4、教师一步一步示范,手把手教学生关机,并重复几次。 小朋友早上起来的第一件事是3GR三螺杆泵睁开眼睛,那上床后我们会把眼睛闭上。然后开始休息。电脑同样如此。我们最后也要让电脑把眼睛闭上,要不然电脑就休息不好,他会生气的。再次提醒小朋友,我们最后千万不要让电脑的睁着眼睛睡觉。记住了要把电脑的显示器关掉。 5、教师示范关显示器。 (二)、学生练习开、关电脑 在教师的组织下,有步骤的打开电脑和关闭电脑。 教师巡视指导。

计算机系统及其工作原理(教案)

四川省义务教育课程改革实验教科书 《信息技术》七年级上 第四课计算机系统及其工作原理 教案 一、教学目标: 1、知识目标:要求学生基本掌握计算机系统的基本组成,对计算机的工作原理和分类要有一个简单的认识 2、能力目标:能正确辨认常见硬件与常见软件,能给自己配置计算机,能理解计算机的工作原理,理解计算机的基本容量单位及换算关系。初步培养学生使用信息技术对其它课程进行学习和探讨的能力,培养学生的自学能力。 3、情感目标:体会通过自己的学习,列出计算机配置清单所带来的愉悦,从而达到培养学生对信息技术的兴趣意识和爱国主义精神。 二、教学重、难点: 1、重点:计算机系统的基本组成,各硬件的重要作用 2、难点:计算机的工作原理 三、教学方法:讲授法、观察法、讨论法、赏识教育法、实习实作 四、教学媒体:多媒体网络教室、相关教学课件、硬件系统的实物(CPU、内存条、硬盘及其他硬件实物) 五、教学课时2课时(1+1) (1节理论课+1节实习实作课) 六、教学过程(第一课时) 课题:第4课计算机系统及其工作原理 (一)组织教学 (二)新课导入:问题导入“对于大家经常使用的计算机,从外观上看,它是由哪些部分组成的呢?”学生回答(略)师(看得见、摸得着的设备在计算机中都称硬件)(有了硬件计算机就能工作了吗?)为了回答这个问题,今天我们就来学习第四课-计算机系统及工作原理 (三)知识讲解(系统讲解): 第一部分:计算机系统 A:硬件部分知识简介: 1、中央处理器(芯片)-CPU计算机的大脑(核心部件)组成、功能,观察实物,分类,生产发展及国内外的差异,激发学生的爱国热情和学习动力的目的。 2、存储器(存储大量的数据和信息):内存和外存实物展示、作用地位、容量单位及换算。概括:内存容量较小,运行速度快,价格高,外存容量更大,存取速度比内存较慢,价格较便宜。 3、其他硬件简介:主板、输入设备、输出设备等等

电脑主板工作原理

电脑主板工作原理 3、3V的供电,同时CMOS电路的实时时钟震荡器产生 32、768Khz的正弦波供给开机电路与CMOS电路,此时开机电路的工作条件得到了供电和时钟,随时随地可以接受开机键的触发了。当有人按动了开机键时,开机键上通过电阻来自SB5V-SB 3、3V的高电平会产生0-1跳变,也就是“↑”上升沿的出现,使开机电路的核心受到触发,从而输出有效电平控制执行级元器件导通将ATX电源14脚由SB5V产生的5V高电平对地泻放,由此ATX电源内部的开关电源不再被控制,开始了工作,输出各项供电电流送到主板上。上述步骤可以参阅图A,此过程即主板加电过程。如上图所示,主板的供电系统第一个加电环节就OK了。重点测试点为:①CMOS跳线电压,正常为3V。② 32、768Khz晶振两脚间电压0、2V。③开机键有无高电平。 ④开机键高电平可否跳变。⑤ATX电源14脚电压。⑥ATX电源14脚外围元件好坏。⑦开机键到控制核心的信号通路。⑧核心到ATX 电源14脚外围元件控制信号通路。⑨核心损坏。其次,主板上的DC-DC直流转换电路将ATX电源提供的5V, 3、3V,12V静态直流转换成CPU,BQ,NQ,DIMM所需要的动态直流,具体过程见CPU,BQ,NQ,DIMM等直流转换电路工作原理。于是主板上的各个硬件得到了工作所需的第一个条件,供

电。与此同时,主板上的CLKSYS时钟系统也得到了来自供电系统的正常供电,其内部的震荡器开始震荡,产生了 14、318Mhz的方波CLK信号送给系统时钟电路的控制器,而后芯片收到ATX电源8脚PG信号触发,控制器在频率跳线或者CMOS软设置的指引下输出调节后的 14、318MhzCLK信号给内部的各个分频器,经不同倍频调节,各分频器输出各个硬件所需要的各种频率的CLK到达各个硬件的CLK信号输入端。见图B至此,主板上的各大硬件又得到了第二个工作条件,CLK信号。NQ内的复位控制芯片也收到了来自ATX电源8脚的PG信号触发,瞬间开始工作,只是工作一瞬间,输出一个3V以内的0-1-0跳变电压,即RST#,此信号经外围执行电路转换成两路再输出,一路正向0-1-0跳变电压的叫做PCIRST#送给周边设备,包括BQ,AGP,PCI等等,另一路反向的1-0-1跳变电压的叫做IDERST#送给IDE接口,负责硬盘的复位控制。当BQ被复位后,会随即输出0-1-0跳变电压的叫做CPURST#(结束靠CPU-DC-DC电源管理芯片输出的PG信号控制)。例外的是462接口的CPU,它的复位信号是由NQ直接提供的。而并非BQ。此时,主板上的各大硬件的三大工作条件到齐,可以开始工作了,上述所有过程加在一起就是主板的硬启动过程,检测这个过程可以通过0系统化检测,条件齐全再上CPU,DIMM等硬件进行下一步的软启动检测。主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数个生产厂

计算机的工作过程

计算机基本构成模式 计算机应包括运算器、存储器、控制器、输入设备和输出设备五大基本部件 计算机中数的表示 计算机内部应采用二进制表示指令和数据 计算机的工作原理 计算机系统应按照下述模式工作:将编好的程序和原始数据,输入并存储在计算机的内存储器中(即“存储程序”);计算机按照程序逐条取出指令加以分析,并执行指令规定的操作(即“程序控制”)。这一原理称为“存储程序”原理,是现代计算机的基本工作原理,至今的计算机仍采用这一原理。 计算机的工作原理 按照冯·诺依曼存储程序的原理,计算机在执行程序时须先将要执行的相关程序和数据放入内存储器中,在执行程序时CPU根据当前程序指针寄存器的内容取出指令并执行指令,然后再取出下一条指令并执行,如此循环下去直到程序结束指令时才停止执行。其工作过程就是不断地取指令和执行指令的过程,最后将计算的结果放入指令指定的存储器地址中。计算机工作过程中所要涉及的计算机硬件部件有内存储器、指令寄存器、指令译码器、计算器、控制器、运算器和输入/输出设备等,在以后的内容中将会着重介绍。 (一)计算机硬件系统 硬件通常是指构成计算机的设备实体。一台计算机的硬件系统应由五个基本部分组成:运算器、控制器、存储器、输入和输出设备。这五大部分通过系统总线完成指令所传达的操作,当计算机在接受指令后,由控制器指挥,将数据众输入设备传送到存储器存放,再由控制器将需要参加运算的数据传送到运算器,由运算器进行处理,处理后的结果由输出设备输出。 中央处理器 CPU(central processing unit)意为中央处理单元,又称中央处理器。CPU由控制器、运算器和寄存器组成,通常集中在一块芯片上,是计算机系统的核心设备。计算机以CPU为中心,输入和输出设备与存储器之间的数据传输和处理都通过CPU来控制执行。微型计算机的中央处理器又称为微处理器。 控制器 控制器是对输入的指令进行分析,并统一控制计算机的各个部件完成一定任务的部件。它一般由指令寄存器、状态寄存器、指令译码器、时序电路和控制电路组成。计算机的工作方式是执行程序,程序就是为完成某一任务所编制的特定指令序列,各种指令操作按一定的时间关系有序安排,控制器产生各种最基本的不可再分的微操作的命令信号,即微命令,以指挥整个计算机有条不紊地工作。当计算机执行程序时,控制器首先从指令指针寄存器中取得指令的地址,并将下一条指令的地址存入指令寄存器中,然后从存储器中取出指令,由指令译码器对指令进行译码后产生控制信号,用以驱动相应的硬件完成指纹操作。简言之,控制器就是协调指挥计算机各部件工作的元件,它的基本任务就是根据种类指纹的需要综合有关的逻辑条件与时间条件产生相应的微命令。 运算器 运算器又称积极态度逻辑单元ALU(Arithmetic Logic Unit)。运算器的主要任务是执行各种算术运算和逻辑运算。算术运算是指各种数值运算,比如:加、减、乘、除等。逻辑运算是进行逻辑判断的非数值运算,比如:与、或、非、比较、移位等。计算机所完成的全部运算都是在运算器中进行的,根据指令规定的寻址方式,运算器从存储或寄存器中取得操作数,进行计算后,送回到指令所指定的寄存

ATX电源电路工作原理及故障分析详解

12.1 计算机开关电源基本结构及原理 一、计算机开关电源的基本结构 1.ATX电源与AT电源的区别 目前计算机开关电源有AT和ATX两种类型。ATX电源与AT电源的区别为:1)待机状态不同 ATX电源增加了辅助电源电路,只要220V市电输入,无论是否开机,始终输出一组+5V SB待机电压,供PC机主板电源监控单元、网络通信接口、系统时钟芯片等使用,为ATX电源启动作准备。 2)电源启动方式不同 AT电源采用交流电源开关直接控制电源的通断,ATX电源则采用点动式电源启闭按钮,实质是用PS-ON直流控制信号启动/关闭电源。具有键盘开/关机、定时开/关机、Modem唤醒远程开/关机、软件关机等控制功能。 3)输出电压不同 AT电源共有四路输出(±5V、±12V),另向主板提供一个PG电源准备就绪的信号。ATX电源PW-0K信号与PG信号功能相同,还增加了+3.3V、+5 V SB供电输出和PS-ON电源启闭控制信号,其中+3.3V向CPU、PCI总线供电。 各档电压的输出电流值大约如下:

+5V +12V -5V -12V +3.3V +5V SB 21A 6A 0.3A 0.8A 14A 0.8A 4)主板综合供电插头接口不同 AT电源的6芯P8和P9电源插头,在ATX结构中被20芯双列直排插头所替代,具有可靠的防插反装置。对于Pentium 4机型的ATX电源,除大4芯(D 形)和小4芯电源接口插头外,还增加4芯12V CPU专用电源插头及6芯+3. 3V、+5V电源增强型插头。 2.计算机开关电源的基本结构 目前,计算机电源大多采用他激双管半桥定频调宽式开关电源。电源中还输出一个特殊的“POWER GOOD”信号。电源开启后PG信号为低电平,送给系统时钟电路,由该信号产生一个复位信号(RESET)用于系统复位。经100~5 00ms的延时后,PG信号由低电平变成高电平,系统复位结束,主机启动并开始正常运行。PG信号作用就是当电源输出的直流电压均稳定后,才使系统初始化复位,以保证计算机系统状态的稳定与可靠。由此可见,当电源正常时,PG 信号也正常,系统能够正常启动,否则系统无法进入启动状态。 他激式脉宽调制ATX开关电源电路主要由交流输入整流滤波电路、辅助电源电路、TL494脉宽调制电路、半桥式功率变换电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路等组成。他激式开关稳压电源原理结构框图如图12-1所示。 二、他激式开关电源的基本原理

电脑主板电路工作原理

第 5 章 主板各电路工作原理
在学习主板维修之前,我们先对主板的基本工作原理,做一个大体的讲解。当插上 ATX 插 头之后, ATX 电源紫色线向主板上各参与开机电路的元件提供待机电压, 此时主板处于等待状态, 当点 PWR 开关后,触发开机电路,将 ATX 电源的绿线置为低电平, ATX 电源 12V、5V、3.3V 向主板上输出各项供电, CPU、北桥、南桥等各主要芯片供电正常后,时钟芯片给主板上各设备 送出时钟信号,南桥向主板上各设备发出复位信号, CPU 被复位后,发出寻址指令,经北桥,南 桥选中 BIOS, 读取 BIOS 芯片中存储的 POST 自检程序, 由 POST 程序对主板上各设备包括 CPU、 芯片组、主存储器、CMOS 存储器、板载 I/O 设备及显卡、软盘 /硬盘子系统、 键盘/鼠标等进行 测试,测试全部通过,喇叭发出一声“嘟”的鸣叫,表示主板检测已经完成,系统可以正常使用。 若检测中出现问题,则会发出报警声并中断检测,此时我们使用主板 DEBUG 卡,根据上面显示 的代码,就可以知道问题是出现在什么部分,进行针对性维修。
我们根据主板的基本工作原理,对应的把主板分为六大电路进行讲解,分别为开机电路、供 电电路、时钟电路、复位电路、BIOS 电路及接口电路进行讲解。
4.1 主板开机电路
4.1.1 软开机电路的大致构成及工作原理
开机电路又叫软开机电路 ,是利用电源(绿线被拉成低电平之后 ,电源其它电压就可以输出 )的 工作原理,在主板自身上设计的一个线路 ,此电路以南桥或 I/O 为核心,由门电路、电阻、电容、二极 管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线 5V 提供工作电压, 并由一个开关来控制其是否工作, (如图 4-1)
当操作者瞬间触发主板上 POWER 开关之后,在 POWER 开关上会产生一个瞬间变化的电平 信号,即 0 或 1 的开机信号,此信号会直接或间接地作用于南桥或 I/O 内部的开机触发电路,使 其恒定产生一个 0 或 1 的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电 源的绿线。当电源的绿线被拉低之后,电源就会输出各路电压(红 5V、橙 3.3V、黄 12V 等)向 主板供电,此时主板完成整个通电过程。

相关文档
最新文档