汽车防抱死制动系统的原理与发展

汽车防抱死制动系统的原理与发展
汽车防抱死制动系统的原理与发展

收稿日期:2005-12-13

作者简介:卞化梅(1969-),女,山西矿业学院机械制造工艺与设备专业毕业,北京工商大学机械制造自动化专业在读硕士,讲师。

汽车防抱死制动系统的原理与发展

卞化梅

(北京工业职业技术学院,北京100042)

摘 要:汽车用制动防抱死制动系统(简称ABS )是汽车主动安全性能的一项重要技术,目前在国内外已经得到广泛应用,介绍了ABS 的工作原理、发展历史、现状以及发展趋势,并着重介绍了国内ABS 的现状及发展趋势。

关键词:汽车;制动防抱死系统;滑移率;附着系数中图分类号:U463.52+6 文献标识码:A 文章编号:1671-6588(2006)01-21-04

Concept and Development of the Anti -lock Braking System

Bian Huamei

(Beijing Vocational &Technical Institute of Industry ,Beijing 100042,China )

Abstract :The Anti 2lock Braking System (ABS ),which is a great importance to active safety of vehicles ,has been widely used in home and abroad.This paper introduces the control concept ,the history of development ,the status in quo and the trend of development of ABS.It emphasizes the domestic status and trend of ABS.Key words :automobile ;Anti 2Lock Braking System ;slip ratio ;adhesion coefficient

0引言

随着汽车工业的飞速发展和道路交通设施的不断完善,汽车己逐渐成为人们的代步工具,人们在享受汽车带来舒适、便捷的同时,也对汽车行驶的安全性能提出了更高的要求,改善汽车的制动性能始终是汽车设计、制造部门的重要任务。

制动性能是汽车主要的安全性能之一。评价一辆汽车的制动性能最基本的指标是制动加速度、制动距离、制动时间及制动时方向的稳定性。制动时方向的稳定性,是指汽车制动时仍能按指定的方向的轨迹行驶。如果因为汽车的紧急制动(尤其是高速行驶时)而使车轮完全抱死,那是非常危险的。若前轮抱死,将使汽车失去转向能力;若后轮抱死,将

会出现甩尾或调头(跑偏、侧滑),尤其在路面湿滑的情况下,对行车安全造成极大的危害。

汽车防抱死制动系统(Anti -lock Braking Sys 2tem )简称ABS ,是一种机电液一体化装置,它在传统制动系统的基础上,采用电子控制技术,以实现制动力的自动调节,防止制动车轮抱死,以期获得最有效的制动效果,并大大提高车辆主动安全性。ABS 能够利用轮胎和路面之间的峰值附着性能,提高汽车抗侧滑性能,充分发挥制动效能,同时增加汽车制动过程中的可控性,从而减少事故发生的可能性,是一种具有防滑、防锁死等优点的安全刹车控制系统。1控制原理1.1滑移率的定义

第5卷 第1期2006年1月

北京工业职业技术学院学报

JOURNAL OF BEIJ ING VOCATIONAL &TECHNICAL INSTITU TE OF INDUSTRY

№.1Vol.5

Jan.

2006

通常,汽车在制动过程中存在着两种阻力:一种阻力是制动器摩擦片与制动鼓或制动盘之间产生的摩擦阻力,这种阻力称为制动系统的阻力,由于它提供制动时的制动力,因此也称为制动系制动力;另一种阻力是轮胎与道路表面之间产生的摩擦阻力,也称为地面制动力。地面对轮胎切向反作用力的极限值称为轮胎-道路附着力,大小等于地面对轮胎的法向反作用力与轮胎-道路附着系数的乘积。如果制动系制动力小于轮胎-道路附着力,则汽车制动时会保持稳定状态,反之,如果制动系制动力大于轮胎-道路附着力,则汽车制动时会出现车轮抱死和滑移。

地面制动力受地面附着系数的制约。当制动器产生的制动系制动力增大到一定值(大于附着力)时,汽车轮胎将在地面上出现滑移。汽车的实际车速与车轮滚动的圆周速度之间的差异称为车轮的滑

移率。滑移率S 的定义式为:S =V t -r ×

ωV t

×

100%

式中:S —滑移率;

V t —汽车的理论速度(车轮中心的速度);

ω—汽车车轮的角速度;

r —汽车车轮的滚动半径。

由上式可知:当车轮中心的速度(即汽车的实际

车速)V t 等于车轮的角速度ω和车轮滚动半径r 乘

积时,滑移率为零(S =0),车轮为纯滚动;当ω=0时,S =100%,车轮完全抱死而作纯滑动;当0

图1给出车轮与路面纵向附着系数和横向附着系数随滑移率变化的典型曲线。当轮胎纯滚动时,纵向附着系数为零;当滑移率为15%~30%时,纵向附着系数达到峰值;当滑移率继续增大,纵向附着系数持续下降,直到车轮抱死(

S =100%),纵向附着系数降到一个较低值。另外,随着滑移率增大,横向附着系数急剧下降,当车轮抱死时,横向附着系数几乎为零。从图1可以看出,如果能将车轮滑移率控制在15%~30%的范围内,则既可以使纵向附着系数接近峰值,同时又可以兼顾到较大的侧向附着系数。这样,汽车就能获得最佳的制动效能和方向稳定性。ABS 即是基于这一原理而研制的。

图1 滑移率与附着系数关系

1.3工作原理

ABS 系统主要由车轮速度传感器、电子控制系

统ECU 和执行元件(压力调节器)等三大部件组成,其工作原理是:在汽车需要全力制动时,通过控制所

有车轮的滑移率,以获得轮胎与路面之间的最大纵

向附着力,有效缩短制动距离,并保持一定的横向附着力,有效克服紧急制动时的跑偏、侧滑、甩尾等情况,防止车身失控,提高车辆的制动稳定性。其组成

22 北京工业职业技术学院学报 第5卷

及工作过程如图2所示

图2 ABS 组成和工作原理示意图

2ABS 的发展历史及现状2.1发展史

制动力调整装置设计思想的提出在20世纪20年代末,故ABS 最早应用于30年代以前的火车上,是为了防止火车车轮与钢轨的早期损坏,列车制动时如果车轮抱死,将会在钢轨上滑行,使制动距离延长,同时造成车轮与钢轨磨损。随后又应用于飞机,为防止飞机着陆后制动跑偏、甩尾,缩短滑行距离,开发了飞机用的ABS 。

1950年,世界上第一台防抱死系统(ABS )研制

成功并首先被应用于航空领域的飞机上。50年代中期福特汽车首先将它装在汽车上,成为汽车上最

早使用ABS 的公司;德国博世(Bosch )公司是汽车ABS 的发明、研制单位,60年代初就开始ABS 的开

发工作,于1978年正式生产出ABS1(采用模拟式电子组件)型汽车防抱死制动系统。1984年推出ABS2(完全采用数字式组件)型,1986年开始生产ABS3型,以后相继开发出ABS2S 型及将汽车防抱

死制动系统与驱动力自动调节装置有机结合的ABS/ASR (防车轮抱死和驱动轮防打滑控制)系统。目前,最新的ABS 已发展到第5代,现今的ABS 还有结合了多方面的功能,比如:电子牵引系统(ETS )、驱动防滑调整装置(ASR )、电子稳定程序(ESP )、辅助制动器。2.2国际上ABS 的发展趋势2.2.1控制方法的发展趋势

目前应用的主流ABS 产品基本都是基于车轮加、减速的逻辑门限值及参考滑移率方法设计的。但是它的控制逻辑复杂,不同路况下各种门限值没有十分明确的理论依据,难以适应各种制动工况,而且控制过程中逻辑门限总是处于波动状态,因此控制效果不太好,制动距离也稍长。对系统的稳定性等品质无法评价。因此汽车ABS 的控制方法出现了滑动模态变结构控制方法、PID 控制方法、鲁棒控

制方法和模糊控制方法等。滑动模态变结构控制可

获得较高的制动效率,但是在换节线附近切换时,由于系统的惯性,在滑动运动中叠加了一个抖动,如何选定参数及消除相轨迹在沿曲线滑移过程中存在的抖动现象,有待进一步研究;对于PID 控制,只要现场整定的PID 参数合适,就会得到较好的控制效果,但其性能效果仍有待改进和提高;鲁棒控制在系统稳定性和抗干扰能力上有所提高,但鲁棒控制需要知道模型传递误差的上限,选择加强函数具有一定的难度。而模糊控制采用类似于人脑的模糊推理方法,遵循一定的控制规则,结合实际经验,对系统进行动态调控,具有不依赖对象的数学模型、便于利用人的经验知识、原理简单、容易实现、鲁棒性好,只要赋子控制器足够的控制能力,就能很好地适应各种路况及车型结构参数的变化,是一种很有前途的ABS 控制方法。2.2.2结构的发展

随着人们对制动性能要求的不断提高,防抱死

制动系统(ABS )中逐渐融入了驱动防滑系统(ASR )、牵引力控制系统(TCS )、电子稳定程序(ESP —有的公司称之为汽车动力学稳定性控制VDC )、主动避撞技术(ACC )等功能。其中,每种结

构功能侧重不同,ABS 减速制动防滑移,ASR 加速驱动防滑转,而牵引力控制系统(TCS )能有效解决车辆在湿滑路面起步或加速时出现的车轮打滑问题,结合动力学控制VDC 的最佳ABS 是以滑移率为控制目标,它是以连续量控制形式,使制动过程中保持最佳的、稳定的滑移率,理论上是一种理想的ABS 控制系统。这些结构逐渐实现了在各种工况

下提高汽车的动力学性能:全部、部分制动,滑移,驱动,发动机反拖,换档等各种过程。一定程度上大大提高了汽车的主动安全性。但是越来越多的附加机构安装于制动线路上,这使得制动系统结构更加复杂,也增加了液压回路泄漏的隐患以及装配、维修的

32第1期 卞化梅:汽车防抱死制动系统的原理与发展

难度。因此结构更简捷,功能更可靠的线控制动系统BBW(Brake-By-Wire)最终取代传统的液压制动系统已经成为汽车行业发展的共识。

随着电子技术的发展,特别是大规模、超大规模集成电路的发展,汽车制动系统的形式也将发生变化;由于技术发展程度的局限,目前主要有2种形式的BBW系统,即EHB和EMB。EHB(Electro-hy2 draulic brake)即线控液压制动器,是在传统的液压制动器基础上发展来的。EHB与传统的液压制动器相比有了显著进步,结构紧凑,改善了制动效能,控制方便可靠,制动噪声显著减小,不需要真空装置等;节省了车内制动系统的布置空间。但是EHB还是有其局限性,整个系统仍然需要液压部件,离不开制动液。而电子机械制动系统EMB(Elcctro-Me2 chanical Brake)是一种全电制动不同于传统的制动系统,因为其传递的是电,而不是液压油或压缩空气,可以省略许多管路和传感器,缩短制动反应时间。现代汽车制动控制技术正朝着电子制动控制方向发展。全电制动控制因其巨大的优越性,将取代传统的以液压为主的传统制动控制系统。从二十世纪九十年代起,国外一些著名的汽年电子零部件厂商陆续开始了与EMB相关的研究,现在Bosch、Siemens和Continental Teves公司已经取得了部分研究成果,但仍然只是处于研制试验阶段,而在国内此项研究至今仍属空白。

3国内ABS的发展

3.1国内ABS研究的理论现状

我国ABS的研究开始于80年代初。从事ABS 研制工作的单位和企业很多,诸如东风汽车公司、重庆公路研究所、西安公路学院、清华大学、吉林大学、北京理工大学、上海汽车制动有限公司和山东重汽集团等。具有代表性的有以下几个。

清华大学汽车安全与节能国家重点实验室有宋健等多名博导、教授,有很强的科技实力,他们还配套有一批先进的仪器设备,如汽车力学参数综合试验台、汽车弹射式碰撞试验台及翻转试验台、模拟人及标定试验台、K odak高速图像运动分析系统、电液振动台、直流电力测功机、发动机排放分析仪、发动机电控系统开发装置及工况模拟器、计算机工作站及ADAMS、IDEAS软件、非接触式速度仪、噪声测试系统、转鼓试验台、电动车蓄电池试验台、电机及其控制系统试验台等。该实验室针对ABS做了多方面的研究,其中,在ABS控制量、轮速信号抗干扰处理、轮速信号异点剔除、防抱死电磁阀动作响应研究等方面的研究处于国内领先地位。

吉林大学汽车动态模拟国家重点实验室以郭孔辉院士为代表的研究人员致力于汽车操纵稳定性、汽车操纵动力学、汽车轮胎模型、汽车轮胎稳态和非稳态侧偏特性的研究,在轮胎力学模型、汽车操纵稳定性以及人-车闭环操纵运动仿真等方面的研究成果均达到世界先进水平。

华南理工交通学院汽车系以吴浩佳教授为代表从事汽车安全与电子技术及汽车结构设计计算的研究,在ABS技术方面有独到之处,能够建立制动压力函数,通过车轮地面制动力和整车动力学方程计算出汽车制动的平均减速度和车速;还可以通过轮缸等效压力函数计算防抱死制动时的滑移率。另外,在滑移率和附着系数之间的关系、汽车整车技术条件和试验方法方面也有独到见解。

济南程军电子科技公司以ABS专家程军为代表的济南程军电子科技公司对ABS控制算法研究颇深,著有《汽车防抱死制动系统的理论与实践》等专著几本,专门讲述ABS控制算法,是国内ABS开发人员的必备资料之一。另外,他们在基于MA T2 LAB仿真环境实现防抱死控制逻辑、基于VB开发环境进行车辆操纵仿真和车辆动力学控制的模拟研究等方面也颇有研究。

3.2国内有代表性的ABS产品公司

重庆聚能公司产品包括汽车、摩托车系列J N111FB气制动电子式单通道、J N144FB气制动电子式四通道和J N244FB液压电子式四通道等类型ABS装置及其相关零部件30多个品种,其ABS产品已通过国家汽车质量监督检测中心和国家客车质量监督检测中心的认定,获得国家实用新技术专利,并正式被列为国家火炬项目计划。

西安博华公司主要产品是适用于大中型客车和货车的气压四通道ABS和适用于中型面包车的液压三通道ABS及其相关零部件。其中BH1203-FB型ABS和BH1101-FB型ABS已通过陕西省科委科技成果鉴定和陕西省机械工业局新产品鉴定,认为该项技术已达到国内领先水平。

山东重汽集团引进国际先进技术进行的研究也已取得了一些进展。

重庆公路研究所研制的适用于中型汽车的气制动F KX-ACI型ABS装置已通过国家级技术鉴定,但各种制动情况的适应性还有待提高。

清华大学研制的适用于中型客车的气制动ABS

(下转第36页)

由于资源价格和性能上的优势,陶瓷材料的应用将迅速扩展;金刚石和CBN超硬材料的应用将进一步扩大;新刀具材料的研制周期会越来越短,新品种新牌号的推出也将越来越快。人们所希望的既有高速钢、硬质合金的强度和韧性,又有超硬材料的硬度和耐磨性的新刀具材料也完全有可能出现。

参考文献:[1]周泽华.金属切削原理[M].上海:上海科学技术出版社,

1993

[2]牛建伟.超硬材料刀具在机械制造中的应用[Z].中国工

具网,2004

[3]周伟平.机械制造技术[M].武汉:华中科技大学出版社,

2005

(责任编辑:牛小铁)

(上接第24页)

取得了相当大的进展。

目前国内还没有研制成功适用于轻型和小型汽车的液压ABS系统,北京理工大学和上海汽车制动有限公司致力于轿车的液压ABS系统的研究,已分别取得了一些初步的成果。

3.3国内ABS发展的趋势和方向

ABS在国外从20世纪80年代开始得到广泛的应用,90年代初发展到牵引力控制系统(TCS),近两年发展到车辆行驶动力学调整系统(VDC),到日前已是一种较成熟的技术。国内此项技术发展起步较晚,在软硬件方面都和国外有一定差距,在发展方向上首先就是要缩小差距,但总的发展趋势和方向与国外相同。

国内开发的ABS的种类还不全,比如一通道、二通道和四通道ABS国内目前已开发,但随着使用逐步完善,六通道等多通道ABS国内还没有相应产品,这个空白急需填补。发展ABS的同时着手开发TCS乃至VDC追赶世界先进技术潮流。

4结束语

随着现代电子技术特别是超大规模集成电路的发展,越来越多的电子产品应用于汽车上,而且电子元件的成本及尺寸不断下降。汽车电子制动控制系统将与其他汽车电子系统如汽车电子悬架系统、汽车主动式方向摆动稳定系统、电子导航系统、无人驾驶系统等融合在一起成为综合的汽车电子控制系统,未来的汽车中就不存在孤立的制动控制系统,各种控制单元集中在一个ECU中,并将逐渐代替常规的控制系统,实现车辆控制的智能化。

参考文献:

[1]朱 杰,叶兴成,聂文龙.ABS技术及其发展趋势[J].汽

车运用,2005,(4)

[2]程 军.汽车防抱死制动系统的理论与实践[M].北京:

北京理工大学出版社,1999

[3]申荣卫,台晓虹.汽车制动防抱系统的历史及其发展趋势

[J].邢台职业技术学院院报,2005,(2)

[4]郑伟峰,刘国福.国内ABS发展现状[J].汽车电器,2005,

(11)

[5]郑家杰,孟春玲,张 力.汽车制动控制系统的技术进展

[J].北京工商大学学报,2005,(9)

(责任编辑:高吕和)

汽车制动的原理

汽车制动的原理 众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但那个工作是怎么样完成的?你腿部的力量是如何样传递到车轮的?那个力量是如何样被扩大以至能让一台笨重的汽车停下来? 首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些差不多理论,附加部分包括制动系统的差不多操作方式。 差不多的制动原理 当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个特别大的力量,这要比人腿的力量大特别多。因此制动系统必须能够放大腿部的力量,要做到这一点有两个方法:?杠杆作用 ?利用帕斯卡定律,用液力放大 制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理:?杠杆作用 ?液压作用 ?摩擦力作用 制动踏板能够利用杠杆作用放大人腿部的力量,然后把那个力量传递给液压系统。

如上图,在杠杆的左边施加一个力F,杠杆左边的长度〔2X〕是右边〔X〕的两倍。因此在杠杆右端能够得到左端两倍的力2F,然而它的行程Y只有左端行程2Y的一半。 液压系统 事实上任何液压系统背后的差不多原理都特别简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统: 如图:两个活塞〔红色〕装在充满油〔蓝色〕的玻璃圆桶中,之间由一个充满油的导管连接,假如你施一个向下的力给其中一个活塞〔图中左边的活塞〕那么那个力能够通过管道内的液压油传送到第二个活塞。由于油不能被压缩,因此这种方式传递力矩的效率特别高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处确实是能够以任何长度,或者曲折成各种形状绕过其他部件来连接两个圆桶型的液压缸。还有一个好处确实是液压管能够分支,如此一个主缸能够被分成多个副缸,如下图:

ABS防抱死制动系统原理及组成图文讲解

● ABS简介 ABS是 Anti_lock Braking System 的缩写,是在制动期间控制和监视车辆速度的电子系统。 它通过常规制动系统起作用,可提高车辆的主动安全性。ABS失效时,常规制动系统仍然起作用。 优点:在紧急制动时保持了车辆方向的可操纵性;缩短和优化了制动距离。在低附着路面上,制动距离缩短10%以上;在正常路面上,保持了最优的路面附着系数利用率-即最佳的制动距离。减少了交通事故的同时减轻了司机精神负担及轮胎磨损和维修费用等。 系统部件

ABS组成部件:ECU;4~6个电磁阀;4~6个齿圈;4~6个传感器;驾驶室线束、底盘线束;ABS指示灯、 ASR灯;挂车ABS指示灯;开关、ASR开关;差动阀;双通单向阀; ISO7638电源线;电源螺旋线等。 ● ABS控制原理

卡车 ABS/ASR ABS控制原理可以简单描述为: 在车轮接近抱死的情况下,相应车轮的制动压力将被释放并在要求或测得车轮重新加速期间保持恒定,在重新加速之后逐步增加制动压力。 ABS齿圈 ABS齿圈能够随车轮转动切割传感器磁场,由铁磁性材料组成,表面采用镀锌或镀铬,齿数一般有80齿、100齿或120齿。 齿圈安装:将齿圈装入在轮毂上加工的平台,采用H8/s7过盈配合,轴向综合公差<0.2mm。装配方式有加热装配和压力装配两种方式。加热装配的方法是加热至2000°C,保温10分 钟左右装入;压力装配即用工具沿齿圈周边用力装入。 ABS 传感器

ABS传感器的作用是车轮转动时与齿圈相对运动产生交流电信号。其阻值在1100欧姆和1250欧姆之间,与环境温度有关。感应电压约110mV,与齿圈的间隙为0.7mm时的工作频率为100HZ,工作电压与传感器和齿圈之间的间隙成反比,与齿圈直径成正比,与轮速成正比。

《汽车电控系统检测》任务工作单

任务工单教学项目发动机电控系统检测 实施任务任务1:电控燃油喷射系统认识;任务2:空气供给系统检测;任务3:燃油供给系统检测;任务4:发动机辅助系统检测;任务5:发动机数据流的读取与分析 班级组别成员 二、发动机要能够良好的工作,必须满足哪几个基本条件? 三、写出 下列各 标号所 代表的 元件名 称,并画 出燃油 流动方向。 A: B: C: D: E: F: G: H: I:

图示的电控发动机是型发动机,因为。 四、对照实物,在图中标出下列发动机进气系统各主要元件位置。 ①进气歧管绝对压力传感器②空气滤清器③节气门体④怠速控制阀 五、标出右图中燃油压力调节器各部位名称: 1、 2、 3、 4、 5、 6、 7、 8、 燃油压力调节器的工作原理是:发动机工作时,燃油压力调节器膜片上方承受的压力为弹簧压力和的压力之和,膜片下方承受的压力为压力,当压力相等时,膜片处于平衡位置不动。当进气管内气体压力下降时,膜片向上移动,回油阀开度增大,回油量增多,使输油管内燃油压力也下降;反之,进气管内气体压力升高时,燃油的压力也升高。油压调节器的作用: 六、查找资料 ☆小组讨论:燃油压力调节器一旦损坏可能出现什么故障现象? 七、下面两图分别是顺序喷射和分组喷射的喷油器控制电路示意图,请你完成它。(注意喷油器的喷射顺序) 在各类喷油器中,按照安装位置的不同分为喷油器和喷油器。MPI 喷射系统中,喷油器一般安装在并指向。在某些车辆中,为了改善低温启动性能还增设有喷油器。按喷口形状不同。可分为喷油器和喷油器。按电阻值不同,可分为喷油器和

喷油器。其中,喷油器不能直接接蓄电池电源电压;必须串联8~10Ω的电阻,否则可能因电流过大而烧坏喷油器。 八、检测喷油器的电阻: ①拆卸前以避免拆卸插头时由于自感放电而烧毁ECU。 ②检测结果:结论: 九、下图是大众车系的燃油油泵控制电路图 图中,当发动机电门由OFF打到ON时,一般燃油泵继电器将,其作用是。 十、检测燃油压力: 小组讨论:如果检测到油压为0,如何进一步寻找故障原因? 十一、动态测量进气歧管绝对压力传感器。 十二、图中节气门位置传感器各接脚分别是什么? 在燃油喷射控制系统中,节气门位置传感器的作用是:

制动系统发展历史与趋势

现代汽车制动系统的发展历史与趋势 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 一.制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装臵向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装臵对机械制动器来说已显得十分必要。这时,开始出现真空助力装臵。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装臵。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克

莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装臵一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装臵,控制装臵进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装臵专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS 制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装臵。这些早期的ABS装臵性能有限,可靠性不够理想,且成本高。 1979年,默〃本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装臵。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装臵。随着大规模集成电路和超大规模集成电路技

汽车防抱死制动系统设计论文1

(此文档为word格式,下载后您可任意编辑修改!) 摘要 防抱死制动控制系统(ABS)是在传统制动系统的基础上采用智能控制技术,在制动时自动调节制动力防止车轮抱死,充分利用道路附着力,提高制动方向稳定性和操纵稳定性,从而获得最大制动力且缩短制动距离,尽可能地避免交通事故发生的机电一体化安全装置。 本文根据防抱死制动控制系统的工作原理,应用汽车单轮运动的力学模型,分析了制动过程中的运动情况。采用基于车轮滑移率的防抱控制理论,根据车速、轮速来计算车轮滑移率。以MSP430F149单片机为核心,完成了输入电路、输出驱动电路及故障诊断等电路设计,阐述了ABS系统软件各功能模块的设计思想和实现方法,完成了ABS检测软件、控制软件的设计。 课题所完成的汽车防抱死制动控制系统己通过模拟试验台的基本性能试验,结果表明:汽车防抱死制动控制系统的硬件电路设计合理可行,软件所采用的控制策略正确、有效,系统运行稳定可靠,改善了汽车制动系统性能,基本能够满足汽车安全制动的需要。 本文对汽车防抱死制动系统进行了数学建模,并在Matlab/Simulink 的环境下,对汽车常规制动系统和基于 PID 控制器的防抱死制动系统的制动过程进行了仿真,通过对比分析,验证了基于PID 控制器的汽车防抱死制动系统具有良好的制动性能和方向操纵性。 关键词:防抱死制动系统(ABS);滑移率;控制策略;单片机;建模;仿真; 第一章绪论 1.1 防抱死制动系统概述 1.1.1 防抱死制动系统的产生

当汽车以较高的车速在表面潮湿或有冰雪的路面上紧急制动时,很可能会出现这样一些危险的情况:车尾在制动的过程中偏离行进的方向,严重的时候会出现汽车旋转掉头,汽车失去方向稳定性,这种现象称为侧滑;另一种情况是在制动过程中驾驶员控制不了汽车的行驶方向,即汽车失去方向可操纵性,若在弯道制动,汽车会沿路边滑出或闯入对面车道,即便是直线制动,也会因为失去对方向的控制而无法避让对面的障碍物。产生这些危险状况的原因在于汽车的车轮在制动过程中产生抱死现象,此时,车轮相对于路面的运动不再是滚动,而是滑动,路面作用在轮胎上的侧滑摩擦力和纵向制动力变得很小,路面越滑,车轮越容易出现抱死现象;同时汽车制动的初速度越高,车轮抱死所产生的危险性也越大。这将导致汽车可能会出现下面三种情况: ① 制动距离变长 ②方向稳定性变差,出现侧滑现象,严重时出现旋转掉头 ③ 方向操纵性丧失,驾驶员不能控制汽车的行驶方向 防抱死制动系统ABS(Anti-lock Braking System)是一种主动安全装置,它在制动过程中根据“车辆一路面”状况,采用电子控制方式自动调节车轮的制动力矩来达到防止车轮抱死的目的。即在汽车制动时使车轮的纵向处于附着系数的峰值,同时使其侧向也保持着较高的附着系数,防止车轮抱死滑拖,提高制动过程中的方向稳定性、转向控制能力和缩短制动距离,使制动更为安全有效。 随着汽车行驶速度的提高、道路行车密度的增大、以及人们对汽车行驶安全性的要求越来越高,汽车行驶的安全性理所当然是最应受到关注的问题。影响汽车安全性的因素很多,诸如汽车的制动性、操纵性、行驶的稳定性、抵御外界影响(碰撞、擦挂等)的能力等都影响汽车的安全性。统计资料显示,在道路交通事故中,大约10%的事故是由于车辆在制动瞬间偏离预定轨道或甩尾造成的.因此完善制动性能是减少交通事故的重要措施。 汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速的能力称为汽车的制动性。汽车的制动性还应包括汽车能在一定坡度的坡道上长时间停车不动的性能. 汽车的制动性主要由下列三个方面来评价: 1.制动效能 在一定车速行驶时,采取制动措施后能使之停下的距离己相应的制动减速制动距离

汽车液压防抱死制动系统

汽车液压防抱死制动系统 简介 汽车制动防抱死系统(Anti-lock Braling System,简称ABS)是在传统的制动系统的基础上采用电子控制技术,在制动时防止车轮抱死的一种机电一体化系统。它是由电子控制单元(Electronic Control U-nit,简称ECU)、电磁阀或称压力调节器和轮速传感器三部分组成。在车辆紧急制动时,驾驶员脚踩制动踏板的制动压力过大时,轮速传感器及电子控制单元ECU可以检测到车轮有抱死的倾向,此时电子控制单元ECU控制电磁阀动作以减小制动压力。当车轮轮速恢复并且轮胎与地面摩擦力有减小趋势时,电控单元控制电磁阀增加控制压力。这样能够使车轮一直处于最佳的制动状态,最有效地利用地面附着力,得到最佳的制动距离和制动稳定性。 ABS的发展史 在1920年以前,绝大部分汽车仅后轴装用制动器,一方面由于当时车速低,仅后轴装用制动器即可满足要求,另一方面可能与当时汽车结构有关,人们为防止制动时汽车侧倾,故前轴不使用制动器,当然仅后轴使用制动器也易于设计及安装,且价格要低些。1900年人们已通过试验,证明四轮装用制动器是安全的,有利于汽车制动性能的改善,但真正在四轮上均安装制动器是1920年以后的事。为保证车辆在山区行使时,有好的转向性能,制动力分配系数比较小(所谓制动力系数即前轴制动器周缘力与后轴制动器周缘力之比)。这种设计思想一直持续到上个世纪五、六十年代。这与道路差、车速低的现状有关。 防抱死制动技术属于制动力控制调节技术。制动力的调节从汽车诞生的那一天就一直为人们所关注。 1908年,英国工程师J.E.Francis提出了“铁路车辆车轮抱死滑动控制器”理论。随着车速的提高,制动时后轴先于前轴抱死拖滑的危险愈来愈大,为防止这一现象的发生,进入七十年代,制动力分配系数向大的方向发展,ECE R13中对此有明确的规定。ABS的运作原理看起来简单,但从无到有的过程却经历过不少挫折(中间缺乏关键技术)!1908年英国工程师J.E.Francis提出了“铁路车辆车轮抱死滑动控制器”理论,但却无法将它实用化。接下来的30年中,包括Karl Wessel的“刹车力控制器”、Werner M?hl的“液压刹车安全装置”与Richard Trappe的“车轮抱死防止器”等尝试都宣告失败。在1941年出版的《汽车科技手册》中写到:“到现在为止,任何通过机械装置防止车轮抱死危险的

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

电控系统工作原理

电控系统工作原理 一、电控系统工作原理 随着科技进步和电子工业的发展,国产轿车采用电子控制燃油喷射系统的比率逐年增加,早在2000年,一汽—大众就宣布停止化油器式发动机的生产,产品全部采用电子控制燃油喷射系统。最早研究和开发汽油喷射式发动机的是德国博世(Bosch)公司,汽油喷射技术首先应用于飞机发动机,随着对汽车节能降耗、降低排放和提高舒适性、增加动力性的要求,这一技术被应用于汽车发动机上。目前,博世公司在这一领域的技术和产品仍处于世界领先地位。捷达王轿车就采用了博世公司最新开发的Motronic M3.8.2发动机电控管理系统,并根据中国的国情做了改进和匹配。Motronic M3.8.2发动机电控管理系统为电子控制多点燃油顺序喷射系统,闭环控制,其突出特点是喷油量及点火时刻综合控制。该系统由电子控制单元、传感器、执行器等组成,传感器为燃油喷射系统和点火系统所共用。 1.Motronic M3.8.2发动机电控管理系统的组成及工作原理 Motronic M3.8.2电控系统由电控单元(即ECU,俗称电脑)、发动机转速传感器(也称曲轴位置传感器)、空气流量传感器、节流阀体、进气温度传感器、冷却液温度传感器(发动机水温传感器)、k传感器(即氧传感器)、爆震传感器、相位传感器(也称凸轮轴位置传感器或霍尔传感器)、双点火线圈、油压调节器和喷油器等组成。 驾驶员通过节气门(俗称油门)控制发动机进气量,控制单元通过节气门位置传感器得知节气门开度,再综合发动机转速、空气流量、进气温度、λ探测值等各传感器及电子开关提供的信息,经分析、计算,确定出最佳喷油量和点火时刻,向喷油器和点火线圈发出喷油和点火指令。发动机转速和空气流量信号是ECU计算基本喷油量的主信号,ECU再根据进气温度传感器、冷却液温度传感器、A传感器、爆震传感器和节气门位置等信号对喷油量进行必要的修正,确定出实际喷油量,然后根据转速传感器得到的曲轴位置信号和相位传感器检测到的1缸压缩上止点信号,适时地向喷油器和点火线圈发出动作指令。 发动机工作可分为如下工况: (1)起动工况 发动机被起动机带动运转,当转速低于某值时,ECU识别出发动机处于起动工况,根据转速传感器、凸轮轴位置传感器、节流阀位置传感器、冷却液温度传感器、进气温度传感器等提供的信号,以及ECU中存储的最佳控制参数,计算出起动喷油量、点火角度和怠速直流电机的位置,并驱动喷油器和点火动力组件动作,使节气门处于起动位置,保证发动机顺利起动。发动机起动后,当转速超过某值时,则起动工况结束。捷达王轿车起动时,司机无需踏油门踏板、节气门会自动处于最佳起动位置。 (2)怠速工况 发动机起动后,怠速运转时,节流阀体内的怠速开关触点闭合,ECU根据此信号得知发动机处于怠速工况,同时根据冷却液温度传感器信号计算出目标转速(存储在ECU中的理论转速,温度越低,理论转速越高,以保证发动机在低温时稳定运转并快速暖机),并与实际转速进行比较,根据转速差的正负和大小,使节气门处于目标位置,以保证发动机怠速转速达到目标值。KCU同时还通过改变点火提前角来稳定发动机怠速。捷达王发动机热车后怠速转速理论值设置为840r/mjn,怠速点火提前角设置为上止点前12°,这些值存储在ECU中,人工不能调整。 (3)运行工况 运行工况又包括部分负荷、全负荷、加减速过渡及被拖动等工况。ECU根据转

城市轨道车辆制动系统原理分析

2014届毕业设计说明书课题名称:城轨车辆制动系统分析 二级院校铁道牵引与动力学院 班级宁波检修11级 学生姓名周旺 指导老师左继红 完成日期 2013.12

2014届毕业设计任务书 一、课题名称:城轨车辆制动系统的原理分析 二、指导老师:左继红 三、设计内容与要求 1.课题概要 城市轨道交通运输是我国交通运输网络的重要组成部分,它的发展与城市经济的发展息息相关。目前,世界各地的主要政治、经济、文化等中心城市都兴建了不同形式的轨道交通运输网,有些还成为所在城市的重要景观和标志性建筑。我国北京、上海、广州、南京等城市的地下铁道已经开通,成为这些城市市内交通运输的支柱。另外还有许多其他的城市交通网也在筹建和建设之中。城市轨道交通运输的发展必将为我国经济的发展插上腾飞的翅膀。 地铁车辆制动系统用于保证地铁车辆的运行安全,具有多种操作模式,与传统列车制动系统相比,结构和工作原理更为复杂。 通过对此课题的学习和设计,使学生能更好的理解地铁车辆制动和空气管路系统的工作原理,培养学生运用所学的基础知识和专业知识的能力,提高学生利用所学基本理论和自身具备的技能来分析解决本专业相应问题的能力,使学生树立正确的设计思想,掌握工程设计的一般程序和方法,完成工程技术人员必须具备的基本能力的培养和训练。 2.设计内容与要求 1、熟悉地铁制动在铁路运输中的作用。 2、简单介绍地铁车辆制动系统的组成。 3、详细分析地铁车辆及列车制动系统的工作原理和工作过程。 4分析现有制动系统存在的不足之处,利用自己所学的专业知识,提出改进设计意见和具体实施方案。 四、设计参考书 1.《城市轨道交通车辆制动技术》殳企平编著水利水电出版社 2.《列车制动》侥忠主编中国铁道出版社 3.《电力机车制动机》那利和主编中国铁道出版社 4. https://www.360docs.net/doc/6b8392205.html,/ec/C356/kcms-2.htm 5 .https://www.360docs.net/doc/6b8392205.html, 6. https://www.360docs.net/doc/6b8392205.html, 7. https://www.360docs.net/doc/6b8392205.html, 五、设计说明书内容 1.封面 2.目录 3.内容摘要(200—400字左右,中英文)

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

防抱死制动系统

防抱死制动系统 听一听! 了解防抱死制动系统的发展历史; 掌握防抱死制动系统的基本原理; 掌握防抱死制动系统的基本组成以及各部件的结构和功能; 了解其它几种先进的制动系统。 通过本章的学习,使读者对日益受到关注的ABS系统有一个全面的认识。 从汽车如何制动、该怎样制动、如何充分利用地面的附着条件等问题出发,理解防抱死制动系 统的控制内容、控制过程以及最终的控制目标。对于ABS的基本原理要有充分的理解,可参阅有 关介绍ABS的书籍;对于ABS的基本结构,掌握各元件的功能以及如何实现这些功能;了解其它 先进的制动系统。建议读者对实际的汽车制动系统进行观察,了解其布置及各部件的结构功能。 发展历史 基本原理 滑动率与附着系数的关系 ABS控制及布置方式 ABS的工作过程 基本结构 轮速传感器 液压调节器 电子控制单 元 其它先进的制动系统

汽车的制动过程 全电子制动系统 智能制动控制系统 当汽车制动前轮抱死时,汽车会失去转向能力,后轮抱死时会造成汽车急转甩尾。 制动防抱死系统就是在制动过程中防止车轮被制动抱死,提高制动减速度、缩短制动距离,能有效地提高汽车的方向稳定性和转向操纵能力,保证汽车的行驶安全。ABS 系统对汽车性能的影响主要表现在减少制动距离、保持转向操纵能力、提高行驶方向稳定性以及减少轮胎的磨损方面。 显示视频

用鼠标指向下图框中的文字,你将看到更多信息! 下一页

滑动率与附着系数的关 系 汽车在制动时,车速与轮速之间产生速度差,车轮发生滑动现象。滑动率的定义为: 在非制动状态(滑动率为0)下,制动附着系数等于0;在制动状态下,滑动率达到最优滑动率时,制动附着系数最大,在此之前的区域为稳定区域;之后,随着滑动率的增大制动附着系数反而减少,侧向附着系数也下降很快,汽车进入不稳定区域,特别是当滑动率为100%时,侧向附着系数接近于0,也就是汽车不能承受侧向力,这是很危险的。所以应将制动滑动率控制在稳定区域内。附着系数的大小取决于道路的材料、状况以及轮胎的结构、胎面花纹和车速等因素。 上一页下一页

汽车制动发展简史

l绪论硕」论文 1.3.3制动系统的基本工作原理 制动系统基本工作原理可以用图1.3.2所示的简单的液压制动系统工作原理示意 图来说明。在汽车行驶过程中,当驾驶员踩下制动踏板时,通过主缸推杆推动主缸活塞,使得制动主缸内部的制动液在一定的压力作用下流入制动轮缸,制动轮缸内部的 液压迫使摩制动器的擦衬片与制动盘接触,从而产生一个阻碍车轮旋转的摩擦力矩, 同时在车轮与路面的附着力作用下,产生了阻碍车轮运动的外力,此外力称之为地而 制动力。车轮在制动器与路面的双重作用下,最终使得汽车减速甚至停车。 摩擦衬片 制动踏板 制动盘 图1.3.2液压制动系统工作原理示意图 1.3.4汽车制动性能评价 汽车的制动性能主要从以下三个方面进行评价「`2】: (1)制动效能 汽车的制动效能是指汽车迅速减速直至停车的能力,主要的评价指标是汽车的制 动距离和制动减速度。制动距离将直接影响到汽车行驶的安全性,同时制动距离又取决于制动减速度,所以对汽车制动系统设计的关键是在路面附着条件下,尽可能的提 高汽车的制动减速度。 (2)制动效能的恒定性 制动效能的恒定性是指汽车在高速行驶或者长时间连续制动的情况下,制动效能 保持的程度,主要表现在制动器的抗热率性和抗水衰性。制动器在制动过程中,由于 摩擦作用温度将升高,在长时间的高温下,制动器的摩擦力矩通常会显著的下降;汽 车在涉水行驶时,水进入了制动器后,短时间内制动器的效能也会发生显著的降低。(3)制动时的方向稳定性 制动时一的方向稳定性是指汽车在制动过程中,不发生制动跑偏、侧滑以及失去转 向能力的性能。汽车制动时的方向稳定性与汽车前、后轴间制动力分配有着密切的关4 硕士论文汽车制动系统性能分析及优化设计 本世纪开始逐步发展,这个阶段的主要特点是汽车的制动系统完全依赖于电力进行传递,使得汽车的制动系统越来越智能化。因此,汽车制动技术和制动器产品将会是未 来汽车电子技术应用领域中的重要发展目标。 1.3.2制动系统的组成与分类 制动系统是由制动器和制动驱动机构组成t`。l。其中制动器是基于材料的摩擦理论而产生阻碍车轮运动或者运动趋势的力的部件,有鼓式和盘式之分。制动系统的控制机构是为了提供汽车所需的制动力而进行供能、控制、传动、调节制动能量的部件, 具体包括了助力器、制动踏板、制动主缸、制动轮缸、压力调节阀等。典型的液压制动系统组成如图1.3.1所示 l`纂巍 1一前制动盘,2一前制动盘总成,3一右前制动管路,4一制动主缸,5一压力调节阀, 6一左前制动赶路,7一制度真空助力器,8一驻车制动操纵杆,9一后制动管路, 10一驻车制动拉丝,11一后制动器总成 图1.3.1制动系统基本结构组成 制动系统按照制动能量传输方式,可分为:机械式、液压式、气压式、电磁式。

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

制动系统的发展历史和现状

汽车制动系统如何发展 d 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 一.制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16 车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机

械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20 世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技 术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是 机电一体化的高技术产品。它的安装大大提高了汽车的主动安 全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规 定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进 了防抱制动系统在汽车上的应用。1969年的福特使用了真空助 力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想, 且成本高。 1979年,默·本茨推出了一种性能可靠、带有独立液压助 力器的全数字电子系统控制的ABS制动装置。1985年美国开发 出带有数字显示微处理器、复合主缸、液压制动助力器、电磁 阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路

汽车刹车泵工作原理

简述刹车系统工作原理 [汽车之家技术] 在汽车之家的性能测试环节中,加速和刹车是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车刹车好不好,但问题在于速度慢多数情况下不会有什么太大问题而刹车不好很可能关系到生命安全,所以今天我们就来说说汽车的刹车。 刹车系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急刹车中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。 我们先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否能提供足够的刹车力。其实完全不必为此担心,因为刹车系统运用了”帕斯卡定律“。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到刹车总泵液体上的压强等于刹车盘活塞处的液体压强,但因为压强等于单位面积的压力,所以只要增大活塞的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形活塞,左侧活塞直径是2英寸,右侧活塞直径是6英寸,也就是左侧活塞的3倍,那么如果给左侧活塞施加一定量的力,那么右侧活塞将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

汽车防抱死制动系统的原理与发展

收稿日期:2005-12-13 作者简介:卞化梅(1969-),女,山西矿业学院机械制造工艺与设备专业毕业,北京工商大学机械制造自动化专业在读硕士,讲师。 汽车防抱死制动系统的原理与发展 卞化梅 (北京工业职业技术学院,北京100042) 摘 要:汽车用制动防抱死制动系统(简称ABS )是汽车主动安全性能的一项重要技术,目前在国内外已经得到广泛应用,介绍了ABS 的工作原理、发展历史、现状以及发展趋势,并着重介绍了国内ABS 的现状及发展趋势。 关键词:汽车;制动防抱死系统;滑移率;附着系数中图分类号:U463.52+6 文献标识码:A 文章编号:1671-6588(2006)01-21-04 Concept and Development of the Anti -lock Braking System Bian Huamei (Beijing Vocational &Technical Institute of Industry ,Beijing 100042,China ) Abstract :The Anti 2lock Braking System (ABS ),which is a great importance to active safety of vehicles ,has been widely used in home and abroad.This paper introduces the control concept ,the history of development ,the status in quo and the trend of development of ABS.It emphasizes the domestic status and trend of ABS.Key words :automobile ;Anti 2Lock Braking System ;slip ratio ;adhesion coefficient 0引言 随着汽车工业的飞速发展和道路交通设施的不断完善,汽车己逐渐成为人们的代步工具,人们在享受汽车带来舒适、便捷的同时,也对汽车行驶的安全性能提出了更高的要求,改善汽车的制动性能始终是汽车设计、制造部门的重要任务。 制动性能是汽车主要的安全性能之一。评价一辆汽车的制动性能最基本的指标是制动加速度、制动距离、制动时间及制动时方向的稳定性。制动时方向的稳定性,是指汽车制动时仍能按指定的方向的轨迹行驶。如果因为汽车的紧急制动(尤其是高速行驶时)而使车轮完全抱死,那是非常危险的。若前轮抱死,将使汽车失去转向能力;若后轮抱死,将 会出现甩尾或调头(跑偏、侧滑),尤其在路面湿滑的情况下,对行车安全造成极大的危害。 汽车防抱死制动系统(Anti -lock Braking Sys 2tem )简称ABS ,是一种机电液一体化装置,它在传统制动系统的基础上,采用电子控制技术,以实现制动力的自动调节,防止制动车轮抱死,以期获得最有效的制动效果,并大大提高车辆主动安全性。ABS 能够利用轮胎和路面之间的峰值附着性能,提高汽车抗侧滑性能,充分发挥制动效能,同时增加汽车制动过程中的可控性,从而减少事故发生的可能性,是一种具有防滑、防锁死等优点的安全刹车控制系统。1控制原理1.1滑移率的定义 第5卷 第1期2006年1月 北京工业职业技术学院学报 JOURNAL OF BEIJ ING VOCATIONAL &TECHNICAL INSTITU TE OF INDUSTRY №.1Vol.5 Jan. 2006

现代汽车制动系统的发展趋势

从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。目前关于汽车制动的研究主要集中在制动控制方面,包括制动控制的理论和方法,以及采用新的技术。 一.制动控制系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。Duesenberg Eight车率先使用了轿车液压制动器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。

相关文档
最新文档