一种仿真系统旋变测试系统和旋变测试方法_CN109521755A

一种仿真系统旋变测试系统和旋变测试方法_CN109521755A
一种仿真系统旋变测试系统和旋变测试方法_CN109521755A

转动惯量实验报告

转动惯量实验报告 一.实验目的 (1) 学会用落体法转动实验仪测定刚体的转动惯量; (2) 研究刚体的转动惯量与形状、大小及转轴位置的关系。 三.实验仪器描述 本实验所用NNZ-2型刚体转动实验仪由主机和测量仪表与拉线牵引台辅机及待测刚体球、环、盘、棒等组成。主机包括基础转盘和测量传感器;辅机由转数表和计时表、拉线、悬臂及砝码。 四.实验内容 1.测量基础转盘的转动惯量 2.测量圆环(或圆盘)的转动惯量 3.测双球的转动惯量并用球体验证平行移轴定理。 五.测量及实验步骤

1.测量基础转盘的转动惯量: 将主机上的霍尔传感器输出端插头和电磁铁及电插头,插入辅机的对应插口。将砝码托盘上的挂线穿过悬臂上的滑轮并使其一端固定在转轴上。(1)调节好主机和辅机的高度,使拉线与悬臂轴线平行,为此,悬臂上设有两个定位钉,使拉线通过两个定位钉即可。 (2)打开辅机上的电源开关,这时电磁铁会自动将基础转盘锁住。我们已将转数设为16个脉冲,即测量转2周的转动时间。 (3)绕线与测试准备--测试键-完成测试:主机因电磁铁失电而解锁,砝码从静止开始下落,刚体转动2周后,电磁铁自动吸合,重新锁紧转动的刚体,并显示刚体转动2周的下落时间。绕线键-主机解锁,重新绕线,绕线合适位置后完毕按下准备键,仪表全部数据归零,做好测量准备,主机(转动刚体)通过电磁铁被锁紧;按下测试键,再次测试转动2周的时间。 这里要特别强调,绕线到合适位置的含义。因为我们要测出刚体完整转动2周的时间,霍尔传感器给出开始和结束讯号的位置就必须是同一位置,这是减少误差的重要环节。 (4)测试在砝码托盘上放200g砝码,然后点按一下测试键,电磁铁失电,砝码带动刚体作匀加速转动,计时仪表开始计时,当刚体转动2周结束

系统仿真测试平台

仿真测试系统 系统概述 FireBlade系统仿真测试平台基于用户实用角度,能够辅助进行系统方案验证、调试环境构建、子系统联调联试、设计验证及测试,推进了半实物仿真的理论应用,并提出了虚拟设备这一具有优秀实践性的设计思想,在航电领域获得了广泛关注和好评 由于仿真技术本身具备一定的验证功能,因此与现有的测试技术有相当的可交融性。在航电设备的研制和测试过程中,都必须有仿真技术的支持:利用仿真技术,可根据系统设计方案快速构建系统原型,进行设计方案的验证;利用仿真验证成果,可在系统开发阶段进行产品调试;通过仿真功能,还可对与系统开发进度不一致的子系统进行模拟测试等。 针对航电设备产品结构和研制周期的特殊性,需要建立可以兼顾系统方案验证、调试环境构建、子系统联调联试、设计验证及测试的系统仿真平台。即以半实物仿真为基础,综合系统验证、系统测试、设备调试和快速原型等多种功能的硬件平台和软件环境。 目前,众多研发单位都在思索着如何应对航电设备研制工作日益复杂的情况。如何采取高效的工程技术手段,来保证系统验证的正确性和有效性,是航电设备系统工程的重要研究内容之一,FireBlade 系统仿真测试平台正是在这种大环境下应运而生的。 在航电设备研制工程中的定位设备可被认为是航电设备研制工程中的终端输出,其质量的高低直接关系到整个航电设备系统工程目标能否实现。在传统的系统验证过程中,地面综合测试是主要的验证手段,然而,它首先要求必须完成所有分系统的研制总装,才能进行综合测试。如果能够结合面向设备的仿真手段,则可以解决因部分设备未赶上研发进度导致综合测试时间延长的问题。在以往的开发周期中,面向设备的仿真技术并没有真正得到重视: (1)仿真技术的应用主要集中在单个测试对象上,并且缺乏对对象共性的重用; (2)仿真技术缺乏对复杂环境与测试对象的模拟; (3)仿真技术的应用缺乏系统性,比如各个阶段中仿真应用成果没有实现共享,

髋关节功能锻炼方法

髋关节功能锻炼方法 功能锻炼是贯彻局部与整体、动与静相结合的原则,促使早日恢复功能的一种有效手段。功能锻炼应以自动为主,被动活动为辅,动作要协调,循序渐进,由小到大,由少到多,逐步增加。应根据股骨头缺血坏死的期、形,骨关节周围软组织的功能受限程度。以及体质进行全面辨证,选择适宜的站立、坐、卧位锻炼术式及方法。 一. 站立位锻炼法 1. 扶物下蹲法:单或双手前伸扶住固定物,身体直立,双足分开,与肩等宽,慢慢下蹲后再起立,反复进行3~5分钟(图l)。 图1 图2 2. 患肢摆动法:单或双手前伸或侧神扶住固定物。单脚负重而立,患肢前屈、后伸、内收,外展摆动3~5分钟(图2) 3. 内外旋转法:手扶固定物,单脚略向前外仲,足跟着地,作内旋和外旋运动3~5分钟(图3)。 图3 图4 图5 二. 坐位锻炼法 1. 屈髋法:患者正坐于床边或椅子上,双下肢自然分开,患肢反复作屈髋屈膝运动3~5分钟(图4)。 2. 抱膝法:患者正坐床边、沙发、椅子上,双下肢自然分开,双手叉指合掌抱住胫骨近端前方,反复屈肘后拉与主动屈髋运动相配合,加大屈髋力量及幅度,活动3~5分钟(图5)。

3. 开合法:患者正坐于椅、凳上,髋膝踝关节各成90度角,双足并拢,以双足间为轴心,作双膝外展、内收运动3~5分钟,以外展为主(图6)。 4. 分合法:患者坐于凳边,髋膝踝关节各成90度角,以足尖、脚跟交替为轴旋转外移至最大限度,然后以足跟为轴心,双膝内收外展活动3~5分钟(图7)。 图6 图7 5. 蹬车活动法:患者稳坐于特制自行车运动器械上(功能锻炼车),如蹬自行车行驶一样,活动10~20分钟,速度逐渐加快(图8)。 三. 卧位锻炼法 1. 蹬空屈伸法:患者仰卧位,双手置于体侧,双下肢交替屈髋屈膝,使小腿悬于空中,像蹬自行车行驶一样的运动5~10分钟,以屈曲髋关节为主,幅度、次数逐渐增加(图9)。 图8 图9 2. 抱膝法:患者取仰卧位,伤肢屈髋、屈膝,双手叉指合掌抱住胫骨近端前方,反复屈肘向上拉与主动屈髋运动相结合,加大屈髋力量及幅度,持续活动3~5分钟,次数、幅度逐渐增加(图10)。 图10 图11 3. 屈髋分合法:患者仰卧位,足不离床面,尽量屈膝屈髋,双手置于胸前。用双足跟交替

先进驾驶辅助系统(ADAS)测试技术

先进驾驶辅助系统(ADAS)测试技术 一、中国汽车行业车辆主动安全的发展现状 汽车进入中国市场的短短20年间,已然使我国成为全球最大的汽车生产及销售国。2014年的产销分别完成2143.05万辆和2107.91万辆,比上年同期分别增长7.2%和6.1%。中国汽车市场的高速疾行,无论是消费者还是汽车制造企业,在这个过程中都受益匪浅。然而婉转优美的旋律背后,掩盖的却是整个社会浮躁与取巧的心态。自由奔放增长的同时伴随着一个让人焦虑的数字,仅2013年,我国交通事故死亡人数就达到60000人,这个数字背后隐藏的事实是对安全意识和辅助措施的缺乏。 今年年初奥迪在拉斯维加斯举行的CES(消费电子展)期间,向外界展示了集合汽车安全、传感器通信之大成的自动驾驶技术,前不久丰田汽车也在东京举行“全球安全技术交流会”,而中国的汽车企业近年来也不约而同的将研发重点放在了汽车安全技术的研发当中。无论是主动安全还是被动安全,安全产品的开发应用正在如火如荼的进行。改善汽车安全,尤其是主动安全技术(ADAS)地位正在凸显,主动安全技术(ADAS)正在成为汽车电子领域的新宠儿。 先进驾驶辅助技术(即ADAS)即主动安全技术的诠释,它是一种高级驾驶员辅助系统,在车辆行驶过程中全程帮助驾驶员的主动安全辅助系统。现阶段ADAS 系统应用最广的三大技术是自适应巡航控制系统(ACC)、车道偏离预警系统(LDW)以及自动紧急刹车系统(AEB),预计2015年这3中技术组成的ADAS市场价值将急速增加。除此之外,ADAS系统还包括夜视系统(NV)、驾驶员困倦报警系统、自适应灯光控制系统、以及限速交通标志提醒等系统。 二、ADAS技术应用的现实及普世意义 随着消费者对车辆安全的理解和需求不断提升,ADAS技术的开发与应用也就成为了汽车企业市场竞争力的重要筹码,能够让更多汽车搭载更加有效减少伤亡的安全系统,也更具有现实和普世意义。此时,除了研究ADAS的新功能和算法,保证ADAS功能在整车环境的可靠与稳定已成为了其开发最大的难点。只有通过完善的ADAS测试技术才能够尽早在研发阶段发现问题,挖掘ADAS隐藏的功能缺陷及不合理之处,才能够保证ADAS技术应用的功能完整性及有效性,从而确保产品在炙手可热的市场中的核心竞争力。 目前国际化标准组织以及Euro NCAP(汽车界最权威的安全认证机构)均对ACC、LDW系统指定了实车测试的典型工况及要求,并且Euro NCAP对此有详细的评估准则与星级评分。此外2014年Euro NCAP将AEB(自动紧急刹车系统)正式纳入评估体系,并且制订了实车测试的典型工况与评价标准。因此,ADAS 系统应用的重要性与必要性显而易见。 三、ADAS系统自身特色及测试重点 ADAS系统的功能与应用特性不同于常规汽车电子控制系统,ADAS具有自身的特点: 1)ADAS的应用场景一般为人、车、路构成的闭环系统,三者缺一不可 2)ADAS与自身车辆性能以及道路的特性、驾驶员的安全行为直接相关 3)ADAS系统通常需与多个车载控制系统协作,是一种分布式控制系统

实验2 刚体转动惯量的测定

实验2 刚体转动惯量的测量 [预习思考题] 1.实验中的刚体转动惯量实验仪是由哪几部分组成的? 2.实验中可以通过什么方法改变转动力矩? 3.实验中刚体转动过程的角加速度如何测得? 转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即 ∑= i i i r m J2 式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。 测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。该方法属于恒力矩转动法。 转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。 一、实验目的 1.学习用转动惯量仪测定刚体的转动惯量。 2.研究作用于刚体上的外力矩与角加速度的关系。 3.验证转动定律及平行轴定理。 二、实验仪器 IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。 三、仪器介绍

1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键 图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图 IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。 样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。 MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。计时停止后,方能查阅各次感应时间。 四、实验原理 1. 任意样品的转动惯量测定 设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为 21x J J J =- 2. 系统的转动惯量测定 1)刚体的转动定律 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。 M J β= 利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算

TTE网络仿真测试系统

解决方案 SOULTION TTE网络仿真测试系统——解决方案 TTEthernet网络仿真测试系统可用于对TTEthernet协议的验证,尤其是时钟同步机制、容错通信、冷启动等网络关键技术的研究;同时在TTEthernet网络系统开发过程中,需要搭建网络仿真测试系统对所开发的系统通信功能进行仿真和验证。当TTEthernet交换机和端系统开发完后,利用网络仿真测试系统可以对所开发的交换机和端系统逐一进行半实物仿真测试,因此,也可用于TTEthernet分布式实时系统开发过程中的半实物仿真和测试阶段。 TTEthernet网络仿真测试系统,支持最高网络传输速率为1Gbit/s,余度通信,同一通信网络中可同时支持硬实时的时间触发以太网消息和事件触发的普通以太网消息。普通以太网消息在其它消息传输的空隙进行传输,不影响硬实时时间触发以太网消息传输。 TTEthernet技术的提出基于航电系统和工业自动化领域丰富的工程应用经验,并经过了严格的验证。网络中各端系统并行传输的TTEthernet消息在网络交换机处不会发生消息拥塞,适用于安全关键系统。 时间触发以太网技术 利用TTEthernet开发工具链可以进行系统通信需求开发和网络拓扑规划,按部就班即可获得TTEthernet网络交换机和端系统的配置文件。开发工具之间的信息交换通过标准的XML文件格式,因此用户可以对该工具链进行裁剪,灵活地按照自己既定的开发流程进行开发。 时间触发以太网开发工具链 基于TTEthernet网络仿真测试系统可以简单快捷地设计复杂实时系统,研究基于以太网的机载系统新特性,高可用性和容错网络以及信息娱乐系统等。 仿真测试系统功能 高带宽,确定的报文传输,双通道容错通信 同时支持时间触发消息,ARINC664 p7消息和普通以太网消息支持音频、视频信息传输提供实例,用户可修改 技术优势 2个1Gbit/s的TTEthernet实验室用交换机 4个集成TTEthernet PCIe板卡的端系统(安装于4台PC主机内)特定的时间触发报文调度表(可以通过工具进行修改)提供基于Linux的PCIe板卡驱动和API库 集成标准PCIe接口板卡,实验室用;基于IEEE802.3标准以太网;支持10/100/1000 Mbit/s全双工以太网通信;支持多达3通道冗余通信;PCIe 1.1*4 Gen 1(2.5Gbit/s);两个SFP光纤接口模块;提供通信板卡的Linux驱动;符合TTEthernet 1.0协议;支持DMA;支持ARINC664 part7消息收发;提供Demo;支持ARINC664 part7消息收发。 仿真测试系统总体描述 TTEthernet端系统技术参数 12个全双工1Gbit/s以太网口;支持安全关键实时系统使用的时间触发以太网;支持三种消息的并行通信;内部数据处理带宽达24Gbit/s;功能强大的TTEthernet交换机IP核:支持8个子调度表、可支持最多4096个VL ID、可支持1024个相同的BAG;时钟同步精度达微秒级别。 TTEthernet交换机技术参数 TTE-Build:用于生成网络交换机和各端系统的配置文件TTE-Load:用于网络交换机的配置下载TTE-View:用于网络实时监测分析 软件开发工具 7

综合数据采集系统测试分析

综合数据采集系统测试分析 【摘要】本文阐述了综合数据采集系统测试的重要性,归纳了测试依据与标准,并对典型故障进行分析和总结。 【关键词】综合数据采集系统;参数测试;总线 1、引言 随着直升机不断向高度综合化、智能化和通用化方向发展,用于记录飞机姿态信息和各种重要飞行信息的飞行参数记录系统[1]逐渐被综合数据采集系统取代,其功能也得到了进一步扩展。综合数据采集系统应用AFDX、1553B等数字总线技术实现对直升机维护数据、状态数据和飞行数据的采集。本文阐述了综合数据采集系统试验测试依据与标准,对试验测试的典型故障进行分析和总结。 2、测试的意义及必要性 综合数据采集系统是直升机重要机载系统之一。所记录的数据经地面数据处理站分析处理后,可用于直升机维护、训练评估和事故分析[2]。由于部件集成度高,与机载设备交联复杂,采集信号多样化,因此为了保障系统工作的可靠性,需要对其性能进行检测。 建立综合数据采集系统的试验能力,其意义和必要性主要体现在以下几点:(1)在科研、生产过程中,如果将系统部品直接装机,一旦出现故障无法定位,还会给其它交联的机载设备带来安全隐患,因此需要对其进行装机前校验。 (2)由于综合数据采集系统主要应用于直升机飞行事故评估,其记录数据的可靠性将直接影响判定结论,因此必须建立系统试验能力,实现对系统记录数据可靠性检测。 (3)对综合数据采集系统试验能力的建设,利于对其它机载系统故障的判读与解析,极大地提高了解决总装通电和试飞时故障问题的能力。 (4)可建立对单机试验测试数据的管理,形成测试档案提供给用户,为直升机今后的故障预测与系统维护提供科学依据。 3、测试依据与标准 按照GJB6346-2008《军用直升机飞行参数采集要求》的规定,采集信号的类型分为模拟量、数字量、开关量和频率量信号,标准中对各类参数的采集精度、采样间隔、信号源和采集范围都进行了明确规定。在对综合数据采集系统记录参数进行测试时,结合此标准,针对不同机型用户的要求,来制定相应的系统参数采集标准。 试验测试时对对参数的采集应遵循以下原则: (1)参数的模拟范围应全面、准确。既能够反映整机工作状态,又能够准确反映飞机状态急剧变化及飞机系统工作瞬间异常变化的情况。 (2)对每个参数的采集点设计,应从机载信号源头进行引接,确保真实、准确的反映机载设备的工作状态,中间未经转接与数据处理。 (3)与机载其它系统交联进行参数采集测试时,不能影响其它系统的正常工作。 4、典型故障分析 4.1采集点选择错误 对发动机系统的“发动机停车”参数进行测试时,发现不管如何模拟信号状态变化,测试结果均显示“停车”状态。

转动惯量的测定

转动惯量的测定 【实验目的】 (1)学习用恒力矩转动法测定刚体转动惯量的原理和方法。 (2)观测刚体的转动惯量随其质量、质量分布及转轴不同而改变的情况,验证平行轴定理。 (3)学会使用通用电脑计时器来测量时间。 【实验原理】 1. 恒力矩转动法测定转动惯量的原理 根据刚体的定轴转动定律有 M =J β (3.3.1) 只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。 假设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M 的作用下,实验台将以角加速度β1作匀减速运动,即: -M =J 1β1 (3.3.2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a ,则细线所受张力为()T m g a =-。若此时实验台的角加速度为β2,则有a =R β2,细线施加给实验台的力矩为2()TR m g R R β=-,此时有: 2μ12()m g R R M J ββ--= (3.3.3) 将式(3.3.2)、(3.3.3)两式联立消去M 后,可得: 2121 ()mR g R J βββ-=- (3.3.4) 同理,若在实验台上加上被测物件后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有

4243()mR g R J βββ-=- (3.3.5) 由转动惯量的叠加原理可知,被测试件的转动惯量J 3为: 321J J J =- (3.3.6) 测得R 及β1、β2、β3、β4,由式(3.3.4),(3.3.5),(3.3.6)即可计算被测试件的转动惯量。 2. 刚体转动角加速度β的测量 实验中采用XD-GLY 通用电脑计时器,记录下遮挡次数和相应的时间。固定在载物台圆周边缘的两遮光片,每转动半圈遮挡一次固定在底座上的光电门,即产生一个计数光电脉冲。计数器记录下遮挡次数和从第一次遮挡光到其后各次扫光所经历的时间,即是第二次扫光时,计时器计下的时间t 1是从第一次挡光开始载物台转动了π弧度所经历的时间;即第三次扫光时,计时器计下的时间t 2是从第一次挡光开始载物台转动了2π弧度所经历的时间…;第k+1次扫光,计时器计下的时间t k 是从第一次挡光开始载物台转动了k π弧度所经历的时间。初始角速度为0,则对匀变速运动,测量得到任意两组数据(k m ,t m ) 、(k n ,t n ),相应的角位移m , n 分别为: 201 π2 m m m m k t t θωβ==+? (3.3.7) 201 π2 n n n n k t t θωβ==+? (3.3.8) 从式(3.3.7)、(3.3.8)两式中消去0,可得: 222π()n m m n n m m n k t k t t t t t β-=- (3.3.9) 由式(3.3.9)即可计算角加速度。 3. 平行轴定理 理论分析表明,质量为m 的物体围绕通过质心O 的转轴转动时,其转动惯量J 0最小。当转轴平行移动距离d 后,围绕新转轴转动的转动惯量为

构建基于XPC目标的实时仿真测试系统

万方数据

可通过局域网、Intemet进行连接;(2)支持任何台式Pc机、PC/104、CompactPCI、工业PC或SBC(单板机)作为实时目标系统;(3)依靠处理器的高性能水平,采样率可达到100kHz;(4)扩展了L/0驱动设备库,现已支持超过150种标准L/O板;(5)可以得到来自主机或目标机的信号,也可以动态调整参数;(6)在宿主机和目标机上都可进行交互式的数据可视化和信号跟踪;(7)使用xPcTargetEmbeddedOption能针对独立操作进行系统配置. 图1XPC目标双机模式 3系统的硬件连接 在xPc目标的半实物仿真中,主要通过数据采集卡来实现计算机和外部设备的连接,既需要通过数据采集卡的A/D接口从外部模拟设备采集数据送到目标机,也需要通过D/A接口将目标机的计算结果送往外部模拟设备. 3.1采用XPC目标提供的I/O设备 xPc目标提供了支持超过150种标准工/o板的I/0驱动设备库.xPc目标所提供的D/A、A/D、DI、D0等模板,它实际上是为不同的板卡提供不同的驱动程序.在应用中,将所用到的L/o设备对应的模板拖人模型中,进行采集卡的参数设置(如通道数、电压范围、采样时间、基地址等),并在实际仿真测试系统中接入相应板卡.在编译模型文件时,其中的板卡的信息就会被编译为可执行代码,下载到目标机上后,目标就通过数据采集卡和外部设备建立了联系,构成实时仿真测试回路.在仿真过程中可以从这些板上输入输出数据,以进行半实物仿真.本文目标机安装的是研华公司(Advantech)的PCL一711B和PCL一728数据采集卡. 水利水电技术第36卷2005年第1期 张江滨,等∥构建基于xPC目标的实时仿真测试系统 3.2采用其他I/O设备 如果没有采用xPC目标提供的L/0设备,则需自己编写设备驱动程序,这时可参考xpcblocks文件夹下的各种设备驱动程序模块的源代码来编写程序,并存为filename.c,然后在MATLAB命令窗口输入命令:mex£1ename.c,MATLAB自动调用编译器生成mex动态连接库文件filename.dll,并将其设置到MATLAB的搜索路径中,最后将文件封装成一个s—function模块,进行参数设置即可. 4目标启动盘的制作 目标机必须通过特制的软盘启动才能调用和运行XPC目标的实时内核.在安装了xPC目标软件和网络通信硬件后,就可以设置宿主机和目标机的环境属性,进行目标启动盘的制作.本文的宿主机和目标机都安装了网卡,中问通过Hub连接.将软盘插入宿主机的软驱,在MATLAB命令行输入xpcsetup,出现xPcTar- getsetup对话框,就可以进行宿主机和目标机环境属性设置.最后单击BootDisk按钮,就可完成目标启动盘 的制作. 5仿真模型的构建 根据实际测试要求可在Simulink环境中方便地构建模型.本文以发电机励磁测试系统为例,用Simulink提供的发电机和负荷模型代替现实中复杂的电力系统,忽略调速器,以一常数代替.在xPcTarge∥BlockLibrary的A/D库中拖动研华公司(Advantech)的PCL.711B(在目标机上已经安装了PCL一711B数据采集卡)作为励磁电压的数字输入通道,采用PcL_728作为发电机A相电压的模拟输出通道.这样通过数据采集卡就可以很方便地与实际的励磁控制器结合起来,进行控制器的闭环实时仿真测试.因为PCL-728的D/A输出范围为一5~+5V,为了使A相电压在这一范围完整地输出,可在电压测量元件输出端口加适当的比例环节.同时,如果要测量其他参数,可在发电机m—pu端口加入测量模块MeasurementDemux,可对发电机的三相电流、角速度、输出功率等参数进行观察.simulink模型如图2所示. 6xPC目标应用程序的创建和下载 6.1仿真参数的设置 在simulink模型中,仿真和实时运行参数都可在simulationPammeters对话框中设置,主要包括S01ver、workspaceL/O、Diagnostics、Real-Timeworksh叩等4 71  万方数据

具有辅助判断功能的产品测试系统及产品测试辅助方法与相关技术

本技术为一种具有辅助判断功能的产品测试系统及应用于其上的产品测试辅助方法。该系统包含有一电脑装置与一测试治具,该电脑装置载有一机器学习模式。该方法包含下列步骤:测试治具按序测试多个待测试产品,并分别产生一测试数据而传送至电脑装置,进而由电脑装置分别产生一趋势线形图;作业员根据各趋势线形图进行判断而分别产生一人为判断结果;将各测试数据、趋势线形图与人为判断结果输入至机器学习模式进行一学习程序;以及当学习程序的样本数达一预设门限值时,使机器学习模式针对相应的测试数据与趋势线形图产生相应的一辅助判断结果。 权利要求书

1.一种产品测试辅助方法,应用于一产品测试系统与多个待测试产品上,该系统包含有一电脑装置与一测试治具,该电脑装置信号连接于该测试治具,该电脑装置载有一机器学习模式,而该方法包含下列步骤: 该测试治具按序测试所述待测试产品,并分别产生一测试数据而传送至该电脑装置; 该电脑装置将各测试数据分别产生一趋势线形图; 作业员根据各趋势线形图的显示内容进行判断而分别产生一人为判断结果; 将各测试数据、各趋势线形图与各人为判断结果输入至该机器学习模式中以进行一学习程序;以及 当该学习程序所具有的样本数达一预设门限值时,使该机器学习模式针对相应的该测试数据与该趋势线形图产生相应的一辅助判断结果。 2.如权利要求1所述的产品测试辅助方法,其中该方法为于该电脑装置中存储成一测试应用程序以提供执行,而该方法包含下列步骤: 执行该测试应用程序以控制该机器学习模式。 3.如权利要求1所述的产品测试辅助方法,其中各人为判断结果或各辅助判断结果为一第一品质类别或一第二品质类别,而该第一品质类别或该第二品质类别包含有至少一种等级的子项目。 4.如权利要求3所述的产品测试辅助方法,其中该方法还包含下列步骤: 该机器学习模式判断相应的该测试数据与该趋势线形图于该第一品质类别与该第二品质类别上所占的权重,而产生相应的该辅助判断结果。 5.如权利要求3所述的产品测试辅助方法,其中该方法还包含下列步骤:

高压脉冲采集测试系统

基于PCI Express的高速采集测试系统 采集系统规格: 系统基于PCI Express总线结构,包括如下几个部分: 1.4通道8bit500Msps同步采集,标准PCIe全长卡尺寸; 2.4个高速IO,产生激励脉冲输出。 3.外置脉冲放大器,输出100Vpp的激励短脉冲。 4.基于PCI Express x8总线的工控机。 系统实现框图如下: 采集系统如下所示:

采集卡包括如下特性: 1.4通道8bit500MSPS同步采集。 2.4通道程控增益放大器,增益倍数0-100倍调整,满幅度输出1Vpp。 3.输入通道DC耦合,50欧姆输入阻抗。 4.模拟输入带宽DC-120MHz/-3dB。 5.输入端口过压保护,允许200W/20us浪涌功率输入。 6.2GB本地缓存,保证每次触发,每通道有0.5S的采集时间。 7.支持PCIEx8接口,连续数据传输率1000MB/s。 8.低抖动、低相噪时钟发生器。 9.可以多块卡组成多通道同步工做模式。 系统工作模式如下: 1.触发设置:可以根据输入脉冲的幅度和宽度设置触发判决条件。 2.输入放大倍数可以通过软件设置。 3.输出脉冲相对于触发事件时间可以设置,最小单位为2ns。 4.出脉冲和触发事件条件随机延迟不超过4个采样点,及8ns。 5.触发后,采集长度可以设置,最大每通道可以采集500M个点。 6.可以回传长度为500M个点的原始波形供计算机软件分析。 系统配套软件: 系统软件包括应用软件,二次开发API函数,以及FPGA开发环境三部分。 1.应用软件,具有虚拟示波器功能,方便设置硬件,读取/保存数据以及波形显示/频谱分析功能。

MIMO系统检测仿真

一、引言 随着无线通信业务的发展,人们对数据率的要求越来越高,而传统通信方式通过使用某些信道编码方法已接近香农极限,要想再提高频谱利用率已经很困难。在这种情况下,多输入多输出(MIMO,Multiple Input Multiple Output)技术由于能同时带来分集增益和空间复用增益,成为未来移动通信系统的有力竞争方案。MIMO通信系统的检测器是MIMO技术实用过程中关键的一个模块,选择一种检测性能好而且便于硬件实现的检测方法是人们追求的目标。 传统的MIMO检查算法主要有:最大似然(ML,Maximum Likelihood)检测算法、迫零(ZF,Zero Forcing)检测算法、最小均方误差(MMSE,Minimum Mean-Square Error)检测算法、V-BLAST(ZF-OSIC)检测算法和基于QR分解的检测算法等。此外,通过把在给定格中寻求最短向量的球形解码思想应用于MIMO系统,形成了MIMO系统的球形解码算法,在保持优良检测性能的同时,大大减小了计算复杂度。本次课程设计主要针对最大似然算法,迫零算法和最小均方误差算法进行仿真和性能仿真比较。 二、MIMO系统 MIMO通信系统可以定义为收发两端分别采用多个天线或阵列天线的无线通信系统。MIMO的多输入多输出是针对多径无线传输信道而言的。 考虑n T根发射天线n R根接收天线的MIMO系统,如下图所示,数据流被分成n T个子数据流,每个子流通过星座点映射后送给发射天线。分别从个发射天线发射出去,再经多径传输信道后由n R个接收天线接收,同时用接收到的信号进行信道估计得到信道参数值,然后通过一定的检测算法处理分解出子信息流。因为n T个发射天线同时发射子信息流,各发射信号只占用同一频带,并未增加带宽,达到提高频谱利用率的目的,同时多个并行空间也实现了更高的数据传输速率。

【CN110046833A】一种交通拥堵辅助系统虚拟测试系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910392402.3 (22)申请日 2019.05.13 (71)申请人 吉林大学 地址 130012 吉林省长春市前进大街2699 号 (72)发明人 詹军 刘荣 王战古 杨凯  董学才 祝怀男  (74)专利代理机构 长春吉大专利代理有限责任 公司 22201 代理人 杜森垚 (51)Int.Cl. G06Q 10/06(2012.01) G06F 11/36(2006.01) (54)发明名称 一种交通拥堵辅助系统虚拟测试系统 (57)摘要 本发明公开了一种交通拥堵辅助系统虚拟 测试系统,由驾驶模拟器系统、信号产生与转换 系统、被测交通拥堵辅助系统组成;驾驶模拟器 系统采用开发型汽车驾驶模拟器,提供驾驶场 景、车辆数学模型、运动体感和声响,并生成车辆 状态信息和虚拟场景下的传感信息;信号产生与 转换系统连接驾驶模拟器系统和被测交通拥堵 辅助系统,完成两个系统之间的信号转换,并产 生被测系统需要的其它信号;被测交通拥堵辅助 系统为软件代码或硬件ECU。本发明利用驾驶模 拟器可充分模拟车辆的驾乘运动体感、操作触 感、声响听觉等优势进行虚拟验证,该虚拟测试 系统能够对交通拥堵辅助系统进行SIL、HIL、DIL 各阶段的测试验证,并进行客观和主观的全面评 价。权利要求书2页 说明书6页 附图3页CN 110046833 A 2019.07.23 C N 110046833 A

权 利 要 求 书1/2页CN 110046833 A 1.一种交通拥堵辅助系统虚拟测试系统,其特征在于,由驾驶模拟器系统、信号产生与转换系统、被测交通拥堵辅助系统组成; 所述驾驶模拟器系统采用开发型汽车驾驶模拟器,提供驾驶场景、车辆数学模型、运动体感和声响,并生成车辆状态信息和虚拟场景下的传感信息,通过信号产生与转换系统供给被测交通拥堵辅助系统; 所述信号产生与转换系统连接驾驶模拟器系统和被测交通拥堵辅助系统,完成两个系统之间的信号转换,并产生被测系统需要的其它信号;信号产生与转换系统与驾驶模拟器系统通过UDP/IP协议进行以太网通信,其接收驾驶模拟系统的驾驶员设定参数、车辆状态参数及传感器输出数据,将UDP信号转换成CAN信号发送给被测交通拥堵辅助系统,同时接收被测交通拥堵辅助系统决策出的纵向加速度和方向盘转角CAN信号,并转换成UDP信号,通过以太网通信发送给驾驶模拟器系统; 所述被测交通拥堵辅助系统为软件代码或硬件ECU。 2.如权利要求1所述的一种交通拥堵辅助系统虚拟测试系统,其特征在于,所述驾驶模拟器系统包括车辆座舱子系统、车辆动力学子系统、运动平台子系统、视景子系统及声响子系统,上述各驾驶模拟器子系统之间通过UDP/IP协议进行以太网通信; 所述车辆座舱子系统为实车驾驶座舱,提供人机交互界面和触感模拟,形成驾驶操作环境;座舱子系统将驾驶员的踏板操作、方向盘操作、变速杆操作的模拟电信号转换成数字物理信号发送给车辆动力学子系统,同时接受车辆动力学子系统的车速、发动机转速、挡位的数字信号并转换成模拟信号在座舱仪表进行显示;接受车辆动力学子系统计算的方向盘回正力矩和制动踏板力反馈,通过控制力矩模拟电机和踏板反馈机构提供给驾驶员驾驶触感; 所述车辆动力学子系统为动力学模型,根据驾驶员的操作信号和虚拟场景中行驶路面的状态信息,实时计算并更新车辆的运动状态响应,将车辆运动状态发送到运动平台子系统、视景子系统和声响子系统; 所述运动平台子系统是6自由度电缸平台,通过接收车辆动力学子系统发送的车辆状态信息,具体包括车体线速度、角速度、线加速度、角加速度以及车体姿态角,求解6自由度电缸平台对应的位置、速度、加速度,模拟出车辆六向运动,提供给驾驶员驾驶体感; 所述视景子系统包括复杂交通场景仿真软件VTD和投影设备,用于渲染生成虚拟测试场景,提供给驾驶员驾驶环境,获得车速、侧倾、俯仰等运动感觉; 所述声响子系统接收车辆动力学子系统发来的发动机转速、油门开度、挡位信号,根据发动机的运行状态,实时产生发动机声响,给驾驶员提供听觉环境。 3.如权利要求2所述的一种交通拥堵辅助系统虚拟测试系统,其特征在于,所述复杂交通场景仿真软件VTD进行复杂交通场景建模,交通场景模型包括3D虚拟环境信息、道路信息、交通车信息、交通事件信息、天气信息、交通指示灯信息、交通指示牌信息; 复杂交通场景仿真软件VTD接收车辆动力学子系统传来的车辆位置、速度、加速度信息,以此信息实时更新驾驶员所见的虚拟场景,并将主车行驶路面状态信息发送给车辆动力学子系统; 复杂交通场景仿真软件VTD提供交通流仿真,按照用户设定交通流参数、引导车参数,在主车周围生成交通车流及引导车; 2

基于NIPXI_6624的多通道高频率信号采集测试系统设计_黄丽敏

科技信息 在实验过程中,经常要对一个或多个连续的脉冲波频率进行测量。在实际应用中,对于转速,位移、速度、流量等物理量的测量,一般也是由传感器转换成脉冲电信号,采用测量频率的手段实现。使用数据采集卡测量频率或周期,通常是利用采集卡的定时计数器来完成,测量的基本方法和原理主要有两种:测频法和测周法。测频法在限定的时间内检测脉冲的个数。测周法测试限定的脉冲个数之间的时间。这两种方法尽管原理是相同的,但在实际使用时,需要根据待测频率的范围、系统的时钟周期、计数器的长度以及所要求的测量精度等因素进行全面和具体的考虑,寻找和设计出适合具体要求的测量方法。本文利用NI PXI-6624进行多通道高频率信号的采集。 1.多通道频率采集硬件系统 为了实现对多路频率信号的准确采集和传送,利用NI 公司的硬件设备和LabVIEW 虚拟仪器开发平台构建了基于PXI-6624的多通道频率信号采集测试系统,其基本结构如图1所示。多通道频率采集测试系统主要由NI PXI-1042Q 机箱、NI PXI-6624采集卡、SH100-100-F Cable 屏蔽线缆及SCB-100接线盒4部分组成。 图1基于PXI6624频率信号采集系统的基本构成 PXI 机箱及控制器采用NI PXI-1042Q 。NI PXI-1042系列机箱可满足各种测试和测量应用的需求,具有最新PXI 规范的所有特性,包括内置10MHz 参考时钟、PXI 触发总线、星型触发和局部总线。 NIPXI-6624数据采集卡是用于PXI 系统的定时和数字I/O 模块[1]。该模块包括8个32位计数器/定时器,并带有通道间有光学隔离,可支持高达48VDC 的输入和输出信号。可运用NI PXI-6624来执行多种计数器/定时器的测量任务,包括事件计数,周期/频率测量,正交编码器定位测量,脉冲宽度测量,脉冲生成以及脉冲序列生成。其他应用包括:可再触发脉冲的生成、双信号边缘分离测量,连续缓冲事件计数,以及连续缓冲脉冲序列测量。PXI-6624为大量应用提供了性能可靠的高端特性,其行业覆盖了汽车/航天、工业/运动控制和制造测试。 SH100-100-F Cable 屏蔽线缆通过100针连接器或DAQPad-6508,连接至NI 6528、NI 6509、NI 651x ;其终端的100针0.050系列D 型连接器直接与100针附件相连。 SCB-100是一款屏蔽式I/O 接线盒,使用100针连接器将I/O 信号连往插入式DAQ 设备。与屏蔽式电缆配合使用,SCB-100可提供坚固且噪音极低的信号终端。 图2PXI-6624高频采集接线图 在利用PXI-6624采集卡测高频时,需要用两个计数器采集一路信号,因为PXI-6624采集卡有8个计数器,因此可以实现4路高频率信号 的同时采集。以计数器0和1构建CTR0通道高频率信号采集接线为例,计数器0的SOURCE +(1引脚)接待测信号正端,计数器0的SOURCE-(2引脚)接待测信号负端,计数器0的OUT (9引脚)接计数器 1的GATE+(13引脚)。同理以计数器2和计数器3构建CTR2通道、以计数器4和计数器5构建CTR4通道、以计数器6和计数器7构建CTR6通道实现多通道高频信号的同时采集,接线图如图2所示。 2.软件设计 软件分为两个部分:频率采集程序和监控程序。图形化编程语言LabVIEW 的独特优势为系统软件的开发提供了极大的推动力[2]。其提供的丰富图形控件以及图形化编程方法,使开发过程更加形象生动[3]。安装了驱动NI-DAQmx 后,丰富的范例程序极具参考价值,易于实现所需的数据采集和数据输出功能,确保了PXI 平台和驱动器的可靠数据交换。监控程序主要监测测试过程,保存、分析和显示测试结果。电流采集程序主要负责电流信号的输入输出以及滤波处理。频率信号采集软件图形化设计图如图3所示,其中设计了数据处理、存储系统以及显示功能,该程序可实现对单通道频率信号的采集。为了实现多通道频率信号的采集,可采用多个如上所述的程序同时运行而实现。 图3双计数器高频率采集程序框图 3.测试验证 为了验证测试系统的可行性,采用两个信号发生器作为信号源,信号发生器1生成173913Hz 的方波信号,信号发生器2生成9574Hz 的方波信号,信号1与CTR0连接,信号2与CTR2连接。利用上节所设计的两个频率信号采集通道,对两个频率信号进行采集测试。两路频率信号同时采集所得到的测试曲线如图4所示。通过观察分析,可以证明该频率信号采集测试系统能够实现多通道高频率信号的同时采集,且其所采集信号数据能够达到很好的精度。 图4双路频率信号同时采集曲线 4.结论 使用虚拟仪器软件LabVIEW ,结合先进的PXI 硬件平台及数据采集设备,在很短的时间内快速构建了基于PXI-6624的多通道频率信号采集测试系统。该系统实现了多通道频率信号的采集、显示、分析和存储,且能对多通道频率信号进行准确采集。参考文献 [1]NI PCI-6624,NI PXI-6624说明书.[2]杨乐平.LabVIEW 程序设计与应用[M ].北京:电子工业出版社,2004年. [3]岂兴明.LabVIEW 8.2中文版入门与典型实例[M ].北京:人民邮电出版社,2008. [4]武小花,张承宁,李司光,胡志敏.基于LabVIEW 的蓄电池充放电电流采集系统[J ].电力电子技术,2010,44(6):80-81. 基于NI PXI-6624的多通道高频率信号采集测试系统设计 广西工学院电子与信息与控制工程系黄丽敏 [摘要]在实际应用中,对于转速、位移、速度、流量等物理量的测量,传感器通常输出脉冲电信号,因此需要采用测量频率的手段实现。本文构建了基于NI PXI-6624的多通道频率信号采集测试系统,给出了系统设计框图以及软件程序设计框图,并利用信号发生器产生方波频率信号对系统进行了测试,经测试验证,该系统能够实现多通道频率信号的采集与显示,且具有良好精度。[关键词]LabVIEW 频率采集PXI-6624 基金项目:本文系广西工学院自然科学基金项目(1166201)。作者简介:黄丽敏(1982-),女,广西人,助教,工学学士, 主要从事测试系统研究。 — —9

髋关节结构

髋关节是一个由球形股骨头与凹形的髋臼组成的杵臼关节,是全身位置最深的关节。髋关节具有相对稳定的骨性结构,在髋臼的边缘有关节盂缘附着。加深了关节窝的深度。在髋臼切迹上横架有髋臼横韧带,并与切迹围成一孔,有神经、血管等通过。关节囊厚而坚韧,上端附于髋臼的周缘和髋臼横韧带,下端前面附于转子间线,后面附于转子间嵴的内侧(距转子间嵴约1厘米处),因此,股骨颈的后面有一部分处于关节囊外,而颈的前面则完全包在囊内。所以股骨颈骨折时,根据其骨折部位而有囊内、囊外或混合性骨折之分。髋关节周围有韧带加强,主要是前面的髂股韧带,长而坚韧,上方附于髂前下棘的下方,呈人字形,向下附于股骨的转子间线。髂股韧带可限制大腿过度后伸,对维持直立姿势具有重要意义。此外,关节囊下部有耻骨囊韧带增强,可限制大腿过度外展及旋外。关节囊后部有坐骨囊韧带增强,有限制大腿旋内的作用。关节囊的纤维层呈环形增厚,环绕股骨颈的中部,称为轮匝带,能约束股骨头向外脱出,此韧带的纤维多与耻骨囊韧带及坐骨囊韧带相编织,而不直接附在骨面上。股骨头韧带为关节腔内的扁纤维束,主要起于髋臼横韧带,止于股骨头凹。韧带有滑膜被覆,内有血管通过。一般认为,此韧带对髋关节的运动并无限制作用。 构造既坚固又灵活,其主要功能是负重,将躯干的重量传达至下肢,同时能作相当范围的前屈、后收、外展、内旋、外旋、和环转运动。髋关节为多轴性关节,能作屈伸、收展、旋转及环转运动。但由于股骨头深嵌在髋臼中,髋臼又有关节盂缘加深,包绕股骨头近2/3,所以关节头与关节窝二者的面积差甚小,故运动范围较小。加之关节囊厚,限制关节运动幅度的韧带坚韧有力,因此,与肩关节相比,该关节的稳固性大。而灵活性则甚差。这种结构特征是人类直立步行,重力通过髋关节传递等机能的反映。当髋关节屈曲、内收、内旋时,股骨头大部分脱离髋臼抵向关节囊的后下部,此时若外力从前方作用于膝关节,再沿股骨传到股骨头,易于发生髋关节后脱位。 髋关节的骨骼构成 髋骨 髋骨为形状不规则的扁板状骨,有3个部分组成。上为髂骨,前下为耻骨,后下为坐骨,三骨会合于髋臼。有骶骨及左右髋骨连接而成的骨盆为一完整骨环,后方有两滑膜性骶髂关节,前方正中为纤维软骨性耻骨联合。 髋骨主要由松质骨组成,覆以薄层坚质骨,形状不规则,左右髋骨与骶骨共同组成骨盆,有保护骨盆内脏器的作用。其中骨盆环是最为重要的基础结构。骨盆内缘由后方的骶骨、骶髂关节、髂骨的弓形线及前方的耻骨上支、耻骨联合所组成的。 (一)髂骨 髂骨呈扇形,扇面向上,柄向下与坐、耻骨相连接。髂骨背侧面由肥厚的髂骨体和髂

相关文档
最新文档