江苏省高考数学二轮复习专题二立体几何2.1小题考法—立体几何中的计算讲义(含解析)

江苏省高考数学二轮复习专题二立体几何2.1小题考法—立体几何中的计算讲义(含解析)
江苏省高考数学二轮复习专题二立体几何2.1小题考法—立体几何中的计算讲义(含解析)

专题二 立体几何

[江苏卷5年考情分析]

第一讲 小题考法——立体几何中的计算

1.现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温熔化后铸成一个实心铁球(不计损耗),则该铁球的半径为

________cm.

解析:因为圆锥底面半径为3 cm ,母线长为 5 cm ,所以圆锥的高为52

-32

=4 cm ,其体积为13π×32×4=12π cm 3,设铁球的半径为r ,则43πr 3

=12π,所以该铁球的半径是

39 cm. 答案:39

2.(2018·苏锡常镇二模)已知直四棱柱底面是边长为2的菱形,侧面对角线的长为23,则该直四棱柱的侧面积为________.

解析:由题意得,直四棱柱的侧棱长为3

2

-22

=22,所以该直四棱柱的侧面

积为S =cl =4×2×22=16 2.

答案:16 2

3.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.

解析:由题意知所给的几何体是棱长均为2的八面体,它是由两个有公共底面的正四棱锥组合而成的,正四棱锥的高为1,所以这个八面体的

体积为2V 正四棱锥=2×13×(2)2

×1=43

.

答案:4

3

4.(2018·南通、泰州一调)如图,铜质六角螺帽毛坯是由一个正

六棱柱挖去一个圆柱所构成的几何体.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2

.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm(不计损耗).

解析:由题意知,熔化前后的体积相等,熔化前的体积为6×34

×42

×4-93×4=60 3 cm 3

,设所求正三棱柱的底面边长为x cm ,则有34

x 2

·6=603,解得x =210,所以所求边长为210 cm.

答案:210

5.设甲,乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积相等

且V 1V 2=32,则S 1

S 2

的值是________. 解析:设甲,乙两个圆柱的底面半径分别为r 1,r 2,高分别为h 1,h 2,则有2πr 1h 1=2πr 2h 2,

即r 1h 1=r 2h 2,

又V 1V 2=πr 21h 1

πr 22h 2,∴V 1V 2=r 1r 2,∴r 1r 2=32, 则S 1S 2=πr 21

πr 22=94

. 答案:94

[方法技巧]

求几何体的表面积及体积的解题技巧

(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积时,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.

(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.

[题组练透]

1.(2017·江苏高考)如图,在圆柱O

1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2

的值是________.

解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱

的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43

πR

3

=3

2.

答案:32

2.(2018·无锡期末)直三棱柱ABC -A 1B 1C 1中,已知AB ⊥BC ,AB =3,BC =4,BB 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为________.

解析:根据条件可知该直三棱柱的外接球就是以BA ,BC ,BB 1为棱的长方体的外接球,设其半径为R ,则2R =BA 2+BC 2+BB 21=32+42+52

,得R =522,故该球的表面积为S =

4πR 2

=50π.

答案:50π

3.已知矩形ABCD 的顶点都在半径为2的球O 的球面上,且AB =3,BC =3,过点D 作DE 垂直于平面ABCD ,交球O 于点E ,则棱锥E -ABCD 的体积为________.

解析:如图所示,BE 过球心O , ∴BE =4,BD =32

+3

2

=23,

∴DE = 42

32

=2,

∴V E -ABCD =1

3×3×3×2=2 3.

答案:2 3

4.(2018·全国卷Ⅲ改编)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为________.

解析:由等边△ABC 的面积为93,可得34

AB 2

=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =

3

3

AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13

×93×6=18 3.

答案:18 3

[方法技巧]

简单几何体与球切接问题的解题技巧

[典例感悟]

[典例] (1)如图,正△ABC 的边长为2,CD 是AB 边上的高,E ,F 分别为边AC 与BC 的中点,现将△ABC 沿CD 翻折,使平面ADC ⊥平面DCB ,则三棱锥E -DFC 的体积为________.

(2)如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.

[解析] (1)S △DFC =14S △ABC =14×? ????

34×22=34,E 到平面DFC 的距离h 等于12AD =12,V E -DFC

=13×S △DFC ×h =3

24

.

(2)将侧面展开后可得:本题AM +MC 1最小可以等价为在矩形

ACC 1A 1中求AM +MC 1的最小值.

如图,当A ,M ,C 1三点共线时,AM +MC 1最小. 又AB ∶BC =1∶2,AB =1,BC =2,CC 1=3, 所以AM =2,MC 1=22,又AC 1=9+5=14,

所以cos ∠AMC 1=AM 2+C 1M 2-AC 21

2AM ·C 1M =2+8-142×2×22

=-12,

所以sin ∠AMC 1=

32

, 故三角形面积为S =12×2×22×3

2= 3.

[答案] (1)

3

24

(2) 3 [方法技巧]

解决翻折问题需要把握的两个关键点

(1)解决与翻折有关的问题的关键是搞清翻折前后的变化量和不变量.一般情况下,折线同一侧的线段的长度是不变量,位置关系可能会发生变化,抓住两个“不变性”.

①与折线垂直的线段,翻折前后垂直关系不改变; ②与折线平行的线段,翻折前后平行关系不改变.

(2)解决问题时,要综合考虑翻折前后的图形,既要分析翻折后的图形,也要分析翻折前的图形.

[演练冲关]

1.有一根长为6 cm ,底面半径为0.5 cm 的圆柱型铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的长度最少为________cm.

解析:由题意作出图形如图所示,

则铁丝的长度至少为62

+π

2

=36+16π2=29+4π2

.

答案:29+4π2

2.(2018·南京、盐城、连云港二模)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图①中阴影部分),折叠成底面边长为2的正四棱锥S -EFGH (如图②),则正四棱锥S -EFGH 的体积为________.

解析:连结EG ,HF ,交点为O (图略),正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12

+22

=5,SO =SE 2

-OE 2

=5-1=2,故正四棱锥S -EFGH 的体积为13×(2)2

×2=43

.

答案:43

3.如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线

BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该

球的体积为________.

解析:如图,取BD 的中点E ,BC 的中点O ,连接AE ,OD ,EO ,AO .因为AB =AD ,所以AE ⊥BD .

由于平面ABD ⊥平面BCD ,所以AE ⊥平面BCD . 因为AB =AD =CD =1,BD =2,所以AE =22,EO =1

2

.所以OA =32

. 在Rt △BDC 中,OB =OC =OD =12BC =3

2,所以四面体ABCD 的外接球的球心为O ,半径为

3

2

. 所以该球的体积V =43π? ????323=3π

2.

答案:3π

2

[必备知能·自主补缺]

(一) 主干知识要牢记

1.空间几何体的侧面展开图及侧面积公式

(1)V 柱体=Sh (S 为底面面积,h 为高)

; (2)V 锥体=1

3Sh (S 为底面面积,h 为高);

(3)V 台=1

3(S +SS ′+S ′)h (不要求记忆).

3.球的表面积和体积公式: (1)S 球=4πR 2

(R 为球的半径); (2)V 球=43

πR 3

(R 为球的半径).

4.立体几何中相邻两个面之间的两点间距离路径最短问题,都可以转化为平面几何中两点距离最短.

(二) 二级结论要用好

1.长方体的对角线与其共点的三条棱之间的长度关系d 2

=a 2

+b 2

+c 2

;若长方体外接球半径为R ,则有(2R )2

=a 2

+b 2

+c 2

.

[针对练1] 设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为________.

解析:依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =

12

22

+3

2

+42=22,所以该三棱锥外接球的表面积为S =4πR 2

32π.

答案:32π

2.棱长为a 的正四面体的内切球半径r =612a ,外接球的半径R =6

4

a .又正四面体的高h =

63a ,故r =14h ,R =34

h . [针对练2] 正四面体ABCD 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为________.

解析:由题意知,面积最小的截面是以AB 为直径的圆,设AB 的长为a , 因为正四面体外接球的半径为2, 所以

64a =2,解得a =46

3

, 故截面面积的最小值为π? ??

??2632=8π

3. 答案:8π3

3.认识球与正方体组合的3种特殊截面:

一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R ).

[课时达标训练]

A 组——抓牢中档小题

1. 若圆锥底面半径为1,高为2,则圆锥的侧面积为 ________. 解析:由题意,得圆锥的母线长l =12

+22

=5,所以S 圆锥侧

=πrl =π×1×5=

5π.

答案:5π

2.已知正六棱柱的侧面积为72 cm 2

,高为6 cm ,那么它的体积为________cm 3

. 解析:设正六棱柱的底面边长为x cm ,由题意得6x ×6=72,所以x =2,于是其体积V =

34

×22×6×6=363cm 3. 答案:36 3

3.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为

32

R ,AB =AC =BC =23,则球O 的表面积为________.

解析:设△ABC 外接圆的圆心为O 1,半径为r ,因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin 60°

=2,因为OO 1⊥平面ABC ,所以OA 2=OO 21+r 2

,即

R 2=?

??

??32R 2+22,解得R 2=16,所以球O 的表面积为4πR 2

=64π. 答案:64π

4. 已知一个棱长为6 cm 的正方体塑料盒子(无上盖),上口放着一个半径为5 cm 的钢

球,则球心到盒底的距离为________cm.

解析:球心到正方体的塑料盒上表面(不存在)所在平面的距离为52

-32

=4,所以球心到盒底的距离为4+6=10(cm).

答案:10

5.(2018·扬州期末)若圆锥的侧面展开图是面积为3π且圆心角为2π

3的扇形,则此

圆锥的体积为________.

解析:设圆锥的底面半径为r ,高为h ,母线为l ,则由12·2π3·l 2

=3π,得l =3,又

由2π3·l =2πr ,得r =1,从而有h =l 2-r 2=22,所以V =13·πr 2

·h =223

π. 答案:223

π

6. 一块边长为10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥形容器.当x =6 cm 时,该容器的容积为________cm 3

.

解析:由题意知,这个正四棱锥形容器的底面是以6 cm 为边长的正方形,侧面高为5 cm ,则正四棱锥的高为

52-? ??

??622=4 cm ,所以所求容积V =13×62×4=48 cm 3

.

答案:48

7.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个

球的体积为________.

解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =3

2,

所以这个球的体积为43πR 3=4π3×278=9π

2.

答案:9π

2

8.设棱长为a 的正方体的体积和表面积分别为V 1,S 1,底面半径和高均为r 的圆锥的

体积和侧面积分别为V 2,S 2,若V 1V 2=3π,则S 1

S 2

的值为________.

解析:由题意知,V 1=a 3

,S 1=6a 2

,V 2=13πr 3,S 2=2πr 2

,由V 1V 2=3π,即a 3

13

πr 3=3π

得a =r ,从而S 1S 2=6a 2

2πr 2

=62π

=32

π. 答案:32

π

9.已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为________.

解析:设B ,C ,D 三点重合于点P ,得到如图所示的四面体P -AEF .因为AP ⊥PE ,AP ⊥PF ,PE ∩PF =P ,所以AP ⊥平面PEF ,所以V 四面体P -AEF =V 四面体A -PEF =13·S △PEF ·AP =13×12×1×1×2=1

3

.

答案:1

3

10.(2018·常州期末)已知圆锥的高为6,体积为8,用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________.

解析:设截得的小圆锥的高为h 1,底面半径为r 1,体积为V 1=13πr 2

1h 1;大圆锥的高为h

=6,底面半径为r ,体积为V =13πr 2h =8.依题意有r 1r =h 1h ,V 1=1,V 1V =13πr 21h 1

13πr 2h =? ????h 1h 3=1

8

得h 1=1

2

h =3,所以圆台的高为h -h 1=3.

答案:3

11.如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =

90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值是________.

解析:连结A 1B ,沿BC 1将△CBC 1展开,与△A 1BC 1在同一个平面内,如图所示,连结

A 1C ,则A 1C 的长度就是所求的最小值.

因为A

1C 1=6,A 1B =210,BC 1=2,所以A 1C 2

1+BC 2

1=A 1B 2

,所以∠

A 1C 1

B =90°.

又∠BC 1C =45°,所以∠A 1C 1C =135°,由余弦定理,得A 1C 2

=A 1C 2

1

+CC 2

1-2A 1C 1·CC 1·cos∠A 1C 1C =36+2-2×6×2×? ??

??

22=50,所以A 1C =52,即CP +PA 1的最小值是5 2.

答案:5 2

12.(2018·苏中三市、苏北四市三调)现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为S 1,S 2,则S 1S 2

的值为________.

解析:设正四棱柱的高为a ,所以底面边长为8a ,根据体积相等,且底面积相等,所以正四棱锥的高为3a ,则正四棱锥侧面的高为a

2

+a

2

=5a ,所以

S 1

S 2

=4×8a 2

4×12

×8a ×5a =2

5.

答案:25

13.已知圆锥的底面半径和高相等,侧面积为42π,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为________.

解析:如图,设底面半径为r ,由题意可得:母线长为2r .又侧面展开图面积为1

2×2r ×2πr =42π,所以r =2.又截面三角形ABD 为等边三

角形,故BD =AB =2r ,又OB =OD =r ,故△BOD 为等腰直角三角形.设圆锥底面中心到截面的距离为d ,又V O -ABD =V A -BOD ,所以d ×S △ABD =AO ×S △OBD .又S △ABD =34

AB 2

=34×8=23,S △OBD =2,AO =r =2,故d =2×223

=233.

答案:233

14. 底面半径为1 cm 的圆柱形容器里放有四个半径为1

2 cm 的实心铁球,四个球两两相

切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水________cm 3

.

解析:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,

O 1O 2O 3O 4为正四面体,棱O 1O 2到棱O 3O 4的距离为

22,所以注水高为1+2

2

.故应注水体积为π? ?

?

??1+

22-4×43π×? ????123=? ????1

3+22π.

答案:? ??

??1

3+22π

B 组——力争难度小题

1.(2018·天津高考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面

ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则

四棱锥M -EFGH 的体积为________.

解析:如图,连结AD 1,CD 1,B 1A ,B 1C ,AC ,因为E ,H 分别为AD 1,

CD

1的中点,所以EH ∥AC ,EH =

12AC ,因为F ,G 分别为B 1A ,B 1C 的中点,所以FG ∥AC ,FG =1

2AC ,所以EH ∥FG ,EH =FG ,所以四边形EHGF 为平行四边形,又EG =HF ,EH =HG ,所以四边形EHGF 为正方形,又点M 到平面EHGF 的距离为1

2,所

以四棱锥M -EFGH 的体积为13×222×12=1

12

.

答案:1

12

2.(2018·苏州期末)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经

90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________(容器壁的厚度忽略不计,结果保留π).

解析:设球形容器的最小半径为R ,则“十字立方体”的24个顶点均在半径为R 的球面上,所以两根并排的四棱柱体组成的长方体的八个顶点在这个球面上.球的直径就是长

方体的体对角线的长度,所以2R =12+22+52=30,得4R 2=30.从而S 球面=4πR 2

=30π.

答案:30π

3.已知三棱锥P -ABC 的所有棱长都相等,现沿PA ,PB ,PC 三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为26,则三棱锥P -ABC 的体积为________.

解析:由条件知,表面展开图如图所示,由正弦定理得大正三角形的

边长为a =2×26sin 60°=62,从而三棱锥的所有棱长均为32,底面三角形ABC 的高为326,故三棱锥的高为18-6=23,所求体积为V =

13×

34

(32)2

×23=9. 答案:9

4.(2018·渭南二模)体积为4π

3

的球与正三棱柱的所有面均相切,则该棱柱的体积为________.

解析:设球的半径为R ,由

4π3R 3=4π

3,得R =1,所以正三棱柱的高h =2.设底面边长为a ,则13×32a =1,所以a =2 3.所以V =1

2

×23×3×2=6 3.

答案:6 3

5.如图所示,在直三棱柱中,AC ⊥BC ,AC =4,BC =CC 1=2,若用平行于三棱柱

A 1

B 1

C 1-ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼

接成长方体,则长方体表面积的最小值为________.

解析:用过AB ,AC 的中点且平行于平面BCC 1B 1的平面截此三棱柱,可以拼接成一个边长为2的正方体,其表面积为24;

用过AB ,BC 的中点且平行于平面ACC 1A 1的平面截此三棱柱,可以拼接成一个长、宽、高分别为4,1,2的长方体,其表面积为28;

用过AA 1,BB 1,CC 1的中点且平行于平面ABC 的平面截此三棱柱,可以拼接成一个长、宽、高分别为4,2,1的长方体,其表面积为28,

因此所求的长方体表面积的最小值为24. 答案:24

6.如图,在棱长为4的正方体ABCD -A

1B 1C 1D 1中,E ,F 分别为棱

AA 1,D 1C 1上的动点,点G 为正方形B 1BCC 1的中心.则空间四边形AEFG

在该正方体各个面上的正投影所构成的图形中,面积的最大值为________.

解析:四边形AEFG在前、后面的正投影如图①,当E与A1重合,F与B1重合时,四边形AEFG在前、后面的正投影的面积最大值为12;

四边形AEFG在左、右面的正投影如图②,当E与A1重合,四边形AEFG在左、右面的正投影的面积最大值为8;

四边形AEFG在上、下面的正投影如图③,当F与D重合时,四边形AEFG在上、下面的正投影的面积最大值为8.综上所述,所求面积的最大值为12.

答案:12

江苏省高考数学二轮复习专题八二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练(含解析)

计数原理与二项式定理 A组——大题保分练 1.设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集. (1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数; (2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数. 解:(1)110. (2)集合M有2n个子集,不同的有序集合对(A,B)有2n(2n-1)个. 当A?B,并设B中含有k(1≤k≤n,k∈N*)个元素, 则满足A?B的有序集合对(A,B)有n∑ k=1C k n(2k-1)= n ∑ k=0 C k n2k- n ∑ k=0 C k n=3n-2n个. 同理,满足B?A的有序集合对(A,B)有3n-2n个. 故满足条件的有序集合对(A,B)的个数为2n(2n-1)-2(3n-2n)=4n+2n-2×3n. 2.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈ N*).性质T:排列a1,a2,…,a n中有且只有一个a i >a i+1 (i∈{1,2,…,n-1}). (1)求f(3); (2)求f(n). 解:(1)当n=3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2), (3,2,1),其中满足仅存在一个i∈{1,2,3},使得a i>a i+1的排列有(1,3,2),(2,1,3),(2,3,1), (3,1,2),所以f(3)=4. (2)在1,2,…,n的所有排列(a1,a2,…,a n)中, 若a i=n(1≤i≤n-1),从n-1个数1,2,3,…,n-1中选i-1个数按从小到大的顺序排列为a1,a2,…,a i-1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i-1 n-1. 若a n=n,则满足题意的排列个数为f(n-1). 综上,f(n)=f(n-1)+n-1 ∑ i=1 C i-1 n-1=f(n-1)+2n-1-1.

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

最新-江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.

(1)证明:PO⊥平面ABC; --为30?,求PC与平面PAM所成角的正弦值.(2)若点M在棱BC上,且二面角M PA C 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD所在的平面与半圆弧?CD所在平面垂直,M是?CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC; (2)当三棱锥M ABC -体积最大时,求面MAB与面MCD所成二面角的正弦值. 2018年江苏理科: 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲ .

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

2015年高考理科数学试题汇编(含答案):立体几何-小题

2015年高考理科数学试题汇编(含答案):立体几何-小题

(新课标1)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为 一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有() A.14斛 B.22斛 C.36斛 D.66斛 【答案】B 考点:圆锥的体积公式 (新课标1)(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为A.36π B.64π C.144π D.256π 【答案】C

试题分析:因为α,β是两个不同的平面,m是 直线且mα?.若“mβ∥”,则平面、 αβ可能相交 也可能平行,不能推出// αβ, αβ,反过来若// mα ?,则有mβ∥,则“mβ∥”是“αβ∥”的必要而不充分条件. 考点:1.空间直线与平面的位置关系;2.充要条件. (福建)7.若,l m是两条不同的直线,m垂直于平面α,则“l m⊥”是“//lα的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】B 考点:空间直线和平面、直线和直线的位置关系.(湖南)10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用

2019届江苏省高考数学二轮复习微专题3.平面向量问题的“基底法”和“坐标法”

微专题3 平面向量问题的“基底法”与“坐标法” 例1 如图,在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上.若BE →=λBC →,D F →=19λDC →,则 AE →·A F → 的最小值为 ________. (例1) 变式1 在△ABC 中,已知AB =10,AC =15,∠BAC =π 3,点M 是边AB 的中点, 点N 在直线AC 上,且AC →=3AN → ,直线CM 与BN 相交于点P ,则线段AP 的长为________. 变式2若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________. 处理平面向量问题一般可以从两个角度进行: 切入点一:“恰当选择基底”.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算. 切入点二:“坐标运算”.坐标运算能把学生从复杂的化简中解放出来,快速简捷地达成解题的目标.对于条件中包含向量夹角与长度的问题,都可以考虑建立适当的坐标系,应用坐标法来统一表示向量,达到转化问题,简单求解的目的.

1. 设E ,F 分别是Rt △ABC 的斜边BC 上的两个三等分点,已知AB =3,AC =6,则AE →·A F → =________. 2. 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·A F →=2,则AE →·B F →=________. 3. 如图,在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE → =33 32 ,则AB 的长为________. (第2题) (第3题) (第4题) 4. 如图,在2×4的方格纸中,若a 和b 是起点和终点均在格点上的向量,则向量2a +b 与a -b 夹角的余弦值是________. 5. 已知向量OA →与OB →的夹角为60°,且|OA →|=3,|OB →|=2,若OC →=mOA →+nOB →,且OC → ⊥AB → ,则实数m n =________. 6. 已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP →+13 AC →,则|BQ → |的最小值是________. 7. 如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP →=12 PC → ,点M ,N 在过点P 的直线上,若AM →=λAB →,AN →=μAC → ,λ,μ>0,则λ+2μ的最小值为________. (第7题) (第8题) (第9题) 8. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为线段AO 的中点.若BE → =λBA →+μBD → (λ,μ∈R ),则λ+μ=________. 9. 如图,在直角梯形ABCD 中,若AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1, 动点P 在边BC 上,且满足AP →=mAB →+nAD → (m ,n 均为正实数),则1m +1n 的最小值为________. 10. 已知三点A(1,-1),B(3,0),C(2,1),P 为平面ABC 上的一点,AP →=λAB →+μAC → 且AP →·AB →=0,AP →·AC →=3. (1) 求AB →·AC →的值; (2) 求λ+μ的值.

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

高考数学15立体几何小题.docx

立体几何 1、平面βα⊥,直线α?b ,m β?,且b m ⊥,则b 与β( ) A .b β⊥ B .b 与β斜交 C .b //β D .位置关系不确定 2、过三棱柱111ABC A B C -的任意两条棱的中点作直线,其中与平面11ABB A 平行的直线共有( )条 A .2 B .4 C .6 D .8 3、一条直线与一个平面所成的角等于3π,另一直线与这个平面所成的角是6 π 。则这两条直线的位置关系( ) A .必定相交 B .平行 C .必定异面 D .不可能平行 4、在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1:3,则锥体被截面所分成的两部分的体积之比为( ) A . B .1:9 C .1: D .1:1) 5、正方体1111ABCD A B C D -中,,,P Q R 分别是11,,AB AD B C 的中点.那么,正方体的过,,P Q R 的截面图形是( ) A .三角形 B .四边形 C .五边形 D .六边形 6、正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7、已知平面α与β所成的二面角为80°,P 为,αβ外一定点,过点P 的一条直线与,αβ所成的角都是30°,则这样的直线有且仅有( ) A .1条 B .2条 C .3条 D .4条 8、如图所示,PAB ?所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD α⊥,BC α⊥,4AD =, 8BC =,6AB =。若tan 2tan 1ADP BCP ∠-∠=,则动点P 在平面α内的轨迹是( ) A .椭圆的一部分 B .线段 C .双曲线的一部分 D .以上都不是 9、如图所示,已知球O 为棱长为1的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为( ) A . 6 π B . 3 π C D

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

江苏省高考数学二轮复习 专题10 数列(Ⅱ)

江苏省2013届高考数学(苏教版)二轮复习专题10 数__列(Ⅱ) 回顾2008~2012年的高考题,数列是每一年必考的内容之一.其中在填空题中,会出现等差、等比数列的基本量的求解问题.在解答题中主要考查等差、等比数列的性质论证问题,只有2009年难度为中档题,其余四年皆为难题. 预测在2013年的高考题中,数列的考查变化不大: 1填空题依然是考查等差、等比数列的基本性质. 2在解答题中,依然是考查等差、等比数列的综合问题,可能会涉及恒等关系论证和不等关系的论证. 1.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________. 解析:S 100=1002(a 1+a 100)=45,a 1+a 100=9 10 , a 1+a 99=a 1+a 100-d =25 . a 1+a 3+a 5+…+a 99=50 2 (a 1+a 99)=502×25 =10.

答案:10 2.已知数列{a n }对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=-6,那么a 10=________. 解析:由已知得a 4=a 2+a 2=-12,a 8=a 4+a 4=-24,a 10=a 8+a 2=-30. 答案:-30 3.设数列{a n }的前n 项和为S n ,令T n = S 1+S 2+…+S n n ,称T n 为数列a 1,a 2,…,a n 的“理 想数”,已知数列a 1,a 2,…,a 500的“理想数”为2 004,那么数列12,a 1,a 2,…,a 500的“理想数”为________. 解析:根据理想数的意义有, 2 004=500a 1+499a 2+498a 3+…+a 500 500, ∴501×12+500a 1+499a 2+498a 3+…+a 500 501 = 501×12+2 004×500 501 =2 012. 答案:2 012 4.函数y =x 2 (x >0)的图象在点(a k ,a 2 k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数, a 1=16,则a 1+a 3+a 5=________. 解析:函数y =x 2 (x >0)在点(16,256)处的切线方程为y -256=32(x -16).令y =0得a 2 =8;同理函数y =x 2(x >0)在点(8,64)处的切线方程为y -64=16(x -8),令y =0得a 3=4;依次同理求得a 4=2,a 5=1.所以a 1+a 3+a 5=21. 答案:21 5.将全体正整数排成一个三角形数阵: 按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.

立体几何 高考真题全国卷

(2018 文 I )在平行四边形中,,,以为折痕将折起,使点到达点的位置,且. ⑴证明:平面平面; ⑵为线段上一点,为线段上一点,且,求三棱锥的体积. (2018 文 I I )如图,在三棱锥中,, ,为的中点. (1)证明:平面; (2)若点在棱上,且,求点到平面的距离. ABCM 3AB AC ==90ACM =?∠AC ACM △M D AB DA ⊥ACD ⊥ABC Q AD P BC 2 3 BP DQ DA ==Q ABP -P ABC -AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM A B C P O M

(2018 文 III )如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. ⑴证明:平面AMD ⊥平面BMC ; ⑵在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. (2017 文 I )如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面PAB ⊥平面PAD ; (2)若PA=PD=AB=DC,90APD ∠=,且四棱锥P-ABCD 的体积为8 3 ,求该四棱锥的侧面积.

(2017 文 II )如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD , 1 ,2 AB BC AD BAD == ∠90.ABC =∠=? (1)证明:直线BC ∥平面PAD ; (2)若△PCD 的面积为P ABCD -的体积. (2017 文 III )如图,四面体ABCD 中,△ABC 是正三角形,AD=CD . (1)证明:AC ⊥BD ; (2)已知△ACD 是直角三角形,AB=BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.

最新高考数学立体几何试题分析及备考建议

高考数学立体几何试题分析及备考建议 一、高考命题分析 立体几何是高中数学领域的重要模块,是高考考查考生的空间感、图 形感、语言转化能力、几何直观能力、逻辑推理能力的主要载体。主要包 括柱、锥、台、球及其简单组合体的结构特征,三视图,点、直线、平面 的位置关系等。通过研究近年高考试卷,不难发现有关立体几何的命题较 稳定,难易适中,基本体现出“两小一大”或“一小一大”的特点.即1--2道小题,1道大题,占17--22分,小题灵活多变且有一定的难度,其中常有组 合体三视图问题和开放型试题,大多考查概念辨析,位置关系探究,空间 几何量的简单计算求解等,考查画图、识图、用图的能力;而解答题大多 属中档题, 一般设计成几个小问题,此类考题往往以简单几何体为载体, 考查直线与直线、直线与平面、平面与平面的位置关系,综合考查空间想 象能力、推理论证能力和运算求解能力,也关注对条件和结论不完备情形 下开放性问题的探究。其解题思路也主要是“作——证——求”,强调作图、证明和计算相结合。命题既注意“知识的重新组合”,又采用“小题目综合化,大题分步设问”的命题思路,朝着“重基础、直观感、空间感、探究与创新”的方向发展。 二、高考命题规律 (一)客观题方面

1.以三视图为载体考查空间想象能力 空间几何体的结构与三视图主要培养观察能力、归纳能力和空间想象 能力,识别三视图所表示的空间几何体,柱、锥、台、球体及其简单组合 体的结构特征与新增内容三视图的综合会重点考查,从新课标地区的高考 题来看,三视图是出题的热点,题型多以选择题、填空题为主,属中等偏 易题。随着新课标的推广和深入,难度逐渐有所增加。主要考查以下两个 方面:①几何体的三视图与直观图的认识;②通过三视图和几何体的结合,考查几何体的表面积和体积。 例1 (新课标2)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以 zOx平面为投影面, 则得到正视图可以为 A B C D 注意:必修2中的空间直角坐标系容易被文科忽视。 例2 (新课标2)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A.6 B.9 C.12 D.18 注意:简单组合体的表面积和体积的问题为常考题目。 例3 (四川理)一个几何体的三视图如图所示,则该几何体的直观图可以

江苏南通市2018届高三数学第二次调研试卷含答案

江苏南通市2018届高三数学第二次调研 试卷(含答案) 南通市2018届高三第二次调研测试 数学Ⅰ 参考公式:柱体的体积公式,其中为柱体的底面积,为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.已知集合,则▲. 2.已知复数,其中为虚数单位.若为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲. 4.如图是一个算法流程图,则输出的的值为▲. 5.在长为12cm的线段AB上任取一点C,以线段AC,BC 为邻边作矩形,则该矩形的面积 大于32cm2的概率为▲. 6.在中,已知,则的长为▲. 7.在平面直角坐标系中,已知双曲线与双曲线有公共的

渐近线,且经过点 ,则双曲线的焦距为▲. 8.在平面直角坐标系xOy中,已知角的始边均为x轴的非负半轴,终边分别经过点 ,,则的值为▲. 9.设等比数列的前n项和为.若成等差数列,且,则的值为▲. 10.已知均为正数,且,则的最小值为▲. 11.在平面直角坐标系xOy中,若动圆上的点都在不等 式组表示的平面区域 内,则面积最大的圆的标准方程为▲. 12.设函数(其中为自然对数的底数)有3个不同的零点,则实数 的取值范围是▲. 13.在平面四边形中,已知,则的值为▲. 14.已知为常数,函数的最小值为,则的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分) 在平面直角坐标系中,设向量,,. (1)若,求的值;

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

相关文档
最新文档