甲醇裂解制氢装置操作规程

甲醇裂解制氢装置操作规程
甲醇裂解制氢装置操作规程

甲醇裂解装置操作规程

目录

1.原料及转化的规格

2. 工艺

2.1.反应原理

2.2.工艺过程及化学反应原理

2.3化学反应原理

2.4.工艺流程叙述

3.主要控制指标

3.1.原料汽化过热

3.2.转化反应

3.3.转化气指标

4.操作程序

4.1 开车前的准备工作

4.2 汽化过热器开车

4.3 .转化器开车的条件:

5.开车

5.1初次开车前的准备工作

6.停车和停车后再启动

6.1正常停车

6.2紧急停车

6.3临时停车

6.4长期停车

6.5停车后再启动

7.安全技术

7.1.氢气的性质

7.2.装置的安全设施

7.3.氢气系统运行安全要点

7.4.消防

7.5生产基本注意事项

正文

1.原料及转化的规格

1.1原料规格

甲醇:符合GB338—2004标准一等品要求。严禁含乙醇、氯离子、硫离子、烃类。

脱盐水:C1﹣≤3ppm,电导率≤20u s/cm,90℃以下稳定,对碳钢、不锈钢无腐蚀。

1.2转化气规格

组成:H2 73~74.5% CO2 23~24.5%

CO ≤1.0% CH3OH ≤200ppm

H2O 饱和压力: 1.4~1.6Mpa-G

温度: ≤40℃

2. 工艺

2.1.反应原理

甲醇和水按一定配比经加压、汽化过热,其混合蒸汽在催化剂作用下发生催化裂解和转化反应。

CH3OH -----------CO+2H2-90.7 kJ/mo1 CO+H2O----------CO2+H2+41.2 KJ/mol

CH3OH+H2O=CO2+3H2-49.5KJ/mol

2.2.工艺过程及化学反应原理

2.2.1工艺过程

甲醇催化转化制气工艺过程包括:原料汽化、催化转化反应、转化气冷却冷凝以及洗涤净化等。

2.2.2原料汽化

原料汽化是指,将甲醇和脱盐水按规定比例混合,用泵加送入系统进行预热、汽化过热至转化温度的过程。完成此过程需:原料液罐

(F102)、甲醇高位槽(F101)、原料液计量泵(J101A、B)、换热器(C102)、汽化过热器(C101)等设备及其配套仪表和阀门。该工序目的是为催化转化反应提供的原料配比、温度、压力等条件。

2.2.

3.催化转化反应

在规定温度和压力下,原料混合气在转化器(D101)中,同时完成催化裂解和催化转化两个反应,得到主要含有氢气和二氧化碳的转化气。

2.2.4.转化气冷却冷凝

将转化器下部出来的高温转化气经冷却、冷凝降到常温。完成该过程的设备有:换热器(C102)、冷凝器(C103)两台设备及其配套仪表和阀门。该工序目的是降低转化气温度,将未反应的甲醇、水冷凝下来。

2.2.5转化气气液分离

经冷却冷凝后的低温转化气,再经气液分离及冷干后分离出液体。完成该过程的设备有:气液分离罐(F103)、冷干机(L101)等设备及其配套仪表和阀门。该工序目的是将转化气中未反应完的甲醇和水分离后送PSA工段。回收的水溶液循环使用。

2.3化学反应原理

甲醇和水蒸汽混合物在转化器中加压催化裂解和转化一步完成,生成氢气和二氧化碳,其反应式如下:

主反应:CH3OH=CO+2H2 ﹣90.7KJ/mol CO+H2O=CO2+H2+41.2KJ/mol

总反应:CO3OH+H2O=CO2+3H2-49.5KJ/mol

副反应:2CH3OH=CH.OCH. +H2O +24.90KJ/mol CO+

3H2=CH4+H2O +206.3KJ/mol

2.4.工艺流程叙述

来自甲醇高位槽(F101)的甲醇,和来自原料液罐(F102)中的循环液,经流量比例调节系统(FFC—102)后,分别进入混合管充分混合,配成规定比例的醇、水混合液,有原料计量泵(J101A、B)加压计量后进入换热器(C102)预热,再进入汽化过热器(C101),被导热油加热汽化并过热至规定温度的醇、水混合蒸汽进入转化器(C101)

中,同时完成催化裂解和转化反应,生成的高温转化气在换热器

(C102)中被原料液冷却,至经冷凝器(C103)被循环冷却水冷却凝降温后进入气液分离罐(F103),分离后的转化气进入冷干机(L101)低温分离出残余的甲醇和水后,再送入变压吸附工段。

由界外来的导热油先后给汽化过热器(C101)、转化器(D101)供热后退回界外。

3.主要控制指标

3.1.原料汽化过热

3.1.1物料

流量原料甲醇流量 90﹣330㎏/h 原料液流量 180﹣655㎏/h

温度汽化过热器进料温 130~160℃汽化过热器底部温度150~160℃

汽化过热器顶部温度 180~260℃

压力汽化过热器压力 ~1.6MPa

3.1.2原料液组成

甲醇 ~50%(Wt)水 ~50%(Wt)

3.2.转化反应

3.2.1.温度

进转化器温度 200~260℃出转化器温度

220~270℃

导热油温度 230~300℃出换热器转化气温度

120~130℃

出冷凝器转化气温度 ≤40

3.2.2.压力

转化器压力 ~1.6MPa 导热油进口压力 ~0.6MPa 3.3.转化气指标

转化气流量 ~1050Nm3/h

转化气压力 ~1.6MPa

转化气组成 H2 73~74.5%

CO2 23~24.5%

CO ≤1%

CH.OH ≤200ppm

4.操作程序

4.1 开车前的准备工作

4.1.1.准备

(1)检查工具和防护用品、安全设施是否齐备完好。

(2)检查动力设备是否正常,对润滑点规定加油,并盘车数圈。

(3)检查各测量控制仪表是否准备完好,并打开仪表电源,气源开关。

(4)通知甲醇罐区和脱盐水站向本装置送原料,使原料液罐(F102)中的脱盐水液位达~30%。甲醇高位槽(F101)液

位达30%,开启甲醇管道阀门向装置送料,启动原料液计量

泵(J101A、B)向系统送料。

(5)催化剂还原系统所有阀门、仪表维持原开车状态不变。4.2 汽化过热器开车

当原料液罐(F102)、甲醇高位槽(F101)的液位达~30%时,汽化过热器即可进行开车操作。

(1) 先打开导热油进汽化过热器C101的阀门,保证导热油先进设

备,否则汽化过热器底部累积液体后突然通导热油,汽化太剧

烈,这是不安全的!

(2) 开启比例配合管(PL103)、比例配合管至原料液计量泵管道

(PL104a/b)及原料液计量泵出口管(PL105a/b)管路阀门,

启动原料液计量泵(J101A/B),使运转正常。

(3) 观察汽化过热器C101内压力变化情况,当压力达0.2Mpa以上

时,可开启VG104管路排放。汽化过热器出口温度达~200℃即

可转入转化器投料开车。

4.3 .转化器开车的条件:

(1)汽化过热器已开车处于待用状态;

(2)原料罐(F102)和甲醇高位槽(F101)内已存入合格原料液,液位达~30%。

4.3.1转化器开车的步骤

转化器的开车时间,应在汽化过热器已开车待用之时,并紧接加氢催化剂还原完成之后进行,具体步骤为:

(1)检查并开启冷却水进口阀,关闭VG104管路阀门并开启VG202管路阀门。

(2)慢慢打开进出转化器的气化过热器至转化器管路

(PG101)、转化器至换热器管路(PG102)的进出料

阀,注意观察装置各控制点及设备仪表变化情况。当从

转化器下部出口(S104)分析确定脱氢催化剂还原活化

完成之后,转为正常开车(原始开车)。

(3)改变原料液组成后继续开车,当系统压力升至规定值

后,检查并调整各控制指标达正常值,则全系统开车完

成。

5.开车

装置启动分为初次开车和正常开车。正常开车时只要按规定将某些阀及控制点设定好后即可启动。

5.1初次开车前的准备工作

在PSA装置安装完毕、完成了整个装置的吹除、进行了强度试验、气密性试验和泄漏量试验后、吸附塔装填了吸附剂,应对自控系统进行严格的检查及调试,以保证整个装置可随时投入运行。但在通入原料气前还必须用干燥、无油的氮气对整个装置的设备和管道进行置换,使含氧量降到0.5%(体积)以下,因为本装置的原料和产品以及解析气均含有大量氢,尤其是产品氢,如果不预先将装置内的氧置换掉,那么在开车初期容易形成爆炸混合物而引起爆炸燃烧。以上工作完毕后,应将全

部阀门处于关闭状态。

5.1.1检查程序控制器的功能

PLC程序控制的主控信号通过电磁阀及快排阀的电气转换作用操纵现场各程控阀。系统按照要求安装完毕并检查接线无误后,再按下列步骤进行动态考查。

(1)任意设置一均、二均、三均、顺放时间,程序即从初始状态开始执行,检查步进、暂停、复位、报警、消音、

停机,时间设置及软件复位各功能键。

(2)将程序定在设置或者调机状态,按数值序号调试各程控阀。为防止电源过载,最多只能同时开启八只电磁阀。

检查完后,切断各手控开关,并将工况置于自动工作方

式。

(3)对程控系统(程控器—电磁阀—程控阀)进行空负载功能调试。将所有电磁阀和快排阀送上仪表空气,程序控

制器退出自检状态,使讯号输往现场。

(4)按暂停键检查在此步骤的工况下,程序系统各部件工作是否正常。退出暂停键,再按步进键,程序执行下一步

骤又按暂停键,在检查了全系统工况后退出暂停键,这

样周而复始,直至检查完程序每一步骤下全系统的执行

情况。

(5)模拟紧急停车,按停车键,各程控阀应发出声光报警,按消音键,检查消音是否起作用,再按复位键,检查报

警灯是否熄火。

5.1.2用氮气进行装置全流程置换

置换的方法可按正常运行步骤进行,即以氮气为原料通过装置,到产品出口及解析气出口氧含量小于0.5%为止。置换过程中系统所有模拟控制均为手动控制。

如果氮气不足,可分阶段进行,先进行吸附塔的置换,再进行缓冲

罐及管道的置换。进行吸附塔置换时,可逐塔进行置换,当一个吸附塔出口气体中氧含量小于0.5%后,即可进行另一个吸附塔的置换,吸附塔置换完毕,便可进行其它罐及管道的置换。对于界区交接处,应在上述置换过程开始前关闭去用户有关系统的阀门,并卸下连结与用户有关系统的法兰。对交接处管道同样用氮气置换,使该管道的氧含量降至0.5%以下为止,置换完毕后再装好连结法兰。

整个装置置换完毕后,关闭所有工艺阀门。

6.停车和停车后再启动

6.1正常停车

正常停车是有计划的停车,停车前通知本装置前后有关工序,然后按下述步骤实施正常停车:

(1)关装置界区原料气入口阀;

(2)关装置界区产品出口阀;

(3)程序控制顺放时间设定值随着吸附压力下降逐渐减小,使各吸附器压力逐渐降至0.2Mpa左右(各塔均能保持在

下压状态)。

(4)停控制器电源;

(5)停仪表盘其它仪表电源;

6.2紧急停车

当突然停电、停水或装置出现故障时,则需要紧急停车,其步骤如下:

(1)切断电源,所有程控阀关闭(如遇突然停电,所有程控阀自动关闭);

(2)迅速关闭总进气阀和出气阀;

(3)根据现场具体情况,参照正常停车步骤处理。

6.3临时停车

因故不超过1小时停车为临时停车,其操作步骤为:

(1)关闭进气总阀;

(2)按暂停键,所有程控阀关闭,使各塔保持当前压力;

(3)关闭出口总阀。

6.4长期停车

(1)同正常停车4。1(1)、(2);

(2)程序控制时间设定值随着吸附压力下降逐渐减小,使各吸附塔压力至零为止;

(3)开启装置内置换用氮气入口阀;

(4)程序吸附塔设定为手动方法,分别开启KV201a、KV201b、KV201c、KV201d、KV201e,将所有吸附塔充氮并保持压力在0.1 Mpa;

(5)同正常停车4.1(4)、(5)。

6.5停车后再启动

6.5.1.正常停车后再启动。

按3.开车中方法执行。

6.5.2.紧急停车后再启动

紧急停车和临时停车后吸附塔内都保持着停车之前的工作步骤和相应的压力,这种工况下的启动,按如下步骤进行:

接通电源,微机处于启动前状态,检查各吸附塔压力状态与程序控制处于的程序步骤是否一致。停车后程序具有记忆功能,一般没进行任何操作,应处于停车时的程序步骤,如不一致可用步进键调整。然后按下暂停键。

如果各吸附塔压力状态不能确定属于某一程序步骤,那么应通过程

序控制的手动开关,驱动有关程控阀,对吸附塔卸压,使各吸附塔之间的压力状态处于规定的某一步骤,并使控制器所执行的步骤与之同步,再按下暂停键。

逐渐开启进气阀,原料气进入装置,装置投入运行。

6.5.3.临时停车后再启动

按4.5.2的1、2条执行

6.5.4.长期停车后再启动

长期停车后再启动应按3.1、3.2进行,启动前整个装置是否需要氮气置换应视具体情况而定。

7.安全技术

安全生产是关系到人民生命、国家财产安全的大事,是国家根本性政策,也是一项群众性的工作。因此操作人员应该掌握有关的安全生产的基本知识,自觉遵守有关的规章制度,确保实现安全、文明生产。

7.1.氢气的性质

氢气是一种易燃易爆的气体,在大气压下和室温下系无色、无味、无毒的气体。它的沸点很低(-252℃),同时也无腐蚀性。但在高温下(>260℃),它将腐蚀某些金属,如碳钢,它与金属中的碳起作用产生“氢脆”现象。氢是所有元素中最轻的一种,分子量为2,对空气的比重为0.07(空气比重为1),密度为0.09kg/m3最小,它还具有高度的参透性,氢气在空气中爆炸范围是4.1-74.2%,氢气不能供给呼吸,故在高浓度下能使人窒息,氢气的自燃点为400℃。

7.2.装置的安全设施

PSA设备置于户外,系统设有安全阀及自动汇压系统,排放气汇集于放空总管,最后经阻火器在高处放空。自控仪表系统在设计上已考虑到

一旦遇到突然停电,装置会自动处于安全状态。设计中工艺管道、阀门和管件的选用都已考虑了含氢介质输送的特殊要求,且符合有关规定。非标设备也应严格执行“压力容器安全监察规程”进行验收。

7.3.氢气系统运行安全要点

输入系统的氢气含氧量不得超过0.5%。

氢气系统运行时,不准带压修理和坚固,不得超压,严禁负压。 管道、阀门和水封装置冻结时,只能用热水或蒸汽加热解冻,严禁使用明火烘烤。

设备、管道和阀门等连接泄漏检查,可采用肥皂水或携带式可燃性气体防爆检测仪,禁止使用明火。

不准在室内排放氢气,吹洗置换、放空降压必须通过放空管排放。

当氢气发生大量泄漏或积聚时,应即切断气源,进行通风,不得进行可能产生火花的一切操作。

新安装或大修后,氢气系统必须做耐压试验、清洗和气密试验,符合有关的检验要求,才能投入使用。

氢气系统吹洗置换,一般可采用氮气(或其它惰性气体)置换法或注水排气法。

氮气置换应符合下列要求:

(1)氮气中含氧量不得超过3%;

(2)置换必须彻底,防止死角末端残留余气;

(3)置换结束,系统内氧或氢的含量必须连续三次分析合

格。

氢气动火检修,必须保证系统内部和动火区域氢气的最高含量不超过0.4%。

防止明火和其它激发能源,禁止使用电炉、电钻、火炉、喷灯等一切产生明火、高温的工具与热

物体;不得携带火种进入禁火区;选用铜质或铜合金工具;穿棉质工作服和防静电鞋。

7.4.消防

供氢站应按GB50016-2006的有关规定设置消防用水,并应根据需要配备干粉、泡沫等灭火器材或设置氮气、蒸汽灭火系统。

氢气着火应采取下列措施:

切断电源;

冷却、隔离、防止火灾扩大;

保持氢气系统正压状态,以防回火。

氢气火焰不易觉察,救护人员应防止外露皮肤烧伤。

7.5生产基本注意事项

操作人员必须按操作手册规定操作,凡新来人员,必须经过安全教育和操作法学习,再实习操作。未经安全技术和操作法考试合格者,不准进行独立操作。

操作人员在上班时必须穿规定服装,不准携带易燃易爆物品进入现场,严格遵守劳动纪律,严格进行交接班,严格进行巡回检查,严格控制工艺指标,严格执行操作规程,严格执行有关安全规定。

本装置界区内随时保持清洁,不应堆放有易燃易爆物质,尤其在交通要道上更不得堆放物品,以保证道路畅通。

本装置界区内应按规定设置消防器材,操作人员应知道消防器材的放置地使用方法,平时严禁乱动,消防器材还应定期检查。

设备在未卸完压力时,绝对禁止开展修理工作如焊接、拧紧螺丝等,并禁止使用铁器敲击设备。

设备使用的压力表必须是检验合格并打上铅封的,如压力表指针不回零或误差大于其级数时,不得继续使用。每年必须检验一次压力表,

并打上铅封。采用压力变送器的压力指示仪表在使用前必须校好零点。

严禁在本装置界区内吸烟和动火,凡有爆炸及燃烧气体的容器及管道检修需动火前,应报请厂安技科及车间同意,先用氮气置换、吹净,经现场分析合格,并采取了安全措施、领取动火证后方可动火。

防止违章动火。凡是没有领取火证、未与生产系统隔绝、清洗置换不合格、周围易燃易爆物未清除、未按时作动火分析、没有消防措施及无人监护等情况严格禁止动火。

确保设备、管道、阀门的气密性。检修后还应试漏合格后方能开车,使用过程中随时注意杜绝气体泄漏现象。

定期检查设备接地、防雷设施是否处于完好状况。

仪表系统发生故障时应由仪表人员进行修理。仪表人员应与工艺操作人员密切配合,在停车检修后再启动时,必须注意各压力容器、尤其是吸附塔内的压力,以防发生高压逆放现象。

700*400左右,调整好幅度。尽量压缩在

氢气安全操作规程(通用版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 氢气安全操作规程(通用版)

氢气安全操作规程(通用版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 氢气是易燃易爆气体,氢气混合或氢气与空气混合到一定比例,形成爆炸气体,遇到微火源(含静电和撞击打火),就会引起严重的爆炸。确保制氢、用氢安全是头等大事,特制定本安全制度,必须严格遵守。 1、制氢、用氢人员,必须强化安全意识,牢固树立安全第一思想,认真执行各项规章制度,切实做好安全工作。 2、电解水制氢操作人员必须经过严格训练,应真正了解掌握电解水制氢设备原理、结构、性能和操作方法经考核合格方可上岗。 3、任何人员不得携带火种进入制氢室。制氢和充灌气人员工作时,不可穿戴易产生静电的化纤服装(如尼龙、睛纶、丙纶……等)及带钉的鞋作业,以免产生静电和撞击起火。 4、制氢人员必须严格按电解水制氢规程制氢,开机后不得远离制氢室,应注意巡视制氢设备工作情况,做到严密监视和控制各运行参数,如有异常立即处理,不允许带故障运行。

制氢装置加氢脱毒部分工艺管理和操作规程

制氢装置加氢脱毒部分工艺管理和操作规程 1.1 加氢脱毒部分的任务及主要工艺指标 1.1.1 加氢脱毒部分的任务 脱硫部分的任务是为轻烃水蒸汽转化制氢提供合格的原料(硫含量< 0.5PPm 、烯烃<1%)以防止转化催化剂硫中毒。其中加氢部分是在催化剂和氢气存在的条件下,将原料中 的有机硫,有机氯等转化为无机硫(H2S)和无机氯( HCl ),无机氯被脱氯剂吸收除掉,而 硫化氢则被氧化锌吸收,使得脱硫气含硫<0.5PPm。 1.1.2 加氢脱毒部分的主要工艺指标 (1) 轻石脑油 干点< 160℃ 含硫量≤ 50PPm (2) 干气 干气含硫量≤ 50PPm (3) 加热炉 F2001 出口温度340~380℃ 加热炉炉膛温度≯ 800℃ 入口压力 3.8MPa (4) 加氢反应器 R2001 入口温度340~380℃ 出口温度≯ 400℃ 入口压力 3.38MPa(abs) 出口压力 3.35MPa(abs) 空速1~ 6h-1 氢油比(体)80 ~ 100 加氢反应器床层最高温度≯400℃ (5)氧化锌脱硫反应器 R2002A.B 入口温度 350~370℃ 出口温度 360℃ 入口压力 3.35MPa(abs) 出口压力 3.32MPa(abs) 脱硫气含硫量≤ 0.5PPm 1.2 R2001反应温度的控制 反应温度是调节脱硫气含硫量的主要手段,钴-钼催化剂进行加氢脱硫时,操作温度通常控制在330~400℃范围内。当温度低于320℃时,加氢脱硫效果明显下降。温度高于420℃以上,催化剂表面聚合和结碳现象严重。一般来说,对于 T205 加氢催化剂,当温度高于 250℃ 时,就具有加氢脱硫活性了。因此,操作人员在正常操作时,必须调节TC7101 以控制好加氢反应器 R2001 入口温度。即通过调节加热炉F2001 的燃料气流量来控制加氢反应器R2001入口温度。反应温度主要参考原料性质的变化,空速的大小,氢油比的高低以及催化剂活性 情况来进行控制。 非正常操作因素: 影响因素 1、加热炉出口温度上升 2、原料含烯烃、CO、 CO2、 O2等杂质含量超标控制操作 1、降低加热炉出口温度 2、降低处理量,查明原料杂质来源,并切出超

甲醇制氢岗位安全操作规程(新版)

甲醇制氢岗位安全操作规程 (新版) The safety operation procedure is a very detailed operation description of the work content in the form of work flow, and each action is described in words. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0514

甲醇制氢岗位安全操作规程(新版) 1开车 1.1准备工作 ⑴所有阀门在开车前均为全关闭状态。开车前应检查仪表气源、电源及线路连接是否正确;控制柜是否工作良好;程控阀门是否动作正常;手动阀门开启是否正常;各仪表是否正常。 ⑵当甲醇分解装置运行稳定,甲醇分解气合格且压力处于变压附装置的工作范围之内时,即可准备开车。 1.2开车 ⑴接通气动管路气源。将所有压力表截止阀全开。Q0202全开。 ⑵打开分解气缓冲罐进气阀,放空阀Q0206全开。微开阀门 L0201,L0202。 ⑶开始运行程序,使气动阀门按选定的程序开始运行,使甲醇

分解气进入变压吸附系统中。 ⑷逐渐调节阀L0202开度,使系统压力逐渐稳定在工作压力,调节阀门L0201至适当开启度,保证产品气升压处于规定的范围;缓慢关闭阀L0202,转到薄膜调节阀自动调节系统压力。稳定运行二~三个周期后,可从取样阀J0208处取样,检测产品气纯度,纯度合格后可以向氢气缓冲罐V202送气,打开氢气储罐(V201)进口阀Q0251、Q0256,然后先关闭阀Q0206,打开氢气储罐进气口阀门Q0205。注意氢气储罐在送气前一定要完成置换和气密性试验,保证储罐中氧气含量小于0.5%。 ⑸当氢气缓冲罐V202压力升至0.5MPa时,可略开放空阀Q0254、Q0259,用氢气将氢气储罐中残留氮气置换干净。确认氧气含量符合要求后,关闭阀Q0254、Q0259。 1.3注意事项 ⑴变压吸附装置除进气阀、出气阀、冲洗阀、压力表截止阀、排污阀等阀门为手动阀外,其余阀门均为气动阀门,无需手调。 ⑵阀门L0201只能由技术负责人操作,调整好后任何人不允许

制氢站操作规程

一、目的: 保证制氢运行工作正常、安全、有序;使制氢运行人员的各项操作有章可循,为制氢运行人员提供操作的指导规范;保障机组的稳定运行。 二、范围: 适用于6号机组制氢站运行人员。 三、职责 规范作业,杜绝违章操作,保障生产安全稳定运行。 四、内容: 4、1、制氢设备生产工艺流程。 4、1.1、氢气系统 电解槽氢分离器氢洗涤器氢气冷却器氢气捕滴器氢气气水分离器氢气动薄膜调节阀干燥器 储氢罐氢母管发电机 4、1.2、氧气系统 电解槽氧分离器氧洗涤器氧气冷却器氧气捕滴器氧气器水分离器氧气动薄膜调节阀排空 4.2、主要设备参数和有关技术标准

4.3 4.3.1、必须按厂家规定进行水压试验,要求严密不漏。4.3.2、电解槽正、负极、电解隔间电压对地绝缘良好。4.3.3、检查应备有足够合格的电解液。 电解液的配制。 30℃时,10%NaOH、15%KOH溶液比重分别为1.1043、1.180。30℃时,26%NaOH、30%KOH溶液比重分别为1.28、1.281。 待碱液配好后加入2% 0V 2 O 5 添加剂。 4.3.4、分析仪器及其所用的溶液已准备好。 4.3.5、检查应有足够的氮气。 4.3.6、检查安全工具应齐全。 4.3.7、联系热工检查有关表计应完好。 4.3.8、联系电气电工检查电气设备,并向硅整流送电。 4.3.9、检查电解槽及氢系统应用水冲洗。 4.3.9.1、启动配碱泵将原料水打进制氢系统,启动碱液循环泵,清洗电解槽,清洗1小时,停泵、打开槽底排污阀排污。 4.3.9.2、重复上述操作3~4次,直到排液清洁为止。 4、4、气密检验 4.4.1、按6.6.3.9.1操作将原料水打入制氢机,至分离器液位计中部。4.4.2、关闭制氢机所有外连阀门,打开系统中(包括制氢、干燥系统)所有阀门,通过充氮阀向制氢机充氮,使压力缓慢升至3.2MPa,关充氮阀,用肥皂水检查各气路连接部位和阀门是否漏气,并观察液路有无漏液,确认不漏后,保压12小时,泄漏率以平均每小时小于0.5%为合格。 4、5、按工艺要求的碱量进行配碱,缓慢加入KOH(化学纯)待完全溶解后,加入碱液 重量的2%0V 2O 5 添加剂(按工艺要求添加),则电解液配好。 4.6、对微氧仪、露点仪进行调校。 6.7、检查各极框之间,正负极输电铜排间有无短路或有无金属导体,或有无电解液泄漏现象,民现后必须排除。 4.8、仔细检查整流变压器各个接点、可控硅整流柜各回路及正极输电铜排对地的绝缘性,严防短路。 4.9、用15%KOH溶液试车24小时(开停车操作同正常操作规程),然后将其排污。4.10、检查制氢装置的冷却水阀门处于开启状态。 4.11、干燥装置开车前准备 4.11.1、控制柜通电,检查装置是否处于正常状态。 4、11、2、设定干燥器、加热器上下部温度,各为400~450℃和300~350℃。4.11.3、系统进行氮气置换。 4.12、气动部分 4.12.1、接通气源后,分别检查气体过滤减压器的输出是否为0.14MPa,然后用肥皂水检查气动管路及仪表接头是否漏气(每三个月定期检查一次)。

甲醇制氢生产装置设计

生产能力为2800 m3/h 甲醇制氢生产装置设计

前言 氢气是一种重要的工业用品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量也有着不同的要求。近年来随着中国改革开放的进程,随着大量高精产品的投产,对高纯氢气的需求量正在逐渐扩大。 烃类水蒸气转化制氢气是目前世界上应用最普遍的制氢方法,是由巴登苯胺公司发明并加以利用,英国ICI公司首先实现工业化。这种制氢方法工作压力为2.0-4.0MPa,原料适用范围为天然气至干点小于215.6℃的石脑油。近年来,由于转化制氢炉型的不断改进。转化气提纯工艺的不断更新,烃类水蒸气转化制氢工艺成为目前生产氢气最经济可靠的途径。 甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。它具有以下的特点: 1、与大规模天然气、轻油蒸气转化制氢或水煤气制氢比较,投资省,能耗低。 2、与电解水制氢相比,单位氢气成本较低。 3、所用原料甲醇易得,运输储存方便。而且由于所用的原料甲醇纯度高,不需要在净化处理,反应条件温和,流程简单,故易于操作。 4、可以做成组装式或可移动式的装置,操作方便,搬运灵活。

前言 ----------------------------------------------- 2 目录 ----------------------------------------------- 3 摘要 ----------------------------------------------- 3 设计任务书 ----------------------------------------- 4 第一章工艺设计 ------------------------------------------ 5 1.1.甲醇制氢物料衡算 -------------------------------------- 1.2.热量恒算 ---------------------------------------------- 第二章设备设计计算和选型:塔、换热设备、反应器 ----- 8 2.1.解析塔的选择 ------------------------------------------ 2.2.换热设备的计算与选型 ---------------------------------- 2.3.反应器的设计与选型 ------------------------------------ 第三章机器选型------------------------------------------ 13 3.1.计量泵的选择 ------------------------------------------ 15 3.2.离心泵的选型 第四章设备布置图设计---------------------------------- 15 4.1.管子选型 ---------------------------------------------- 17 4.2.主要管道工艺参数汇总一览表 ---------------------------- 8 4.3.各部件的选择及管道图 ---------------------------------- 第五章管道布置设计 ------------------------------- 16 5.1.选择一个单参数自动控制方案 ---------------------------- 21 5.2.换热器温度控制系统及方块图 课设总结 ------------------------------------------- 28

最新整理甲醇制氢岗位安全操作规程.docx

最新整理甲醇制氢岗位安全操作规程 1开车 1.1准备工作 ⑴所有阀门在开车前均为全关闭状态。开车前应检查仪表气源、电源及线路连接是否正确;控制柜是否工作良好;程控阀门是否动作正常;手动阀门开启是否正常;各仪表是否正常。 ⑵当甲醇分解装置运行稳定,甲醇分解气合格且压力处于变压附装置的工作范围之内时,即可准备开车。 1.2开车 ⑴接通气动管路气源。将所有压力表截止阀全开。Q0202全开。 ⑵打开分解气缓冲罐进气阀,放空阀Q0206全开。微开阀门L0201,L0202。 ⑶开始运行程序,使气动阀门按选定的程序开始运行,使甲醇分解气进入变压吸附系统中。 ⑷逐渐调节阀L0202开度,使系统压力逐渐稳定在工作压力,调节阀门 L0201至适当开启度,保证产品气升压处于规定的范围;缓慢关闭阀L0202,转到薄膜调节阀自动调节系统压力。稳定运行二~三个周期后,可从取样阀J0208处取样,检测产品气纯度,纯度合格后可以向氢气缓冲罐V202送气,打开氢气储罐(V201)进口阀Q0251、Q0256,然后先关闭阀Q0206,打开氢气储罐进气口阀门Q0205。注意氢气储罐在送气前一定要完成置换和气密性试验,保证储罐中氧气含量小于0.5%。 ⑸当氢气缓冲罐V202压力升至0.5MPa时,可略开放空阀Q0254、Q0259,用氢气将氢气储罐中残留氮气置换干净。确认氧气含量符合要求后,关闭阀 Q0254、Q0259。 1.3注意事项 ⑴变压吸附装置除进气阀、出气阀、冲洗阀、压力表截止阀、排污阀等阀门为手动阀外,其余阀门均为气动阀门,无需手调。 ⑵阀门L0201只能技术负责人操作,调整好后任何人不允许再调整或

炼厂干气制氢工艺流程介绍

干气制氢工艺流程 (一)造气单元 1、进料系统 来自装置外的焦化干气进入原料气缓冲罐,经原料气压缩机压缩至3.2MPa(G)后进入原料气脱硫部分。 2、脱硫部分 进入脱硫部分的原料气经原料气-中变气换热器或开工加热炉(开工时用)升温到230℃左右进入加氢反应器,在其中原料中的不饱和烃通过加氢转化为饱和烃类,床层温度升至380℃左右,此外通过加氢反应,原料中的有机硫转化为无机硫,然后进入氧化锌脱硫反应器脱除硫化氢和氯化氢。经过精制后的气体总硫含量小于0.5PPm,氯化氢含量小于1 PPm,进入转化部分。 3、转化部分 精制后的原料气按水碳比3.5与自产的3.5MPa水蒸汽混合,再经转化炉对流段予热至500℃,进入转化炉辐射段。在催化剂的作用下,发生复杂的水蒸汽转化反应。整个反应过程是吸热的,所需热量由分布在转化炉顶部的气体燃料烧嘴提供,出转化炉840℃高温转化气经转化气蒸汽发生器换热后,温度降至360℃,进入中温变换部分。 4、变换部分 来自转化气蒸汽发生器约360℃的转化气进入中温变换反应器,在催化剂的作用下发生变换反应,将变换气中CO含量降至3%左右。中变气经原料气-中变气换热器、中变气蒸汽发生器、中变气-脱氧水换热器、中变气-除盐水换热器进行热交换回收大部分余热后,再经中变气空冷器冷却至40℃,并经分水后进入中变气PSA单元。 5、热回收及产汽系统 来自装置外的脱盐水与来自酸性水气提塔的净化水混合并经中变气-除盐水换热器预热后进入除氧器。除氧水经锅炉给水泵升压后,再经中变气-脱氧水换热器预热后进入中压汽包。

锅炉水通过自然循环的方式分别经过转化炉对流段的产汽段及转化气蒸汽发生器产生中压蒸汽。所产生的中压蒸汽在转化炉对流段蒸汽过热段过热至440℃离开汽包。一部分蒸汽作为工艺蒸汽使用;另一部分进入全厂中压蒸汽管网。 (二)中变气PSA单元 来自造气单元压力约2.1MPa(G)、温度40℃中变气进入界区后,自塔底进入吸附塔中正处于吸附工况的塔(始终同时有两台),在其中多种吸附剂的依次选择吸附下,一次性除去氢以外的几乎所有杂质,获得纯度大于99.9 的产品氢气,经压力调节系统稳压后送出装置。 当吸附剂吸附饱和后,通过程控阀门切换至其它塔吸附,吸附饱和的塔则转入再生过程。在再生过程中,吸附塔首先经过连续四次均压降压过程尽量回收塔内死空间氢气,然后通过顺放步序将剩余的大部分氢气放入顺放气罐(用作以后冲洗步序的冲洗气源),再通过逆放和冲洗两个步序使被吸附杂质解吸出来。逆放解吸气进入解吸气缓冲罐,冲洗解吸气进入解吸气缓冲罐,然后经调节阀调节混合后稳定地送往造气单元的转化炉作为燃料气。

制氢装置转化工艺管理和操作规程

制氢装置转化工艺管理和操作规程 1.1 转化部分的任务及主要工艺指标 1.1.1 转化部分的任务及主要工艺指标 转化部分的任务是将合格的脱硫气在催化剂存在条件下与水蒸汽发生复杂的强吸热氢解反应,生成含H2、CO、CO2和未反应的水蒸汽、CH4的转化气。 1.1.2 转化部分的主要工艺指标 入口温度480~520℃ 出口温度≯820℃ 炉膛最高温度≯1020℃ 炉膛温差≯100℃ 入口压力 3.1MPa 出口压力 1.85MPa 炉管压差≯0.38MPa 碳空速1000h-1 水碳比 3.3~5.0 转化气中CH4≯10% 1.2 转化入口温度与转化率操作 转化温度是烃类-水蒸汽转化法制H2的重要影响因素。提高温度,甲烷转化率提高,转化气CH4含量降低。但考虑到设备的承受能力,转化炉的炉膛温度最高不能超过1020℃。 转化炉温度根据转化炉对流段入口温度TI7208的变化情况进行控制。对流段入口温度信号通过切换开关,同时进入TCA7201A及TCA7201B,使燃料系统在不同的情况下,可采用不同的控制回路。 (1)开停工期间 装置开停工时转化炉使用高压瓦斯(副燃料)燃料,采用燃料气流量FC7201与转化炉对流段入口温度TCA7201A的串级控制回路控制转化炉炉温。 (2)变换气作燃料 当装置生产出变换气后,根据需要可投用变换气。变换气通过PC7501控制阀后压力为0.05MPa,送入燃料气混合器MI2001,然后进入转化炉作为燃料使用,其燃料热值不够部分由副燃料提供。 (3)PSA脱附气作燃料 PSA运行以后,转化炉燃料投用脱附气作主燃料,脱附气流量可通过FC7503投自动进行控制,其燃料热值不够部分可通过FC7502补充高压瓦斯来提供。转化炉出口温度采用瓦斯流量FC7502与转化炉对流段入口温度TCA7201B的串级控制。 以上转化炉温度的主副燃料气两种不同控制回路之间的切换,可将一个控制回路由串级控制切换至副表单控,再切换至另一个控制回路的副表单控,然后由另一个控制回路的副表单控切换至串级控制。 在正常生产过程,认真检查转化炉的运行情况,仔细调节火嘴,防止火焰大小不一造成偏烧。尤其火苗不能扑烧炉管,务必使炉膛各点温度均匀,炉管颜色一致,发现问题及时正确处理、汇报。 在正常生产中,为了避免对流段末端发生硫酸露点腐蚀,转化炉的排烟温度不能小于150℃。另外,还要加强转化炉负压操作,防止回火。 转化炉温度控制主要手段: (1)提降整个炉膛温度,即改变瓦斯流量由FC7502完成。

甲醇制氢装置开工方案

甲醇制氢开工方案 开工前准备工作 1、所有消缺项目全部完成,各部门验收合格 2、现场卫生已清理彻底 3、开工物资具备条件 4、各设备备用正常 5、公用工程系统能正常投用 6、电器、仪表正常,联锁校验完成 7、调度中心、设备中心、储运、化验室、保运队伍等单位联系畅通。 8、开工方案审批、技术交底完成 一装置的吹扫及冲洗 1.1 吹扫及冲洗的目的 1.1.1 通过吹扫及冲洗,清除施工过程中进入设备、管道中的焊渣、泥沙等杂物, 以及管道内的油污和铁锈。 1.1.2 对设备和管道中的每对法兰和静密封点进行初步的试漏、试压。 1.1.3 贯通流程,熟悉基本操作,暴露有关问题。 1.2 吹扫介质 1.2.1 对装置的甲醇裂解、PSA、导热油炉管线、辅助管道等系统的主要工艺管道及设备,用氮气进行吹扫。 1.2.2对循环水管道、脱盐水管道、净化压缩空气管道以及非净化压缩空气管道,用各自本身的介质进行冲洗。

1.3 吹扫及冲洗的原则和注意事项 1.3.1 吹扫前要掌握每一条管道的吹扫流程、吹扫介质和注意事项,清楚吹扫介质的给入点和临时给入点、每条管道的排放点和临时排放点。对排污点,要做好遮挡工作,防止将污物吹入设备或后续管道。 1.3.2 引蒸汽吹扫时,要注意防止水击、防止发生烫伤等人身事故。 1.3.3 吹扫的顺序一般是先主管、后支管,分段进行。吹扫前应把调节阀、孔板、流量计拆除,若调节阀没有付线,应装上短节,以利后续管道的吹扫。 1.3.4 各吸附塔应和管路系统一同吹扫,为保证吹扫时不损伤程控阀密封面,PSA部分应采用爆破式吹扫,即在各总管端头加石棉垫,然后向塔内充压缩气直到压缩气体将石棉板冲破为止。应特别注意:吹扫时应把程控阀门取下来,再进行吹扫,以免损伤密封面。 1.3.5 吹扫及冲洗应分段进行。遇到阀门时应在阀门前拆开法兰,并在拆开法兰处插入铁片,以便排出污物。吹扫干净后,再把上法兰,并开大阀门进行后续管道的吹扫。管道上的单向阀如与吹扫、冲洗的流向不符,则要转向。吹扫、冲洗干净后再装好。沿线的各排凝点或放空点也要逐个打开,排出污物,直至把全部管道吹扫干净为止。1.3.6 在吹扫冲洗的过程中,要注意吹扫、冲洗有关跨线和小管道,以保证装置吹扫、冲洗不留死角。 1.3.7 吹扫冲洗过程中应反复憋压几次,但压力不能超过该设备管道的操作压力。在憋压过程中,应检查各静密封点的泄漏情况。如发现泄漏应做好标记和记录,待卸压后处理。

小型甲醇制氢机、制氢公司发生器

说起氢气,氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双 氧水、粉末冶金、油脂加氢、林业品和农业品加氢、生物工程、石油炼制加氢及氢燃 料清洁汽车等的迅速发展,对纯氢需求量急速增加。 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先 进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁 净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。很多厂家想要购买制氢设备,一定要选好厂家,因为涉及到安全和各种售后服务问题。 近年来,以风力和太阳能发电为主的新能源发展势头强劲,以化石能源 为主的能源开发利用方式面临挑战,一场历史性的能源变革正在全球范围内 孕育。与人类历史上的前两次能源变革不同,中国有能力成为这轮能源革命 的主要推动者。 人们希望找到将电能储存起来的办法,即在电力富余的时候将其存储, 在电力短缺的时候再释放出来,以满足供需之间实时平衡的需要。 甲醇是最佳的战略储能方式之一 首先,甲醇可以通过传统化石能源清洁化生产制得,也可以通过太阳能、风能等间歇式可再生能源转换获得,还可以利用农作物秸秆、动物粪便和有 机物发酵获得,是可再生以及重复利用,转换氢能的最佳媒介,也是实现国

家中长期储能的大宗化工原料。未来可以直接用空气中的二氧化碳或工厂排 放的二氧化碳生产甲醇。 其次,甲醇对石油的替代使用功能也是足够强大的。甲醇可以以不同成 分混入汽油使用,或者经过简单脱水反应生成二甲醚及甲醇与植物油进行酯 交换反应合成生物柴油,两者都是清洁的柴油代用燃料。所以甲醇基本上可 替代石油加工成为车、船、飞机的动力燃料的补充,而且成本更低。另外, 甲醇可以替代石油,加工成为多种石油化工产品,通过甲醇裂解工艺(MTO 工艺)可以生产混合低碳烯烃(乙烯、丙烯、丁烯等),也可以通过MTP 工艺单独合成丙烯,而低碳烯烃是石油化工的龙头产品,甚至用于生产芳烃(苯、甲苯、二甲苯等)的MTA技术也在研发中,满足现有石油化工的需求。而且甲醇可以直接加工成多种产品,如可以直接作为燃料电池的燃料或 氢的中间储存燃料,它也是传统用来加工甲醛、醋酸、碳酸二甲酯、1,4-丁 二醇、乙炔二醇等大宗化学品的原料,是制造氯甲烷、有机硅产品的中间化 合物,作为溶剂、黏合剂等也有重要作用。 第三,从安全性考虑,甲醇从本质上将对人体是安全可控的。在毒理学中,半数致死量简称LD50,指引起一群实验对象50%个体死亡所需的剂量。LD50的数值越小,表示毒性越强。甲醇的LD50为5628mg/kg,汽油的 LD50为2500mg/kg,由此可见我们随处可见的汽油的毒性是甲醇的2倍以上。甲醇自然存在于人体,含量为0.6毫克/公斤体重,长期在200~ 250ppm甲醇含量的环境中工作无害,甲醇挥发性较低,仅是汽油的30%~60%。甲醇对人体主要的毒害在于误食饮用,对于视力损害严重。但比较容易控制,误饮中毒可以用碳酸氢钠、叶酸、酒精等降低它在体内代谢,所以人们普遍对甲醇为剧毒物质的印象是一种误导。甲醇在环境中也是安全的,甲醇造成火灾、爆炸的可能性远小于汽、柴油,其着火的极限浓度是汽 油的四倍;甲醇泄露的危害也比汽、柴油小,且易于稀释、扑救和降解,长 期储存不易变质。 第四,就环境保护而言,甲醇的环保效能较高。利用甲醇作为燃料的水 氢汽车,实现了零污染物排放,只排放纯净水和少量的二氧化碳,而二氧化 碳又是制甲醇的原料,真正实现了碳循环。

制氢装置开工操作规程

制氢装置开工操作规程 制氢装置开工步骤可分为:装置气密、脱硫系统升温干燥硫化、低变干燥还原、中低压汽包建立液位、转化中变系统升温干燥、蒸汽并网,转化炉配汽配氢还原、脱硫系统切入转化、中变大循环系统、进干气进油、投用PSA系统、向外供氢等步骤。 1 催化剂装填 1.1 反应器固定床催化剂装填 1.1.1 准备工作与条件 (1)相关的系统隔离,防止可燃气体、惰性气体进入反应器 (2)反应器采样分析合格达到进人条件。 (3)反应器及内构件检验合格。 (4)反应器内杂物清理干净。 (5)搭好催化剂、瓷球防雨棚。 (6)按照催化剂的搬运要求将催化剂、瓷球搬运至现场进行合理堆放。 (8)对催化剂的数量及型号进行确认,将相同型号,相同生产批号的催化剂放在一起,并按照装剂的先后顺序摆放好,最好用警示牌加以区分。 (9)装催化剂所用的器具已齐备。 1.1.2 装填技术要求 (1)必须严格按催化剂装填图的要求装填瓷球(柱)和催化剂。 (2)定期测量催化剂料面的高度,核算所装催化剂的数量和装填密度,尽可能使催化剂装填密度接近设计值。 (3)催化剂装填过程中,尽可能相同水平面的密度均匀,防止出现局部过松。 (4)催化剂的自由下落高度小于1.5米以免撞碎催化剂。 (5)在催化剂上站立或行走也会损坏催化剂,要求脚下拥有大的胶合板“雪橇”或在0.3m2的支撑板上工作,尽量减少直接在催化剂上行走。 (6)每层催化剂的料面要水平。 1.1.3 装填注意事项 (1)催化剂搬至现场堆放后,应作好防雨措施。 (2)催化剂装进料斗时要检查,严禁杂物进入反应器。 (3)催化剂装填过程中,车间的质量监督人员若发现操作过程中存在影响装填质量的问题,停止装填操作,待问题处理完毕后方能继续装填。 (4)催化剂搬运过程中,应小心轻放,不能滚动。 (5)在天气潮湿的情况下,只有在装填催化剂时才将催化剂开封,并在装填催化剂的平台上架设帆布棚。 (6)在催化剂装填过程中,对催化剂的型号进行确认,检查催化剂的质量,防止结块的或粉碎的催化剂装进反应器。 (7)在装催化剂期间装剂人员必须做好防尘措施。 (8)准确记录装入每一层催化剂的类型、体积和重量。 (9)装填期间,遇到任何与装填图要求不符的情况要及时通知工程技术人员以决定下一步的装填方法。 (10)在催化剂装填时,所有带入反应器内的工具应在出反应器时核对检查,防止将工

制氢操作规程(变压吸附部分)

第二部分变压吸附部分 1 主题内容 本操作规程描述了甲醇重整制氢的工艺控制、设备运行的操作规范,以及操作中的注意事项、异常情况的处理;通过实施本操作规程,确保甲醇重整制氢的质量和设备的正常运行,减少事故的发生。 2 适用范围 本操作规程适用甲醇重整制氢装置的操作与控制。 3 职责 3.1 生产部管理人员负责本工艺操作规程的编制、修改、监督与管理。 3.2 制氢岗位操作人员负责执行本操作规程。 4 工作程序 4.1 装置概况 4.1.1 概述 本装置采用变压吸附(简称PSA)法从甲醇转化气中提取氢气,在正常操作条件,转化气的处理量可达到800NM3 --1200NM3/h。在不同的操作条件下可生产不同纯度的氢气,氢气纯度最高可达99,9995%。 4.1.2 吸附剂的工作原理 本装置采用变压吸附(PSA)分离气体的工艺,从含氢混合气中提取氢气。其原理是利用吸附剂对不同吸附质的选择性吸附,同时吸附剂对吸附质的吸附容量是随压力的变化而有差异的特性,在吸附剂选择吸附条件下,高压吸附除去原料中杂质组份,低压下脱附这些杂质而使吸附剂获得再生。整个操作过程是在环境温度下进行的。 4.1.3 吸附剂的再生 吸附剂的再生是通过三个基本步骤来完成的: (1)吸附塔压力降至低压 吸附塔内的气体逆着原料气进入的方向进行降压,称为逆向放压,通过逆向放压,吸附塔内的压力直到接近大气压力。逆向放压时,被吸附的部分杂质从吸附剂中解吸,并被排出吸附塔。 (2)抽真空 吸附床压力下降到大气压后,床内仍有少部分杂质,为使这部分杂质尽可能解吸,

要求床内压力进一步降低,在此利用真空泵抽吸的方法使杂质解吸,并随抽空气体带出吸附床。 (3)吸附塔升压至吸附压力,以准备再次分离原料气 4.2 工艺操作 本装置是有5台吸附塔(T201A、B、C、D、E)、二台真空泵(P203A、B)、33台程控阀和2个手动调节阀通过若干管线连接构成 4.2.1 工艺流程说明 工艺过程是按设定好的运行方式,通过各程控阀有序地开启和关闭来实现的。现以吸附塔T201A在一次循环内所经历的20个步骤为例,对本装置变压吸附工艺过程进行说明。 (1)吸附 开启程控阀KS205和KS201,原料气由阀KS205进入,并自下而上通过吸附塔T201A,原料气中的杂质组份被吸附,分离出的氢气通过阀KS201输出。当被吸附杂质的吸附前沿(指产品中允许的最低杂质浓度)移动到吸附塔一定位置时,关闭KS205和KS201,停止原料气进入和产品气输出。此时吸附器中吸附前沿至出口端之间还留有一段未吸附杂质的吸附剂。 (2)第一次压力均衡降(简称一均降) 开启程控阀KS203和KS216,吸附器T201A与刚结束隔离步骤的吸附器T201C进行第一次压力均衡降,均压过程中吸附器T201A的吸附前沿朝出口端方向推进,但仍未到达其出口端。当两台吸附塔压力基本相等时,关闭阀KS216,一均降步骤结束(继续开启阀KS203,便于吸附器V201A下一步二均降进行)。 (3)第二次压力均衡降(简称二均降) 开启程控阀KS222,继续开启阀KS203,吸附塔T201A与刚结束隔离步骤的吸附塔T201D进行第二次压力均衡降,均压过程中吸附塔T201A的吸附前沿继续朝出口端方向推进,仍未到达其出口端。当两台吸附器压力基本相等时,关闭阀KS222,二均降步骤结束(继续开启阀KS203,便于吸附塔T201A下一步三均降进行)。 (4)第三次压力均衡降(简称三均降) 开启程控阀KS228,继续开启阀KS203,吸附塔T201A与刚结束抽真空步骤的吸附塔T201E进行第三次压力均衡降,均压过程中吸附塔T201A的吸附前沿刚好到达出口端时,两台吸附塔压力也基本相等,此时关闭阀KS203和KS228,三均降步骤结束。

甲醇制氢工艺简介

甲醇制氢工艺简介 1前言 氢气在工业上有着广泛的用途。近年来,由于精细化工、蒽醌法制双氧水、粉末冶金、油脂加氢、林业品与农业品加氢、生物工程、石油炼制加氢及氢燃料清洁汽车等的迅速发展,对纯氢需求量急速增加。 对没有方便氢源的地区,如果采用传统的以石油类、天然气或煤为原料造气来分离制氢需庞大投资,“相当于半个合成氨”,只适用于大规模用户。对中小用户电解水可方便制得氢气,但能耗很大,每立方米氢气耗电达~6度,且氢纯度不理想,杂质多,同时规模也受到限制,因此近年来许多原用电解水制氢的厂家纷纷进行技术改造,改用甲醇蒸汽转化制氢新的工艺路线。 西南化工研究设计院研究开发的甲醇蒸汽转化配变压吸附分离制氢技术为中小用户提供了一条经济实用的新工艺路线。第一套600Nm3/h制氢装置于1993年7月在广州金珠江化学有限公司首先投产开车,在得到纯度99、99%氢气同时还得到食品级二氧化碳,该技术属国内首创,取得良好的经济效益。此项目于93年获得化工部优秀设计二等奖、94年获广东省科技进步二等奖。 2工艺原理及其特点 本工艺以来源方便的甲醇与脱盐水为原料,在220~280℃下,专用催化剂上催化转化为组成为主要含氢与二氧化碳转化气,其原理如下: 主反应: CH3OH=CO+2H2 +90、7 KJ/mol CO+H2O=CO2+H2 -41、2 KJ/mol 总反应: CH3OH+H2O=CO2+3H2 +49、5 KJ/mol 副反应: 2CH3OH=CH3OCH3+H2O -24、9 KJ/mol CO+3H2=CH4+H2O -+206、3KJ/mol 上述反应生成的转化气经冷却、冷凝后其组成为 H2 73~74% CO2 23~24、5% CO ~1、0% CH3OH 300ppm H2O 饱与 该转化气很容易用变压吸附等技术分离提取纯氢。 广州金珠江化学有限公司600Nm3/h制氢装置自93年7月投产后,因后续用户双氧水的扩产,于97年4月扩产1000Nm3/h制氢装置投产,后又扩产至1800Nm3/h,于2000年3月投产。本工艺制氢技术给金珠江化学有限公司带来良好的经济效益。 目前国内应用此技术的企业已近百家,通过几年来的运转证明,本工艺技术成熟、操作方便,运转稳定、无污染。 本工艺技术有下列特点: 1、甲醇蒸汽在专用催化剂上裂解与转化一步完成。 2、采用加压操作,产生的转化气不需要进一步加压,即可直接送入变压吸附分离装置,降低了能耗。 3、与电解法相比,电耗下降90%以上,生产成本可下降40~50%,且氢气纯度高。与煤造气相比则显本工艺装置简单,操作方便稳定。煤造气虽然原料费用稍低,但流程长投资大,且污染大,杂质多,需脱硫净化等,对中小规模装置不适用。 4、专用催化剂具有活性高、选择性好、使用温度低,寿命长等特点。 5、采用导热油作为循环供热载体,满足了工艺要求,且投资少,能耗低,降低了操作费用。 3工艺过程

甲醇制氢操作规程完整

400Nm3/h甲醇制氢 操作规程

目录 目录 .................................................................................................................................................. I 操作规程. (1) 一岗位管辖及任务 (1) 1.1岗位管辖围 (1) 1.2岗位任务: (1) 二、工艺说明及流程示意图: (1) 2.1工艺说明 (1) 2.2流程示意图 (4) 三岗位工艺指标: (5) 3.1温度指标: (5) 3.2流量指标: (5) 3.3压力指标:MPa (5) 3.4液位: (6) 3.5分析指标 (6) 四:装置启动初次开车及停车后的再启动 (6) 4.1管道的试漏、保压 (6) 4.2催化剂的装填 (6) 4.3设备、仪表的调校 (9) 4.6投料启动 (10) 4.7停车后再启动 (10) 4.8催化剂的卸出 (12) 五正常停车步骤和紧急停车: (12) 5.1正常停车 (12) 5.2紧急停车 (14) 5.3临时停车 (14)

六常见故障及处理方法: (14) 6.1外界供给条件失常 (14) 6.2操作失调 (15) 6.3 PLC故障 (16) 5.4操作注意事项 (17) 七巡回检查制度: (17) 八岗位责任制: (17) 九设备维护保养制度: (18) 十设备润滑管理制度: (19) 十一安全注意事项: (19)

操作规程 一岗位管辖及任务 1.1岗位管辖围 界区所有管道、设备、阀门、电气及仪表等均属于岗位管辖围。 1.2岗位任务: 利用甲醇和水的重整反应制氢,重整气组成为氢气约75%,二氧化碳约25%,还有微量的甲烷,二乙醚的等杂质,之后在通过变压吸附分离提氢,改变变压吸附(PSA)操作条件可生产不同纯度的氢气,氢气纯度最好可达99.999%以上。 二、工艺说明及流程示意图: 2.1工艺说明 2.1.1重整工段 甲醇进入界区后直接进入混配罐中,通过液位控制甲醇进料量,无离子水进入界区后直接进入混配罐中,通过控制液位控制无离子水进料量,两台混配罐一台陪料,一台使用。混配罐甲醇、水混合液体能维持一个班八小时的工作用量。混配罐中的混合液经计量泵输送到换热器中。本工艺现场配备三台计量泵,其中一台输送混合液体,一台给水洗塔输送无离子水,另一台备用,三台泵型号、结构完全相同,开二备一。甲醇、水混合液体进入换热器与由反应器出来的重整气进行换热,换热后混合液温度由室温升至140℃,并呈现部分气化的气液胶着状态,然后接着进入气化过热器,被过热器下部管壳高温导热油加热气化,气化后的甲醇、水混合蒸气通过气化过热器上部列管被管壳中的高温导热油进一步加热到240~300℃围,然后进入反应器中。进入反应器的甲醇、水混合蒸气由上而下通过催化剂床层,在催化剂的作用下发生甲醇、水蒸气重整反应,生成产物为二氧化碳和氢气—重整气。由反应器出来的重整气进入换热器中与原料甲醇、水液体进行换热,完成热量交换后,重整气的温度由240~300℃降为160℃左右,然后进入水冷却器进一步冷却至室温,经冷却后的

制氢装置工艺流程说明

制氢装置工艺流程说明 1.1 膜分离系统 膜分离单元主要由原料气预处理和膜分离两部分组成。 混合加氢干气经干气压缩机升压至 3.4MPa,升温至110℃,首先进入冷却器(E-102)冷却至45℃左右,然后进入预处理系统,预处理系统由旋风分离器(V-101)、前置过滤器(F-101AB)、精密过滤器(F-102AB)和加热器(E-101)组成。 预处理的目的是除去原料气中可能含有的液态烃和水,以及固体颗粒,从而得到清洁的饱和气体,为防止饱和气体在膜表面凝结,在进入膜分离器前,先进入加热器(E-101)加热到80℃左右,使其远离露点。 经过预处理的气体直接进入膜分离器(M-101),膜分离器将氢气与其他气体分离,从而实现提纯氢气的目的。 每个膜分离器外形类似一管壳式热交换器,膜分离器壳内由数千根中空纤维膜丝填充,类似于管束。原料气从上端侧面进入膜分离器。由于各种气体组分在透过中空纤维膜时的溶解度和扩散系数不同,导致不同气体在膜中的相对渗透速率不同,在原料气的各组分中氢气的相对渗透速率最快,从而可将氢气分离提纯。 在原料气沿膜分离器长度方向流动时,更多的氢气进入中空纤维。在中空纤维芯侧得到94%的富氢产品,称为渗透

气,压力为1.3 MPa(G),该气体经产品冷却器(E-103)冷却到40℃后进入氢气管网。 没有透过中空纤维膜的贫氢气体在壳侧富集,称为尾气,尾气进入制氢下工序。 本单元设有联锁导流阀(HV-103)和联锁放空阀(HV-104),当紧急停车时,膜前切断阀(HV-101)关闭,保护膜分离器,同时HV-103和HV-104自动打开,保证原料气通过HV-103直接进入制氢装置,确保制氢装置连续生产;通过HV-104的分流,可以保证通过HV-103进入制氢装置的气体流量不至于波动过大,使制氢装置平稳运行。 1.2 脱硫系统 本制氢装置原料共有三种:轻石脑油、焦化干气、加氢干气(渣油加氢干气、柴油加氢脱硫净化气、加氢裂化干气)。 以石脑油为原料时,石脑油由系统管网进入,先进入原料缓冲罐(V2001),然后由石脑油泵(P2001A、P2001B、P2001C、P2001D)抽出经加压至4.45MPa后进入原料预热炉(F2001)。钴-钼加氢脱硫所需的氢气,由柴油加氢装置来,但是一般采用南北制氢来的纯氢气或由PSA返回的自产氢经压缩机加压后在石脑油泵出口与石脑油混合,一起进入原料预热炉。 以加氢干气和焦化干气为原料时,干气首先进入加氢干气分液罐(V2002),经分液后进入加氢干气压缩机(C2001A、

甲醇制氢工艺设计

前言 氢气是一种重要的工业产品,它广泛用于石油、化工、建材、冶金、电子、医药、电力、轻工、气象、交通等工业部门和服务部门,由于使用要求的不同,这些部门对氢气的纯度、对所含杂质的种类和含量都有不相同的要求,特别是改革开放以来,随着工业化的进程,大量高精产品的投产,对高纯度的需求量正逐步加大,等等对制氢工艺和装置的效率、经济性、灵活性、安全都提出了更高的要求,同时也促进了新型工艺、高效率装置的开发和投产。 依据原料及工艺路线的不同,目前氢气主要由以下几种方法获得:①电解水法;②氯碱工业中电解食盐水副产氢气;③烃类水蒸气转化法;④烃类部分氧化法;⑤煤气化和煤水蒸气转化法;⑥氨或甲醇催化裂解法;⑦石油炼制与石油化工过程中的各种副产氢;等等。其中烃类水蒸气转化法是世界上应用最普遍的方法,但该方法适用于化肥及石油化工工业上大规模用氢的场合,工艺路线复杂,流程长,投资大。随着精细化工的行业的发展,当其氢气用量在200~3000m3/h时,甲醇蒸气转化制氢技术表现出很好的技术经济指标,受到许多国家的重视。甲醇蒸气转化制氢具有以下特点: (1)与大规模的天然气、轻油蒸气转化制氢或水煤气制氢相比,投资省,能耗低。(2)与电解水制氢相比,单位氢气成本较低。 (3)所用原料甲醇易得,运输、贮存方便。 (4)可以做成组装式或可移动式的装置,操作方便,搬运灵活。 对于中小规模的用氢场合,在没有工业含氢尾气的情况下,甲醇蒸气转化及变压吸附的制氢路线是一较好的选择。本设计采用甲醇裂解+吸收法脱二氧化碳+变压吸附工艺,增加吸收法的目的是为了提高氢气的回收率,同时在需要二氧化碳时,也可以方便的得到高纯度的二氧化碳。

制氢站安全操作规程

制氢站安全操作规 程 1

制氢站安全操作规程 一、液氨制氢炉操作 1.检查气、电、水各系统是否符合要求。如有问题, 应先排除故障后, 才能进行下步工作。 2.进行触媒活化: 通电使设备升温至650℃, 然后打开放空阀, 并立即打开氨阀, 通入氨气, 此时氢阀关闭, 气体不经过净化系统。等到嗅出氨的刺激性味道不大时, 活化就可停止。 3.接通水源打开氢阀, 关闭放空阀, 可正常送气。 4.停车, 切断电源。先关氨气阀, 再关氢气阀, 最后切断水源。 5.操作过程中, 注意防爆防火。操作者严禁吸烟, 设备周围不准进行明火作业或有可能产生火花的作业。工作人员不得穿有带钉子的鞋。如果需要在氢炉附近动火, 必须事先测定该场所空气中的含氢量不得大于3%, 并经过安技部门同意后才可进行。 6.经常检查设备密封性, 自动温度控制是否灵敏可靠。 7.触媒需更换时的现象: (1)氨分解率降低, 气体刺激性增加; (2)分解氨的火焰颜色由深橘红变黄色; (3)系统阻力的增加, 从压力表读数可判断。

8.更换触煤程序: (1)松开与分解炉并联的各气体进出口、接头, 取出热电偶; (2)把整个设备向一侧倾斜; (3)抽出炉底的挡板, 并取出炉底的石棉板然后把分解炉由下部抽出; (4)将分解炉倒置, 使法兰朝上, 松开紧固螺钉, 移开法兰; (5)把炉内触媒倒出来, 并清洁炉体; (6)装入新鲜触媒约10千克。粘度为7~9毫米的3千克, 9~13毫米的7千克, 分层装入, 并用氨进行检漏试验; (7)将分解炉装入设备并检查设备密封性。 二、电解槽 1.电解槽新装后, 应检查装配质量, 绝缘情况, 电气系统管道等气液系统是否正确。 2.配制电解液要用导管将苛性钠注入气液分离塔, 流至电解槽体, 注意液面至标线内。 3.测量电解槽槽体电解液浓度合格后开车。 4.电解槽最好长期处于低挡使用, 例如, 其中电流、电压及槽温不得超过规定。 5.每班当班人员, 每小时做一次爆鸣试验。 6.调整气液分离器的压力与温度。如发现贮气框压力过大, 氢气管道堵塞, 抽出封瓶中的水。如发现硫酸干燥瓶失效应立即更换。 7.电解槽每年大修一次, 每半年小修一次, 每三个月清洗一次。过滤器每月清洗。每周检测一次电源是否合符规定。必要时作全面检测。如有异常,

相关文档
最新文档