神经网络模型预测控制器

神经网络模型预测控制器
神经网络模型预测控制器

神经网络模型预测控制器

摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。

关键字:模型预测控制、神经网络、非线性控制

1.介绍

由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。

在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。

许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。

在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。

在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。

2.问题表述

考虑一个离散非线性控制系统:

其中为控制器的输出,为输入,为状态矢量。控制

目标是保持输出接近参考轨迹,一般地控制目标是通过最小化代价函数来实现的:

同时约束条件为:

其中为k时刻预测状态和输出的函数,这里,由将来的输入组成:

为输入增量:

在方程(2)中,Q和R输入与输出权值矩阵,为非负终止条件。

根据动态编程的优化原则[6],必须最小化代价函数(2),当终止条件

为在K+N时刻时的无穷小,得出当时的无穷优化控制问题的解,同样就能得到有穷优化问题。对于非线性系统,优化控制问题一般无闭式解,因此,本文研究强力和不最理想的方法。

在模型预测控制(MPC)中,控制信号的确定是通过在每个采样时刻输入序列为时,最小化代价函数(2)。只有优化输入序列的第一个元素u(k)作为系统的输入,在下一个采样时刻k+1,新的优化问题是对于给定的优化控制问题而言的。在这种方法中,终止条件

可以看作是一个当时刻K+N趋于无穷时最小化代价函数的逼近器,但实际上更多的

是用于保证闭环的稳定性。模型预测控制方法有一个非线性的缺点,且需要通过在每个采样时刻得到受约束的优化问题,同时需要通过在线计算来实现。

为了减小模型预测控制的计算量,本文提出了一种精确MPC方法,在这种方法中,计算的部分是离线进行的。对于非线性系统,优化的MPC方法应该由离线计算进行映射,且用一个函数逼近器表示。更准确地,控制策略是通过最小化代价函数(2)定义控制信号,或等

于它的增量:

其中作为计算代价函

数(2)中的。对于任意,最小化代价函数(2)来评估方程(6)。从而通过离线训练来获得函数逼近器作为优化策略,尽管这种方法非常有用,但仍然存在一些限

制。因为MPC策略是基于信息来计算预测输出,这种不能很好的表示阶次递减或定结构的控制器。另外,计算还要求产生训练的数据非常广泛,这些每个训练数据点都需要一个MPC优化问题的解。

3.神经网络优化控制器

在本节中,研究了构成第2节所述的控制问题的一个神经网络模型预测控制器的问题。这里我们采样一个训练数据集作为直接训练代价函数(2)的控制器,而没有计算优化MPC控制信号的离线优化问题。

控制器表示如下:

其中为神经网络函数逼近器,I(k)为k时刻控制器的有效信号,W为逼近器参数(即神经网络权值)。

假设状态信息,如I(k)=时,控制器(7)可以看作是优化MPC策略(6)的函数近似。在本文中尽管研究的是这个方法,但控制器并没有完全受到状态信息的限制,而是把I(k)当成由许多输入u(k-i)与输出y(k-i)的过去值组成。,并将其作为参考信号

的设定值。这种方法可以构成高阶系统的较为复杂的控制器。I(k)值的不同选取方法将在第四节通过例子讲述。

Remark 1

为了降低控制器的复杂性,控制器的结构可以利用映射函数来确定,例如,假设信息I(k)为:,一个分布式控制器为:

,控制器的结构为:

为了用控制规则(7),即最小化代价函数(2)来确定控制器的参数W,需要知道训练数据:

利用控制策略(7),系统的更新如下所示:

用训练数据定义联想代价函数:

逼近器(7)的训练,最小化优化问题的平方为:

约束条件为:

训练问题可以通过梯度算法来最小化优化问题的平方,如LM算法,从方程(11)可以得到代价函数的梯度为

其中:

其中为神经网络输出关于网络参数的偏导数,它取决于网络的结构,

可以根据下式得到:

Remark 2

代价函数(11)用于训练神经网络控制器,与模型预测控制中代价函数类似,本文提出的控制器可以作为精确的模型预测控制器。注意到,对于一个给定的控制器的复杂性,计算量取决于优化控制器的参数W,而不是控制器的长度N。因此可以比模型预测控制能更灵活地用控制器的长度,从而被优化的参数也能成比例地增加。

4.仿真例子

在本节中,用例子仿真来说明第3节中所讲的神经网络模型预测控制器,在所有例子中,控制规则(7)用一个前馈神经网络来表示,该网络含有一层隐含层,用双曲正切函数作为激

活函数。这种网络可以以任意精度逼近所有连续非线性函数[12]。I(k)作为输入,

为输出,训练算法为LM算法[21],用来解决非线性最小二乘问题(12),利用matlab的优化工具箱中的常规函数lsqnonlin来计算。

在所有的例子中,优化范围N为足够大,这样对于闭环系统就能达到平衡,因此,用一个零终止条件作为代价函数(11)。

例1

在本例中,我们仿真一个pH中和过程[10,18,17,1],在文献[1]中,应用了一个神经网络来逼近优化MPC策略的过程。这个过程可以用非线性微分方程来表示,该过程的表达式如下式所示[17,1]:

式中,输出y(k)由pH值控制,u(k)为输入流量,用于控制,系统还有确定性扰动d(k)、相互独立的随机白躁声扰动v(k)和n(k)(分别用Rv和Rn表示)。采样时间为0.2分钟,时延为L=5,系统矩阵表示为输出的函数,如下所示。

状态参数表达式为:

其中这些系统参数的函数表达式在文献[1]中已有研究。

根据方程(17),预测输出根据下式确定:

其中状态参数根据Kalman滤波原理得到:

,其中K(k)为Kalman滤波增益:

优化控制策略为预测状态的函数,参考轨迹为,i=1,….N 假设参考轨迹由参考模型给出:

式中为设定值,为阶跃响应。控制策略为在k+L时刻时预测系统状态,

参考模型的状态,设定值等的函数,控制器(7)的信息I(k)为:

参数的选取根据文献[1],代价函数(11)中的权值为:Q=1,R=1。

白躁声变量:,用于Kalman滤波方程(19)中,参考模型(20)为一个二阶系统,增益为1,一对极点,均为0.9

由于非线性系统的动态特性,为了在整个操作过程中获得优化控制器的精确特性,需要大量的数据集。与非线性系统辨识相比较,仍需要长的训练集[16]。训练数据(9)用于训练控

制器,包括轨迹跟踪和扰动抑制(将输出pH的范围控制在)。因此训练数据有两种类型。对于轨迹跟踪,训练数据由以下构成:初始状态作为稳定状态响应

,设定值的改变

,八个相等的初始pH值,14个设定值,给定的14个参考轨迹。代价函数(11)的控制范围设定为N=150,这个足够使新的设定到达参考模型(20)所定义的参考轨迹。对于扰动抑制,训练数据由以下构成:常量设定值,参

考信号,初始状态对稳定状态的响应

。同样有14个不同的常量设定值,用于轨迹跟踪,且有28个初始状态。在这种情况下,控制范围为N=25步,这就使系统能达到设定值的一个初始偏值。初始状态和参考轨迹的总数为M=42。训练集中的每个元素包括了N个数据点,总的数据点数为2800。

根据一个独立的测试数据集来选取优化网络的大小,测试数据有36组2400个数据点,均是均相同的方法产生训练数据,6个范围在的初始pH值以及6个范围在的设定值。为了找出一个最小测试数据集,网络的大小不同,训练的结果如

表1所示。当网络中含有11个隐含节点时,测试数据中的代价函数为最小,而当增加网络大小时该值不会减小,因此,以下仿真中网络的结构为11。

这个结果与[1]中一致,即当用于逼近MPC策略时网络的大小也为11。同时,表1也表明了用一个非线性MPC的结果。MPC策略的预测和控制范围为N=20步。

为了避免局部收敛特性,需要用不同初始点来优化网络的权值。在本例中没有遇到局部最优化值的问题。一般来说,网络权值在第400-500代时就已收敛。所需要的代数与优化MPC 策略中神经网络的代数相同[1],且用相同的数据点。然而,当对每一代的轨迹(10)和联想代价(11)进行评估时,用于训练的计算量将比直接逼近要重。从另一个方面说,直接逼近方法在每个数据进行优化MPC控制时所需要的计算量,大体上比以前要重。

应用神经网络控制器和优化MPC策略得到的闭环响应如果图1所示,图2表明了当有一个

可测量的白躁声时的响应。注意到图1和图2的设定值是在每个训练数据处都是不同的,为了测试神经网络控制器的性能,在达到一个新的稳定之前改变设定值,响应如图3所示,表明了神经网络控制器的性能很好。

图4为阶跃扰动d(k)在不同稳定值pH处的响应,阶跃变化在时刻k=75处从10到11变化然后又在时刻k=325变回10。在仿真中可测躁声的表示一样。注意到扰动d(k)对于控制器是未知的,神经网络控制器不能用阶跃扰动来训练。稳定状态偏移量的限制根据条件

来确定[1]。

仿真结果表明神经网络控制器对于不同类型的扰动都能达到一个近似优化控制的性能。同时注意到神经网络控制器在每段采样数据中仅仅需要238步,这比模型预测控制的平均操作步骤要少0.1%,这个结构与文献[1]中一致。

例2

在这个例子中,同时对集中型和分散型神经网络模型预测控制器进行了仿真,仿真的对象为一个多层非等温连续水箱反应器[8]。过程包括反应物A,期望的产物B,同样还有产物C 和D。反应器的模型用四个微分方程表示:

其中分别为A和B的浓度,为反应器的温度,为冷却剂的温度。原料

A的浓度为,原料流的温度为。反应器的体积为,为原料的流速,为吸收的热量的速度。反应系数根据Arrhenius方程确定:

模型参数的数值如表2所示。

控制的目标是操作原料的流速和吸热的速度来控制浓度和反应器温度。浓度

和反应器温度可以通过检测得到,原料的浓度和原料温度作为扰动,分别为5.1mol/l,130℃。原料流速的范围为,吸热的速

度的范围为。

用一个欧拉近似值形式的离散系统表示法来对模型(22)进行离散化,采样时间为20s。控制器的输出为,,输入为,

将分散型和集中型的神经网络控制器应用在反应器系统中,训练的数据用例1中的方式模拟产生,输出和设定值的范围为:

对于轨迹跟踪,初始状态作为稳定状态与输出和设定值的响应,四个相等的空间值作为被选取的每个输出的范围。对于每个初始稳定状态,选取8个设定值:

剔除落在范围外的数据,这样就有84个初始状态。预测范围的长度设为N=60步。对于扰动抑制,训练数据由如下构成:

参考信号,初始状态对稳定状

态,的响应。用四个相等的空间值作为设定值,这样可以得到64个初始状态。预测范围的长度为N=25。因此训练集中初始状态的总数为M=148,训练数据点总数为6640。测试数据集包括四个设定的在0.85与0.95之间变

化,,(如图5-7所示),网络的大小与例子一样。

神经网络控制器作为过去输出y(k-i),输入增量,参考模型(20)的状态,当前设定值的函数。被辨识参考模型的输出作为一阶系统,且有单位增益和一个位于0.8的极点。在集中控制器中,控制器方程如下所示:

式中,这样的变化就不会很明显。

以多变量系统为例,神经网络控制器的训练比例1中SISO系统的要复杂,实际上,神经网络权值的优化可能会陷入局部最优值。为了避免这点,在优化的开始时用随机初始值。

在多变量系统中,权值幅值的选择对神经网络的训练有着明显的影响,基于相同权值的优化模型预测控制器对于所有输出都能获得好的控制性能,对于输入也是如此。对于一个神经网络控制器的代价函数的权值集都可以通过第3节中的方法得到好的训练,如图5所示,显示了一个用优化MPC策略得到的闭环响应,最优神经网络逼近器中的代价函数的权值矩阵如下式如示:

从上式可以看出第一个输出对代价函数的贡献比第二个输出要小,通常主要控制第二个输出,而第一个输出则较少控制。从而可以得到第一个输出的权值应为递增的。输入的分析与此类似。

基于权值矩阵的控制器如下:

对于这些权值,每个输出(输入)对于代价函数的贡献都是相同的。

当用方程(24)的控制器输入数据为测试数据时所得到的最优性能的神经网络的隐含层均含有4个神经元,权值为78。训练数据的代价值为2336而测试数据的代价为128.3,同时,

优化模型预测控制器的训练代价为1719,而测试代价为125.8。神经网络控制器响应和模型预测控制的测试数据序列如图6所示。注意到系统有逆响应特性,而且给定的控制也有逆响应。

一个优化的分散神经网络控制器是这样设计的。对于化学反应器,通常都用分散控制器,原料流量u1为产量y1的函数,热交换率u2为温度y2的函数,因此分散神经网络控制器由下的的独立控制器组成:

其中每个独立的控制器又由下式表示:

式中。当增大时,不会有很明显的改善。网络的大小由前面决定。神经网络控制器有四个隐层神经元,其中三个用于控制温度。权值总数为72,网络给定的训练代价为3145,测试代价为139.2,如图7所示为测试数据的闭环响应,从图中可以看出分散控制器在设定点处有良好的响应性能。

通过观察可以知道,尽管分散控制器能表示独立的网络,但它们并不是独立训练的。这是因为每个控制器之间存在着交互影响,通过直接定义全局参数矢量对网络

进行仿真训练,同时应用标准梯度法。通过训练信息矢量来确定控制变量,这样,分散神经网络控制器的训练就能得到改善。在这个例子中,整个训练数据集都是为了更好地训练控制器,而集中控制器的训练则是为了使数据点数减小。

5.总结

本文研究了非线性系统的优化神经网络控制,通过最小化MPC代价函数来设计神经网络控制器。这种方法与MPC接近,可以作为一个MPC的精确形式。

神经网络控制器在非线性系统和预测控制中有许多优势,与其它MPC方法相比,神经网络控制器能够很大程度减少在线计算量,另外,网络训练所需要的计算主要取决于网络的复杂度,而不是控制的水平的宽度。这就能灵活地设计一个比MPC更宽的控制水平的控制器。另外,神经网络控制器的结构是固定的,那么就能设计具有特殊结构的控制器,如分散型控制器。神经网络控制器的主要局限性是用于训练的离线计算量较大,对于某些选定的代价函数可能不能很好的获得满意的精度。

仿真例子表明神经网络预测模型控制器通过结合分散和集中控制结构来训练可以获得近似最优控制性能(与最优MPC相比)。

基于BP神经网络的预测模型

基于BP神经网络的国际黄金价格预测模型 公文易文秘资源网顾孟钧张志和陈友2009-1-2 13:35:26我要投稿添加到百度搜藏 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型 [摘要] 为了寻找国际黄金价格与道琼斯工业指数、美国消费者指数,国际黄金储备等因素之间的内在关系,本文对1972年~2006年间的各项数据首先进行归一化处理,利用MATLAB神经网络工具箱进行模拟训练,建立了基于BP神经网络的国际黄金价格预测模型。 [关键词] MATLAB BP神经网络预测模型数据归一化 一、引言 自20世纪70年代初以来的30多年里,世界黄金价格出现了令人瞠目的剧烈变动。20 世纪70年代初,每盎司黄金价格仅为30多美元。80年代初,黄金暴涨到每盎司近700美元。本世纪初,黄金价格处于每盎司270美元左右,此后逐年攀升,到2006年5月12日达到了26年高点,每盎司730美元,此后又暴跌,仅一个月时间内就下跌了约160美元,跌幅高达21.9%。最近两年,黄金价格一度冲高到每盎司900多美元。黄金价格起伏如此之大,本文根据国际黄金价格的影响因素,通过BP神经网络预测模型来预测长期黄金价格。 二、影响因素 刘曙光和胡再勇证实将观察期延长为1972年~2006年时,则影响黄金价格的主要因素扩展至包含道琼斯指数、美国消费者价格指数、美元名义有效汇率、美国联邦基金利率和世界黄金储备5个因素。本文利用此观点,根据1972年~2006年各因素的值来建立神经网络预测模型。 三、模型构建

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

基于神经网络的预测控制模型仿真

基于神经网络的预测控制模型仿真 摘要:本文利用一种权值可以在线调整的动态BP神经网络对模型预测误差进行拟合并与预测模型一起构成动态组合预测器,在此基础上形成对模型误差具有动态补偿能力的预测控制算法。该算法显著提高了预测精度,增强了预测控制算法的鲁棒性。 关键词:预测控制神经网络动态矩阵误差补偿 1.引言 动态矩阵控制(DMC)是一种适用于渐近稳定的线性或弱非线性对象的预测控制算法,目前已广泛应用于工业过程控制。它基于对象阶跃响应系数建立预测模型,因此建模简单,同时采用多步滚动优化与反馈校正相结合,能直接处理大时滞对象,并具有良好的跟踪性能和较强的鲁棒性。 但是,DMC算法在实际控制中存在一系列问题,模型失配是其中普遍存在的一个问题,并会不同程度地影响系统性能。DMC在实际控制中产生模型失配的原因主要有2个,一是诸如建模误差、环境干扰等因素,它会在实际控制的全程范围内引起DMC的模型失配;二是实际系统的非线性特性,这一特性使得被控对象的模型发生变化,此时若用一组固定的阶跃响应数据设计控制器进行全程范围的控制,必然会使实际控制在对象的非建模区段内出现模型失配。针对DMC模型失配问题,已有学者进行了大量的研究,并取得了丰富的研究成果,其中有基于DMC控制参数在线辨识的智能控制算法,基于模型在线辨识的自校正控制算法以及用神经元网络进行模型辨识、在辨识的基础上再进行动态矩阵控制等。这些算法尽管进行在线辨识修正对象模型参数,仍对对象降阶建模误差(结构性建模误差)的鲁棒性不好,并对随机噪声干扰较敏感。针对以上问题,出现了基于误差校正的动态矩阵控制算法。这些文献用基于时间序列预测的数学模型误差代替原模型误差,得到对未来误差的预测。有人还将这种误差预测方法引入动态矩阵控制,并应用于实际。这种方法虽然使系统表现出良好的稳定性,但建立精确的误差数学模型还存在一定的困难。 本文利用神经网络通过训练学习能逼近任意连续有界函数的特点,建立了一种采用BP 神经网络进行预测误差补偿的DMC预测控制模型。其中神经网络预测误差描述了在预测模型中未能包含的一切不确定性信息,可以归结为用BP神经网络基于一系列过去的误差信息预测未来的误差,它作为模型预测的重要补充,不仅降低建立数学模型的负担,而且还可以弥补在对象模型中已简化或无法加以考虑的一切其他因素。 本文通过进行仿真,验证了基于神经网络误差补偿的预测控制算法的有效性及优越性,

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

BP神经网络预测模型及应用

B P神经网络预测模型及 应用 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

B P神经网络预测模型及应用 摘要采用BP神经网络的原理,建立神经网络的预测模型,并利用建立的人工神经网络训练并预测车辆的销售量,最后得出合理的评价和预测结果。 【关键词】神经网络模型预测应用 1 BP神经网络预测模型 BP神经网络基本理论 人工神经网络是基于模仿生物大脑的结构和功能而构成的一种信息处理系统。该网络由许多神经元组成,每个神经元可以有多个输入,但只有一个输出,各神经元之间不同的连接方式构成了不同的神经网络模型,BP网为其中之一,它又被称为多层前馈神经网络。 BP神经网络预测模型 (1)初始化,给各连接权值(wij,vi)及阐值(θi)赋予随机值,确定网络结构,即输入单元、中间层单元以及输出层单元的个数;通过计算机仿真确定各系数。 在进行BP网络设计前,一般应从网络的层数、每层中的神经元个数、初始值以及学习方法等方面进行考虑,BP网络由输入层、隐含层和输出层组成。隐含层神经元个数由以下经验公式计算: (1)

式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7. BP网络采用了有一定阈值特性的、连续可微的sigmoid函数作为神经元的激发函数。采用的s 型函数为: (2) 式中:s为隐层节点数,m为输入层节点数,n为输出层节点数,h为正整数,一般取3―7.计算值需经四舍五入取整。 (2)当网络的结构和训练数据确定后,误差函数主要受激励函数的影响,尽管从理论分析中得到比的收敛速度快,但是也存在着不足之处。当网络收敛到一定程度或者是已经收敛而条件又有变化的时候,过于灵敏的反映会使得系统产生震荡,难于收敛。因此,对激励函数进行进一步改进,当权值wij (k)的修正值Δwij(k) Δwij(k+1)<0时,,其中a为大于零小于1的常数。这样做降低了系统进入最小点时的灵敏度,减少震荡。 2 应用 车辆销售量神经网络预测模型 本文以某汽车制造企业同比价格差、广告费用、服务水平、车辆销售量作为学习训练样本数据。如表1。 表1 产品的广告费、服务水平、价格差、销售量 月份广告费 (百万元)服务水平价格差

基于Bp神经网络的股票预测

基于神经网络的股票预测 【摘要】: 股票分析和预测是一个复杂的研究领域,本论文将股票技术分析理论与人工神经网络相结合,针对股票市场这一非线性系统,运用BP神经网络,研究基于历史数据分析的股票预测模型,同时,对单只股票短期收盘价格的预测进行深入的理论分析和实证研究。本文探讨了BP神经网络的模型与结构、BP算法的学习规则、权值和阈值等,构建了基于BP神经网络的股票短期预测模型,研究了神经网络的模式、泛化能力等问题。并且,利用搭建起的BP神经网络预测模型,采用多输入单输出、单隐含层的系统,用前五天的价格来预测第六天的价格。对于网络的训练,选用学习率可变的动量BP算法,同时,对网络结构进行了隐含层节点的优化,多次尝试,确定最为合理、可行的隐含层节点数,从而有效地解决了神经网络隐含层节点的选取问题。 【abstract] Stock analysis and forecasting is a complex field of study. The paper will make research on stock prediction model based on the analysis of historical data, using BP neural network and technical analysis theory. At the same time, making in-depth theoretical analysis and empirical studies on the short-term closing price forecasts of single stock. Secondly, making research on the model and structure of BP neural network, learning rules, weights of BP algorithm and so on, building a stock short-term forecasting model based on the BP neural network, related with the model of neural network and the ability of generalization. Moreover, using system of multiple-input single-output and single hidden layer, to forecast the sixth day price by BP neural network forecasting model structured. The network of training is chosen BP algorithm of traingdx, while making optimization on the node numbers of the hidden layer by several attempts. Thereby resolve effectively the problem of it. 【关键词】BP神经网络股票预测分析 1.引言 股票市场是一个不稳定的非线性动态变化的复杂系统,股价的变动受众多因素的影响。影响股价的因素可简单地分为两类,一类是公司基本面的因素,另一类是股票技术面的因素,虽然股票的价值是公司未来现金流的折现,由公司的基本面所决定,但是由于公司基本面的数据更新时间慢,且很多时候并不能客观反映公司的实际状况,采用适当数学模型就能在一定

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

BP神经网络算法预测模型

BP神经网络结构及算法 1986年,Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播算法(Error Back Proragation,简称BP)进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常釆用误差反向传播算法,人们也常把多层前馈网络直接称为BP网。釆用BP算法的多层前馈网络是目前应用最多的神经网络。 BP神经网络的结构 BP网络有三部分构成,即输入层、隐含层(又称为中间层)和输出层,其中可以有多个隐含层。各层之间实现完全连接,且各层神经元的作用是不同的:输入层接受外界信息;输出层对输入层信息进行判别和决策;中间隐层用来表示或存贮信息。通常典型的BP网络有三层构成,即只有一个隐层。三层BP神经网络的结构可用图1表示。 图1 三层BP神经网络机构图 BP神经网络的学习算法 BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐含层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐含层向输入层逐层反传、并将误差分摊给各层的所有神经元,从而获得各层神经元的误差信号,此误差信号即作为修正各神经元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的,权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出误差减少到可接受的程度,或进行到预先设定的学习次数为止,标准BP算法流程见图2。

BP神经网络模型预测未来

BP神经网络模型预测未来 BP神经网络算法概述: 简介与原理 BP神经网络是一种多层前馈神经网络,该网络的主要特点是:信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层,每一层的神经元状态只影响下一层神经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。 BP神经网络的拓扑结构如下图所示: 输入层隐含层输出层 BP神经网络结构图 图中是BP神经网络的输入值,是BP神经网络的预测值, 为BP神经网络权值。 BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。BP神经网络的训练过程包括一下几个步骤。 步骤一:网络初始化。根据系统输入输出序列(,) X Y确定网络输入层节点数,n隐含层节点数l、输出层节点数m、初始化输入层、隐含层和输出层神经元之间的连接权值,, ωω初始化隐含层阈值a,给 ij jk

定输出层阈值b,给定学习速率和神经元激励函数。 步骤二:隐含层输出计算。根据输入向量,输入层和隐含层间连接权值,以及隐含层阈值,计算隐含层输出。 步骤三:输出层输出计算。根据隐含层输出,连接权值和阈值,计算BP神经网络预测输出。 步骤四:误差计算根据网络输出和预期输出,计算网络预测误差。 步骤五:权值更新。根据网络预测更新网络连接权值 步骤六:阈值更新。根据网络预测误差更新网络节点阈值。 步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。 下面是基本BP算法的流程图。 BP神经网络的拓扑结构如下图所示: 输入层隐含层输出层 BP神经网络预测的算法流程如下: 步骤一:对初始数据进行标准化。 步骤二:利用原始数据对网络进行训练。 步骤三:对未来第t年第i类污染程度的河流长度比例进行预测。 步骤四:利用第年预测得到的数据作为样本再对网络进行训练。 步骤五:然后令1 t t t=。 =+,回到Step2,直到10 2.建模步骤: Step 1 建立如下网络拓扑结构 表3 网络结构

BP神经网络预测模型

BP 神经网络模型 基本原理 ( 1) 神经网络的定义简介 神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测. 基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple-layer feedforward network, 简记为BP 网络), 是目前应用最成功和广泛的人工神经网络. ( 2) BP 模型的基本原理[3] 学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP 网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型. BP 网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网, 这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间. 见图( 1) . O 1 O 2 O i O m ( 大于等于一层) W (1)… ( 3) BP 神经网络的训练 BP 算法通过“训练”这一事件来得到这种输入, 输出间合适的线性或非线性关系. “训练”的过程可以分为向前传输和向后传输两个阶段: 输入层 输出层 隐含层 图1 BP 网络模型

BP神经网络预测模型

BP 神经网络模型 基本原理 ( 1) 神经网络的定义简介 神经网络是由多个神经元组成的广泛互连的神经网络, 能够模拟生物神经 系统真实世界及物体之间所做出的交互反应. 人工神经网络处理信息是通过信息样本对神经网络的训练, 使其具有人的大脑的记忆, 辨识能力, 完成名种信息处理功能. 它不需要任何先验公式, 就能从已有数据中自动地归纳规则, 获得这些数据的内在规律, 具有良好的自学习, 自适应, 联想记忆, 并行处理和非线性形转换的能力, 特别适合于因果关系复杂的非确定性推理, 判断, 识别和分类等问题. 对于任意一组随机的, 正态的数据, 都可以利用人工神经网络算法进行统计分析, 做出拟合和预测. 基于误差反向传播(Back propagation)算法的多层前馈网络 (Multiple-layer feedforward network, 简记为BP 网络), 是目前应用最成功和广泛的人工神经网络. ( 2) BP 模型的基本原理[3] 学习过程中由信号的正向传播与误差的逆向传播两个过程组成. 正向传播时, 模式作用于输入层, 经隐层处理后, 传入误差的逆向传播阶段, 将输出误差按某种子形式, 通过隐层向输入层逐层返回, 并“分摊”给各层的所有单元, 从而获得各层单元的参考误差或称误差信号, 以作为修改各单元权值的依据. 权值不断修改的过程, 也就是网络学习过程. 此过程一直进行到网络输出的误差准逐渐减少到可接受的程度或达到设定的学习次数为止. BP 网络模型包括其输入输出模型, 作用函数模型, 误差计算模型和自学习模型. BP 网络由输入层, 输出层以及一个或多个隐层节点互连而成的一种多层网, 这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系, 又不致使网络输出限制在-1和1之间. 见图( 1) . O 1 O 2 O i O m 输入层 输出层 隐含层 …… …… ……

相关文档
最新文档