航空仪表基本知识

航空仪表基本知识
航空仪表基本知识

概述——航空仪表的分类:发动机仪表、大气数据仪表、陀螺仪表。

第一章压力测量仪表.

压力表……测量飞机上气体或液体压力的仪表,叫做压力表。按动作原理分:机械式、电动机械式和电动式;按仪表供电的电源形式分为直流压力表和交流压力表。

2BYY-1A 功能:用来测量歼八飞机助力液压系统和收放液压(又叫主液压)系统的液压油压力。组成:两个GYY-1传感器、两个完全相同装在一个表壳的2ZYY-1A指示器,测量围0-250公斤/厘米2。原理:测量压力时,弹簧管在压力作用下自由端产生位移、压力越大、位移量越大、当自由端向外移动时,经过曲臂连杆和活动摇臂改变电位器电刷在电阻上的位置从而改变指示器中两线框的电流比值,使指针在刻度盘上指出相应的压力数值。当仪表不通电时,指针轴上的小磁铁受拉回磁铁的作用,使指针停在刻度以下的限制柱处。

弹簧管……由于弹簧管的横截面为椭圆形,所以弹簧管受流体压力作用后,压力沿短轴b向的作用面积大于沿a向作用的总面积,因而沿短轴向的作用力也就大于沿长轴向的作用力。流体压力对弹簧管横截面积作用的结果,使长轴变短,短轴变短,即横截面由椭圆形向圆形转化。在弹簧管的横截面由椭圆向圆形转化的过程中,弹簧管外管壁受到拉伸,管

壁受到压缩,因而外管壁产生反抗拉伸的拉应力,管壁产生反抗压缩的压应力,这两个应力在自由端形成一对力偶,使弹簧管伸直变形,在自由端产生位移。

第二章温度测量仪表.

热电极:一般把组成热电偶的两种金属导体又叫做热电极,所产生的电势叫热电势。热端:热电偶温度高的一端叫热端或测量端。冷端:温度低的一端叫冷端或参考端。

几种常用的热电偶①铂铑-铂热电偶……属于贵重金属热电偶,分度号为LB-3热电性能稳定,测量温度围大,精度高,可以在氧化性或中性介质中长期使用。由于这种热电偶电势率较低,金属材料价格昂贵,故一般只用这种热电偶作为标准热电偶使用。②镍镉-镍铜热电偶……这种热电偶属于廉价金属热电偶,其分度号为EA。这种热电偶的热电特性近似线性,热点率较高,价格便宜。缺点:有寄生热电势和冷端温度误差。③镍钴-镍铝锰热点偶——属于高温廉价金属热电偶,其分度号为GL。这种热电偶在300℃以下,其热电势很小,可以不进行冷端温度误差补偿,在300℃以上,其热电特性近似线性。缺点:热电特性不稳定重复性较差,故在实际应用中,应根据成型热电偶电势大小对热电偶进行分组,并与显示仪表配套使用。

2BWP-2喷气温度表……功用:测量歼八飞机、左右机涡轮后燃气均温度。组成:2ZWP-2指示器,八个GR-10热电偶和

两个接线盒组成。工作原理:是根据热电原理工作的一种仪表。传感器是热电偶,当热电偶两接点的温度不同时回路中便产生热电势,如果保持热电偶冷端的温度不变,则热电势只是随热端温度的变化而变化,因此一个以温度为刻度的电压表,就可以测量热电势的大小,从而指示出热电偶热端所测温度的高低。指示公式dF=BWIdl

2BPW-2喷气温度表的结构……其靠近热端的一部分热电偶嵌在绝缘瓷管里。瓷管在耐热钢管中。热端露至瓷管外面,与气流直接接触。耐热钢管沿着与气流的垂直向插在发动机的喷管中,进气口正对气流向,气流进入进气口后,气流与管壁发生激烈的摩擦与碰撞,速度降低到零,摩擦和碰撞把气体的动能转化为热能,故耐热钢管部的气温升高为全受阻温度。安装:只要使定位销对正安装座的定位槽,进气口便能正对迎面气流。热电偶正极短,负极长。

指示器的结构……实际上是一个以温度为刻度的灵敏直流电压表。它主要由磁铁、活动系统合指示部分组成。

常见故障……①指示器不指示——热电偶烧断或电路故障——更换热电偶或检修电路②指示器少指——某个热电偶极性接反或电路接触不良,电阻增大,电路电流减少——检修热电偶或电路

第三章油量测量仪表.油量测量仪表——就是测量飞机油箱煤油或汽油的容积或重量的仪表

BUC-44A功用:测量歼八D型飞机全机(副油箱除外)组总的可用油量;测量主油箱可用油量;测量副油箱可用油量;发出主油箱的满油信号和剩油(返航)警告信号;发出副油箱500升信号和满油控制信号;发出翼后油箱满油信号;供给飞行参数记录系统和483数系统油量信号。组成:传感器、油面传感器、指示器、电气控制盒。工作原理:电容传器把油面高度装换为电容的变化,再用自平衡电桥将电容的变化转换为相应的电压输出,此电压经放大器放大后再经过随动系统使指示器指示出油箱剩余油量的多少。传感器的结构:共有传感器19根,其中带信号器的有8根。传感器本身是一个圆柱形电容器,其主要作用是将飞机油量的变化转换成电容的变化。他有两根圆管组成,外层是铝管,层是在管壁上渡有一层银膜的塑料管。管壁银膜的覆盖面是按油箱的形状而定。

干簧管……组成:玻璃外壳和两个弹簧片(核心)。干簧片是利用高导磁率软材料组成。这种材料即导磁由导电,兼有衔铁和接点的双重作用。干簧片闭合,电磁铁线圈中有电流流过,干簧片断开时,电路无电流流过。因此电磁铁线圈的脉冲电压信号的频率,也就是电磁铁的通断次数,即反应了叶轮的转速。

第四章转速测量仪表.

转速是需要测量的一个重要参数。通过测量喷气发动机的涡

轮轴转速、活塞发动机的曲轴转速、直升飞机的旋翼转速,可以了解发动机的功率和推率,可以确定发动机所承受的运动负荷和能量负荷。

磁转速……组成:传感器和指示器。工作过程:传送、感受、转换和指示

转速表常遇故障……①指示器本身引起的摆动的原因:同步发动机转轴不正或弯曲、轴承缺油、同步发动机转子与活动衔铁组不平衡、指示器传动齿轮间隙不当都会造成指示摆动;另外由于“1”号指针轴较细,容易弯曲变形造成摆动。传感器引起的摆动:传感器固定松动;传感器转子轴和发动机固定座的传动杆没结合紧,轴承缺油、摩擦或环裂纹等。③高压转子传感器上三脚插座的焊接导线由于高温和振动,常脱焊或断裂.

第五章高度测量仪表.

气压高度表……组成:真空膜盒、传送机构、指示部分、气压修正机构。

真空膜盒……是气压式高度表的敏感元件。作用:就是将感受到的大气压力变化转换为膜盒中心的位移量。要求:有足够的灵敏度,以满足真空膜盒在感受大气压力变化时有足够大的位移量。

气压调节机构……功用:是拨动气压刻度盘和指针的装置,用来消除基准面气压不等于760mmHg时所引起的气压法误

差。组成:气压刻度盘、调整旋钮、传动齿轮、挡片和密封螺帽。

高度表……使用:利用气压式高度表可以测量飞机的标准气压高度、相对高度和绝度高度。无论测量种高度,在飞机起飞前,都必须将高度表指针调到与气压刻度相对应的位置,即高度表指针指零,气压刻度盘值机场场面大气压力。①标准气压高度是以760mmHg气压平面为基准面的高度。②相对高度是以机场场面气压为基准面的高度。③绝度高度是以海平面为基准面的高度。

高度表指针跳动原因:①主要是传动机构各机件之间存在着摩擦和间隙②气压变化率变小,指针传动主动力减小。

第六章空速测量仪表.

BK2500空速表感受部分分为开口膜盒和真空膜盒。开口膜盒:感受动压,空速不同,动压不同,通过测量动压表示指示空速②真空膜盒:感受静压,通过感受动压和静压,就可以测量真空速的大小。

敏感部分……组成:开口膜盒和真空膜盒,开口膜盒通过全压,外通静压,感受动压而产生位移,其位移量和动压大小相对应。

空速管……用来在飞行中收集气流的全压和静压并且经过导管输送给全静压系统仪表以及有关设备。

第七章陀螺基本原理.

三自由度陀螺……:①转子:借助于自转轴上一对轴承安装于环中,②环:借助于环轴上的一对轴承安装于外环轴中,③外环:借助于外环轴上的一对轴承安装在基座上。自转轴与环轴、环轴与外环轴分别垂直且相交。

八.地平仪……功用:用来测量飞机姿态角(俯仰角和倾斜角)的仪表。分类:①读式仪表(由陀螺和修正系统直接带动指示部分的地平仪)②读式仪表(由陀螺和修正系统通过远距传输装置间接带动指示部分的地平仪)

BDP-4地平仪……组成:①TC-4垂直陀(测量飞机的俯仰角和倾斜角,并把相应的电信号供给地平仪指示器及其他使用这些符号的设备)②ZTP-1地平指示器(指示由垂直陀罗所感受的飞机俯仰角和倾斜角,保证飞机完成任机动飞行后都能正确指示)

第八章地平仪.

BDP-4地平仪中的垂直陀螺为TC-4垂直陀螺……组成:①三自由陀螺——垂直陀螺的核心部件,其外环轴横向安装在一个始终保持水平的伺服托架上,而托架是纵向安装在仪表壳体上的,这时托架为倾斜角的测量轴,外环轴为俯仰角的测量轴不存在测量误差②修正系统——用来保证陀螺自转轴始终跟踪当地的垂线,给地平仪提供测量飞机俯仰角和倾斜角的基准③托架伺服系统——用来在飞机有倾斜动作时,使陀螺外环轴水平,保持陀螺三轴经常处在相互垂直位置,避

免发生“环架自锁”现象,使陀螺稳定性不受飞机姿态的影响④启动装置——用来在启动时给三自由度陀螺自动上锁、开锁和通电启动,使陀螺三轴迅速处于相互垂直位置,缩短地平仪启动时间⑤俯仰和倾斜同步发送器——将测得的俯仰角和倾斜角信号转变成电信号,远距传输给俯仰和倾斜同步接收器,供地平指示器正确指示飞机俯仰角和倾斜角

BDP-4的修正系统……组成:五极液体开关(也称液体吧)和两个修正电机(纵向修正电机和横向修正电机)组成的复合修正系统。

五极式液体开关……实际上是一个做成电气开关形式、可以传送电信号的液体摆。它是一个扁平、圆形的封闭容器,其中装有特殊导电液并有气泡。上部的紫铜底座具有一定曲率半径,常见的一种五极式液体开关曲率半径为760毫米。底座上装有四个相互绝缘的紫铜电极,组成对称而又相互垂直的两对电极。而紫铜外壳本身与紫铜外壳想通,构成中心电极。启动系统……组成:①上锁机构——在1-1.5分钟基本上就是保证陀螺自转轴与当地垂线重合及外环轴水平②自动控制程序电路——用来保证系统工作按一定程序进行,先启动地平仪,后启动宗和罗盘;此外在加速飞行时可以用上锁机构消除陀螺自走误差。

地平仪上锁时间很短(一般不超过15秒),这样就很快强迫自转轴回到当地垂线向,消除了自走误差。

BDP-4地平仪全套工作系统……工作过程:垂直陀螺测量飞机的俯仰角和倾斜角,并通过俯仰角和倾斜角同步发送器将所测的俯仰角和倾斜角转换成相应的电信号,远距传输到指示器的俯仰和倾斜同步接收器,再经放大器放大后控制伺电机,由减速器带动俯仰刻度盘和小飞机,指示出飞机的俯仰角和亲和倾斜角。与此同时,BDP-4修正系统工作,保证陀螺自转轴始终跟踪当地垂线,提议仪表的测量精度;托架伺服系统工作保证陀螺三轴垂直,提高陀螺稳定性。主要技术数据:①仪表的电源为27V直流电和36V400赫兹三相交流电,消耗直流电不大于0.75安,消耗交流电流不大于1.6安。②水平飞行时,仪表指示俯仰角、倾斜角的误差不大于正负5°。有加速度或盘旋360°以后的误差不大于正负3°,飞机做特技飞行后的误差不大于正负5°。③地平仪进入正常工作所需世间:+50℃…-30℃-30℃…-60℃。④陀螺自转轴的修正速度:前后1°—3°/分左右2°—8°/分⑤陀螺上锁到开锁的时间不超过15秒。

安装:垂直陀螺固定时,罩上箭头应对着飞机头部,底座上标记应与固定处的飞机纵轴坐标记重合。安装时应格保持水平,当飞机纵轴与横轴处于水平时,水准仪气泡应处于中央位置。指示器安装在飞机仪表板的中央位置,正面与飞机横轴平行,当飞机在水平状态时,侧滑仪小球位于两标线之间。第九章综合罗盘.

LZ-2综合罗盘……组成:①GHC-5A感应式磁航向传感器(用来感应磁场水平分量H,输送磁航向信号,修正陀螺航向)、②TH-10(A)航向陀螺(在磁校正状态时,它用来稳定来自感应的磁传感器的磁航向信号;在半罗盘状态时,本身就是一个独立的陀螺半罗盘,输出陀螺向信号)、③ZHZ-4A综合航向指示器(用来指示磁航向、转弯角度及盲目着陆时所需电台相对应位角与电磁位角。并用来消除罗盘的系统误差和工具误差)、④FZ-3C综合放大器(按用途不同完成罗盘伺服系统误差信号的放大、变换和校正作用)、⑤EJ-8C继电器盒(用于完成罗盘各部件的接线和工作状态的转换,并提供罗盘系统所用的非标准电源)和⑥EK-4控制盒(向航向陀螺输出位修正信号,以消除地球自转误差和机械误差;改变飞机在N\S半球飞行时修正信号的极性,以改变修正向)等组成。LZ-2两种工作状态……一是长时间的陀螺半罗盘工会工作状态,在飞机上,松开协调按钮时综合罗盘就处于陀螺半罗盘工作状态。二是短时间的磁校正工作状态。

LZ-2壳体装有甲基氯苯硅油,液体对装有三相地磁感应原件及万向掉挂机构的震荡起阻尼作用,还可以减轻万相吊挂支撑的负荷和减小摩擦力矩。

ZHZ-4A综合航向指示器组成:输入同步器、指示同步器、带测速反馈的伺服电机、波面带修正结构、刻度盘和航向给定指针等部件。

EJ-8C继电器盒正常-应急转换:当地平仪正常工作时,航向陀螺两伺服托架由TC-4垂直陀螺中俯仰、倾斜同步发送器输出信号稳定。当地平仪有故障时,两托架伺服系统不能正常工作,这时接通应急开关,+27V电压加到J1继电器上,J1工作,J1-3和J1-6接触;J1-5和J1-2接触;J1-11和J1-9接触;J1-10和J1-11接触;J1-16和J1-19接触;J1-18和J1-15接触断开地平仪和航向陀螺的联系。

第十章航行姿态系统.

HZX-2航向姿态系统……功用:测量并指示飞机磁航向、陀螺航向及转弯角度;测量并指示飞机俯仰角、倾斜角、转弯角速度和转弯向、飞机的侧滑和侧滑向;与无线电罗盘配套指示飞机的无线电台相对位角;向机上设备输出俯仰、倾斜及航向信息。

组成……①GHC-5感应式磁传感器——用来对全姿态组合陀螺中的航向陀螺进行磁航向校正。

②TQZ-1全姿态组合陀螺——用来测量飞机的俯仰角、倾斜角及航向角、并向各指示器及各种机载设备提供俯仰角、倾斜角和航向角信号。它是航向姿态系统的基础部分。

③ZQZ-1全姿态指示器——把全姿态组合陀螺测出的飞机全部姿态组合显示成目视信号,供飞行员判读,它是航向姿态系统的主要部件之一。

④ZHZ-4A综合航向指示器——用来组合显示各种航向角,

供飞行员判读。

⑤ZZD-4地平转弯指示器——根据不同机种对仪表配套的不同要求,有的飞机还装有地平转弯指示器,用来指示飞机的俯仰角和倾斜角。

⑥EK-4控制盒——用来转换航向姿态系统中的工作状态,并给航向陀螺输送给位修正信号以及控制协调速度。

⑦FZ-3(3A)综合放大器——用来放大航向姿态系统中各伺服系统控制信号。

⑧EJ-8继电盒——用于航向姿态系统全套部件的接线和工作状态的转换。并提供系统所用非标准电源。

武汉大学版仪器分析知识点总结(适用考中科院的同学)

第一部分:AES,AAS,AFS AES原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。 特点: 1.灵敏度和准确度较高 2.选择性好,分析速度快 3.试样用量少,测定元素范围广 4.局限性 (1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提高。 (2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分析。 (3)仪器设备比较复杂、昂贵。 术语: 自吸 自蚀 ?击穿电压:使电极间击穿而发生自持放电的最小电压。 ?自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。 ?燃烧电压:自持放电发生后,为了维持放电所必需的电压。 由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。 仪器: 光源的作用: 蒸发、解离、原子化、激发、跃迁。 光源的影响:检出限、精密度和准确度。 光源的类型: 直流电弧 交流电弧 电火花 电感耦合等离子体(ICP)

ICP 原理 当高频发生器接通电源后,高频电流I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES 法特点 1.具有好的检出限。溶液光谱分析一般列素检出限都有很低。 2.ICP 稳定性好,精密度高,相对标准偏差约1%。 3.基体效应小。 4.光谱背景小。 5.准确度高,相对误差为1%,干扰少。 6.自吸效应小 进样: 溶液试样 气动雾化器 超声雾化器 超声雾化器:不连续的信号 气体试样可直接引入激发源进行分析。有些元素可以转变成其相应的挥发性化合物而采用气体发生进样(如氢化物发生法)。 例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样 (1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰: 光源 蒸发温度 激发温度/K 放电稳定性 应用范围 直流电弧 高 4000~7000 较差 定性分析,矿物、纯物质、 难挥发元素的定量分析 交流电弧 中 4000~7000 较好 试样中低含量组分的定量分析 火花 低 瞬间10000 好 金属与合金、难激发元素的定量分析 ICP 很高 6000~8000 最好 溶液的定量分析

自动化仪表基础知识

第十二章自动化仪表基础知识 第一节测量误差知识 一、测量误差的基本概念 冶金生产过程大多具有规模大、流程长、连续化、自动化的特点,为了有效地进行工艺操作和生产控制,需要用各种类型的仪表去测量生产过程中各种变量的具体量值。虽然进行测量时所用的仪表和测量方法不同,但测量过程的机理是相同的,即都是将被测变量与其同种类单位的量值进行比较的过程。各种测量仪表就是实现这种比较的技术工具。对于在生产装置上使用的各种测量仪表,总是希望它们测量的结果准确无误。但是在实际测量过程中,往往由于测量仪表本身性能、安装使用环境、测量方法及操作人员疏忽等主客观因素的影响,使得测量结果与被测量的真实值之间存在一些偏差,这个偏差就称为测量误差。 二、测量仪表的误差。 误差的分类方法多种多样,如按误差出现的规律来分,可分为系统误差、偶然误差和疏失误差;按仪表使用的条件来分,有基本误差、辅加误差;按被测变量随时间变化的关系来分,有静态误差、动态误差;按与被测变量的关系来分,有定值误差、累计误差。测量仪表常凋的绝对误差、相对误差和引用误差是按照误差的数值表示来分类的。 1、绝对误差 绝对误差是指仪表的测量值与被测变量真实值之差。用公式表示为: △C=Cm-Cr 式(1-1) 试中Cm代表测量值,Cr代表真实值(简称真值),△C代表绝对误差。事实上,被测变量的真实值并不能确切知道,往往用精确度比较高的标准仪器来测量同一被测变量,其测量结果当作被测变量的真实值。 绝对误差有单位和符号,但不能完整地反映仪表的准确度,只能反应某点的准确程度。我们将各点绝对误差中最大的称为仪表的绝对误差。绝对误差符号相反的值称为修正值。 2、相对误差 相对误差是指测量的绝对误差与被测变量之比。用公式表示为 式(1-2) 式中AC为测量的绝对误差,Cr为被测变量的真实值。 由上式可见,相对误差C0是一个比值,它能够客观地反映测量结果的准确度,通常以百分数表示。 如某化学反应釜中物料实际温度为300℃,仪表的示值为298.5℃。 求得测量的绝对误差 测量的相对误差 3、引用误差(相对折合误差或相对百分误差) 测量仪表的准确性不仅与绝对误差和相对误差有关,而且还与仪表的测量范围有关。工业仪表通常用引用误差来表示仪表的准确程度,即绝对值与测量范围上限或测量表量程的比值,以非分比表示:

测控仪器设计复习要点

一、知识点 1.按照系统工程的技术观点,可以将产品生产的技术结构分为能量流,材料流 和信息流。 2.计算机辅助设计系统从功能角度它可以分为数据库、程序库和输入输出人机 通信系统。 3.所谓可靠性,是指产品在规定条件下和规定时间内,完成规定功能的能力。 按产品可靠性的形成,可靠性可分为固有可靠性、使用可靠性和环境适应性4.分辨力是显示装置能有效辨别的最小示值;鉴别力是使测量仪器产 生未察觉的响应变化的最大激励变化。 5.稳定性是指测量仪器保持其计量特性随时间恒定的能力;漂移 是指仪器计量特性的慢变化。 6.示值范围又称为量程,测量范围是测量仪器允许范围内的被测量值。 7.标尺间隔示值对应标尺两相邻标记的两个值之差,分度值示值一个标尺间隔 所代表的被测量值。 8.仪器误差产生的原因是多方面的,从数学特性上看原理误差多为系统误差, 制造误差和运行误差多为随机误差。 9.传递位移的方式有推力传动和摩擦力传动。 10.对于推力传动其作用线是两构件接触区的公法线,对于摩擦力传动则是 公切线。 11.若略去某项误差对总误差的影响小于不略去结果的1/10,则可视为微小误差。 根据微小误差定义,测量仪器和测量标准的误差只需小于测量总误差的1/3,则对测量结果的影响是微不足道的。 12.检测与测量就是把被测量与标准量进行比较的过程。测量的精度首先取决于 标准量的精度。 13.标准量根据标准量体现的标准值的个数可以分为单值和多值两种。根据计量 值方法可分为绝对码和增量码。 14.标准量可分为实物标准量与自然标准量。自然标准量是以光波波长为标准的。 15.在几何量中按被测参数,可分为长度标准量、角度标准量和复合参数标准量。 16.对仪器的支承件设计要求,具有足够刚度,力变形要小;稳定性好,内应力 变形小;热变形要小;有良好抗振性。 17.按导轨面间摩擦性质,导轨可分为滑动摩擦导轨、滚动导轨、静压导轨和弹 性摩擦导轨。 18.导轨的基本功能是传递精密直线运动,导向精度是其最重要的精度要求。 19.凡作回转运动的仪器中都必须有主轴系统,其由主轴、轴承及安装在主轴上 的传动件或分度元件组成。 20.轴系的误差运动是指在规定的轴向和径向位置上,以及规定的方向上,指定 的旋转物体相对轴线平均线的位置变化。 21.主轴回转精度是主轴系统设计的关键。轴系误差运动可分为径向误差运动、 轴向误差运动、倾角误差运动以及端面误差运动。 22.动压轴承获得动压的条件是:结构上必须有斜楔,轴系之间必须有一定粘度 的润滑油。 23.按控制技术分,控制系统可分为闭环控制系统,开环控制系统和半闭环控制 系统。

仪器仪表课程标准

仪器仪表课程标准

仪器仪表课程标准

《常用电工仪器仪表》课程标准 一、课程性质和内容:本课程是应用电子技术专业的一门实用技能型专业考试课,其主要内容有:模拟式万用表的功能、特点、结构、使用方法和应用实例;数字式万用表的功能、特点、结构和使用方法;示波器的种类、功能、特点、结构和使用方法;信号发生器、频率计数器的结构和应用;以及绝缘电阻测量仪、接地电阻测量仪、功率表、电能表的原理和使用方法。 二、课程的任务:通过本课程的学习,熟悉万用表的功能、特点、结构和工作原理,掌握万用表的使用方法和应用技巧;掌握示波器、信号发生器、频率计数器的结构和使用方法;熟悉绝缘电阻测量仪、接地电阻测量仪、功率表、电能表的原理和使用方法。

三、课程目标:会使用模拟式万用表和数字式万用表进行电信号的测量、元器件的检测、电子线路的检测;会使用示波器完成信号波形的观察、调整和有关参数的测量;会使用信号发生器、频率计数器;会用绝缘电阻测量仪、接地电阻测量仪测量一些常用电器设备的绝缘电阻和接地电阻;能够完成单相电能表和三相电能表的接线和安装工作。 四、学时、学分: 本课程总学时为64学时,讲授和技能训练共安排58学时,机动课6学时;学分为4。 五、授课思路:重点介绍万用表、示波器、信号发生器、频率计数器、绝缘电阻测量仪、接地电阻测量仪在各种电子产品的生产、调试及维修中使用方法和技巧;并结合各种生产岗位常用

仪表的功能、应用领域、键钮使用方法、信号参数的含义及检测的方法技巧进行详细讲解;教学内容应充分体现职业性,以满足本职业生产一线的需求;同时,应突出本专业领域的新知识、新技术、新方法,符合职业能力的发展规律,培养学生的学习能力、工作能力、创新思维能力,从而有利于技能型人才的培养,更好地提高学生的就业能力、职业转换能力和创业能力。 六、内容纲要: 模块一电气测量的基本知识(1)参考学时:8 (2)学习任务: 了解电气测量仪器仪表的发展过程及发展方向

仪器分析复习资料整理

第二章气相色谱分析 1、气相色谱仪的基本设备包括哪几部分?各有什么作用? 载气系统(气路系统) 进样系统: 色谱柱和柱箱(分离系统)包括温度控制系统(温控系统): 检测系统: 记录及数据处理系统(检测和记录系统): 2、当下列参数改变时,是否会引起分配系数的改变?为什么? (1)柱长缩短, 不会(分配比,分配系数都不变) (2)固定相改变, 会 (3)流动相流速增加, 不会 (4)相比减少, 不会 当下列参数改变时:,是否会引起分配比的变化?为什么? (1)柱长增加, 不会 (2)固定相量增加, 变大 (3)流动相流速减小, 不会 (4)相比增大, 变小 答: k=K/b(b记为相比),而b=VM/VS ,分配比除了与组分,两相的性质,柱温,柱压有关外,还与相比有关,而与流动相流速,柱长无关. 3、试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些 因素的影响? A、涡流扩散项:气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成 类似“涡流”的流动,因而引起色谱的扩张。由于A=2λdp ,表明 A 与填充物的平均颗粒直径 dp 的大小和填充的不均匀性λ 有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均匀的担体,并尽量填充均匀,是减少涡流扩散,提高柱效的有效途径。 B、分子扩散项:由于试样组分被载气带入色谱柱后,是以“塞子”的形式存在于柱的很 小一段空间中,在“塞子”的前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着的分子产生纵向扩散。而 B=2rDg r 是因载体填充在柱内而引起气体扩散路径弯曲的因数 ( 弯曲因子 ) , D g 为组分在气相中的扩散系数。分子扩散项与 D g 的大小成正比,而 D g 与组分及载气的性质有关:相对分子质量大的组分,其 D g 小 , 反比于载气密度的平方根或载气相对分子质量的平方根,所以采用相对分子质量较大的载气( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。弯曲因子 r 为与填充物有关的因素。 C、传质阻力项:传质项系数 Cu C 包括气相传质阻力系数 C g 和液相传质阻力系数 C 1 两 项。所谓气相传质过程是指试样组分从移动到相表面的过程,在这一过程中试样组分将在两相间进行质量交换,即进行浓度分配。这种过程若进行缓慢,表示气相传质阻力大,就引起色谱峰扩张。对于填充柱: 液相传质过程是指试样组分从固定相的气液界面移动到液相内部,并发生质量交换,达到分配平衡,然后以返回气液界面的传质过程。这个过程也需要一定时间,在此时间,组分的其它分子仍随载气不断地向柱口运动,这也造成峰形的扩张。液相传质阻力系数 C 1 为: 对于填充柱,气相传质项数值小,可以忽略。 在色谱分析中,理论塔板数与有效理论塔板数的区别就在于前者___没有考虑死时间(死

虚拟仪器考试知识点 3

虚拟仪器考试知识点 162902 王建余 第一章: 1,虚拟仪器是一种以计算机和测试模块的硬件为基础、以计算机软件为核心所构成的,并且在计算机显示屏幕上虚拟的仪器面板,以及由计算机所完成的仪器功能,都可由用户软件来定义的计算机仪器。 2.虚拟仪器定义的阐述:(1)虚拟仪器的硬件是通用的。虚拟仪器硬件是由计算机和测试模块构的。(2)虚拟仪器的面板是虚拟的。虚拟仪器的面板是计算机屏幕上虚拟出来的。(3)虚拟仪器的功能是由用户软件定义的。 3.虚拟仪器的三个基本功能:(1)完成信号的采集与产生(2)数据分析与处理(3)结果表达与输出 4.传统仪器的特点:(1)从外观看,传统仪器一般是一台独立的装置(2)从功能看,三个基本功能都是通过硬件电路或固化软件实现的,其功能和规模一般都是固定的。 5.与虚拟仪器相比,虚拟仪器的特点:(1)仪器功能方面,其功能可由用户软件定义,柔性结构,灵活组态;多功能于一体;数据处理实时快捷;(2)用户界面方面,友好的人机交互界面,功能复杂的仪器面板可划分为分面板,使布置简洁;软面板上的器件操作具有极大的灵活性和创新性。(3)系统集成方面,系统开放灵活,开发周期短效率高;硬件实现了模块化、系列化;虚拟仪器网络化。 6.虚拟仪器由硬件和软件两部分构成,硬件是虚拟仪器的基础,软件是虚拟仪器的核心。虚拟仪器的硬件通常包括基础硬件平台和外围测试硬件设备,它们共同组成了通用仪器硬件平台。虚拟仪器的软件包括操作系统,仪器驱动器和应用软件三个层次。 7.通用仪器硬件平台是以计算机为基础,以各种测量设备或仪器模块作为外围I/O接口硬件设备组成的,它主要完成被测信号的采集和测试信号的产生,基本的I/O功能是模数转换和数模转换。其基本模块包括高速数据采集模块、信号前端调理模块、模拟信号产生模块、大容量存储器阵列模块和数字信号输入输出模块。 8.虚拟仪器的总线有:PCI总线、GPIB总线、VXI总线、PXI总线、LXI总线 9.虚拟仪器的软件层次结构由I/O接口层、仪器驱动层和应用软件层构成。 10.虚拟仪器软件系统标准化规范:VPP规范、IVI规范。硬件总线标准化包括PC标准、GPIB 标准、VXI标准、PXI标准。

常用电工仪器仪表实用标准

《常用电工仪器仪表》课程标准 一、课程性质和内容:本课程是应用电子技术专业的一门有用 技能型专业考试课,其要紧内容有:模拟式万用表的功能、特点、结构、使用方法和应用实例;数字式万用表的功能、特点、结构和使用方法;示波器的种类、功能、特点、结构和使用方法;信号发生器、频率计数器的结构和应用;以及绝缘电阻测量仪、接地电阻测量仪、功率表、电能表的原理和使用方法。 二、课程的任务:通过本课程的学习,熟悉万用表的功能、特 点、结构和工作原理,掌握万用表的使用方法和应用技巧; 掌握示波器、信号发生器、频率计数器的结构和使用方法;

熟悉绝缘电阻测量仪、接地电阻测量仪、功率表、电能表的原理和使用方法。 三、课程目标:会使用模拟式万用表和数字式万用表进行电信 号的测量、元器件的检测、电子线路的检测;会使用示波器完成信号波形的观看、调整和有关参数的测量;会使用信号发生器、频率计数器;会用绝缘电阻测量仪、接地电阻测量仪测量一些常用电器设备的绝缘电阻和接地电阻;能够完成单相电能表和三相电能表的接线和安装工作。 四、学时、学分: 本课程总学时为64学时,讲授和技能训 练共安排58学时,机动课6学时;学分为4。 五、授课思路:重点介绍万用表、示波器、信号发生器、频率 计数器、绝缘电阻测量仪、接地电阻测量仪在各种电子产品的生产、调试及维修中使用方法和技巧;并结合各种生产岗位常用仪表的功能、应用领域、键钮使用方法、信号参数的含义及检测的方法技巧进行详细讲解;教学内容应充分体现职业性,以满足本职业生产一线的需求;同时,应突出本专业领域的新知识、新技术、新方法,符合职业能力的进展规律,培养学生的学习能力、工作能力、创新思维能力,从而有利于技能型人才的培养,更好地提高学生的就业能力、职

航空仪表基本知识汇总

概述——航空仪表的分类:发动机仪表、大气数据仪表、陀螺仪表。 第一章压力测量仪表. 压力表……测量飞机上气体或液体压力的仪表,叫做压力表。按动作原理分:机械式、电动机械式和电动式;按仪表供电的电源形式分为直流压力表和交流压力表。 2BYY-1A 功能:用来测量歼八飞机助力液压系统和收放液压(又叫主液压)系统的液压油压力。组成:两个GYY-1传感器、两个完全相同装在一个表壳的2ZYY-1A指示器,测量范围0-250公斤/厘米2。原理:测量压力时,弹簧管在压力作用下自由端产生位移、压力越大、位移量越大、当自由端向外移动时,经过曲臂连杆和活动摇臂改变电位器电刷在电阻上的位置从而改变指示器中两线框的电流比值,使指针在刻度盘上指出相应的压力数值。当仪表不通电时,指针轴上的小磁铁受拉回磁铁的作用,使指针停在刻度以下的限制柱处。 弹簧管……由于弹簧管的横截面为椭圆形,所以弹簧管受流体压力作用后,压力沿短轴b方向的作用面积大于沿a方向作用的总面积,因而沿短轴方向的作用力也就大于沿长轴方向的作用力。流体压力对弹簧管横截面积作用的结果,使长轴变短,短轴变短,即横截面由椭圆形向圆形转化。在弹簧管的横截面由椭圆向圆形转化的过程中,弹簧管外管壁受到

拉伸,内管壁受到压缩,因而外管壁产生反抗拉伸的拉应力,内管壁产生反抗压缩的压应力,这两个应力在自由端形成一对力偶,使弹簧管伸直变形,在自由端产生位移。 第二章温度测量仪表. 热电极:一般把组成热电偶的两种金属导体又叫做热电极,所产生的电势叫热电势。热端:热电偶温度高的一端叫热端或测量端。冷端:温度低的一端叫冷端或参考端。 几种常用的热电偶①铂铑-铂热电偶……属于贵重金属热电偶,分度号为LB-3热电性能稳定,测量温度范围大,精度高,可以在氧化性或中性介质中长期使用。由于这种热电偶电势率较低,金属材料价格昂贵,故一般只用这种热电偶作为标准热电偶使用。②镍镉-镍铜热电偶……这种热电偶属于廉价金属热电偶,其分度号为EA。这种热电偶的热电特性近似线性,热点率较高,价格便宜。缺点:有寄生热电势和冷端温度误差。③镍钴-镍铝锰热点偶——属于高温廉价金属热电偶,其分度号为GL。这种热电偶在300℃以下,其热电势很小,可以不进行冷端温度误差补偿,在300℃以上,其热电特性近似线性。缺点:热电特性不稳定重复性较差,故在实际应用中,应根据成型热电偶电势大小对热电偶进行分组,并与显示仪表配套使用。 2BWP-2喷气温度表……功用:测量歼八飞机、左右机涡轮后燃气均温度。组成:2ZWP-2指示器,八个GR-10热电偶和两

现代仪器分析重点总结(期末考试版)

现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。灵敏度也就是标准曲线的斜率。斜率越大,灵敏度就越高 光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。 光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。 原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。 主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。 分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。 多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。 洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。 助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。 分析仪器的主要性能指标是准确度、检出限、精密度。 根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。 原子发射光谱仪由激发源、分光系统、检测系统三部分组成。 使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。 光谱及光谱法是如何分类的? ⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。 原子光谱与发射光谱,吸收光谱与发射光谱有什么不同 原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。 分子光谱:处于气态或溶液中的分子,当发生能级跃迁时,所发射或吸收的是一定频率范围的电磁辐射组成的带状光谱。 吸收光谱:当物质受到光辐射作用时,物质中的分子或原子以及强磁场中的自选原子核吸收了特定的光子之后,由低能态被激发跃迁到高能态,此时如将吸收的光辐射记录下来,得到的就是吸收光谱。发射光谱:吸收了光能处于高能态的分子或原子,回到基态或较低能态时,有时以热的形式释放出所吸收的能量,有时重新以光辐射形式释放出来,由此获得的光谱就是发射光谱。 选择内标元素和分析线对有什么要求? a. 若内标元素是外加的,则该元素在分析试样中应该不存在,或含量极微可忽略不计,以免破坏内标元素量的一致性。 b. 被测元素和内标元素及它们所处的化合物必须有相近的蒸发性能,以避免“分馏”现象发生。 c. 分析线和内标线的激发电位和电离电位应尽量接近(激发电位和电离电位相等或很接近的谱线称为“均称线对”);分析线对应该都是原子线或都是离子线,一条原子线而另一条为离子线是不合适的。 d. 分析线和内标线的波长要靠近,以防止感光板反衬度的变化和背景不同引起的分析误差。分析线对的强度要合适。 e. 内标线和分析线应是无自吸或自吸很小的谱线,并且不受其他元素的谱线干扰。 原子荧光光谱是怎么产生的?有几种类型? 过程:当气态原子受到强特征辐射时,由基态跃迁到激发态,约在10-8s后,再由激发态跃迁回到基态,辐射出与吸收光波长相同或不同的辐射即为原子荧光。 三种类型:共振荧光、非共振荧光与敏化荧光。 为什么原子发射光谱法可采用内标法来消除实验条件的影响? 影响谱线强度因素较多,直接测定谱线绝对强度计算难以获得准确结果,实际工作多采用内标法。内标法属相对强度法,是在待测元素的谱线中选一条谱线作为分析线,然后在基体元素或在加入固定量的其他元素的谱线中选一条非自吸谱线作为内标线,两条谱线构成定量分析线对。 通常为什么不用原子吸收光谱法进行物质的定性分析? 答:原子吸收光谱法是定量测量某一物质含量的仪器,是定量分析用的,不能将物质分离,因此不能鉴定物质的性质,因此不能。。。。 原子吸收光谱法,采用峰值吸收进行定量分析的条件和依据是什么? 为了使通过原子蒸气的发射线特征(极大)频率恰好能与吸收线的特征(极大)频率相一致,通常用待测元素的纯物质作为锐线光源的阴极,使其产生发射,这样发射物质与吸收物质为同一物质,产生的发射线与吸收线特征频率完全相同,可以实现峰值吸收。 朗伯比尔定律的物理意义是什么?偏离朗伯比尔定律的原因主要有哪些? 物理意义是:当一束平行单色光通过均匀的溶液时,溶液的吸光度A与溶液中的吸光物质的浓度C及液层厚度L的乘积成正比。A=kcL 偏离的原因是:1入射光并非完全意义上的单色光而是复合光。2溶液的不均匀性,如部分入射光因为散射而损失。3溶液中发生了如解离、缔合、配位等化学变化。 影响原子吸收谱线宽度的因素有哪些?其中最主要的因素是什么? 答:影响原子吸收谱线宽度的因素有自然宽度Δf N、多普勒变宽和压力变宽。其中最主要的是多普勒变宽和洛伦兹变宽。 原子吸收光谱法,采用极大吸收进行定量的条件和依据是什么? 答:原子吸收光谱法,采用极大吸收进行定量的条件:①光源发射线的半宽度应小于吸收线半宽度;②通过原子蒸气的发射线中心频率恰好与吸收线的中心频率ν0相重合。定量的依据:A=Kc 原子吸收光谱仪主要由哪几部分组成?各有何作用? 答:原子吸收光谱仪主要由光源、原子化器、分光系统、检测系统四大部分组成。

测控技术与仪器专业导论大作业

重庆科技学院电气与信息工程学院《测控专业概论》大作业 专业班级:测控 学生姓名: 学生学号: 授课老师: 教师评语: 成绩:评阅教师:

目录 光纤传感技术及其应用 ....................................................................................................................... I 摘要............................................................................................................................................... I 1.引言 . (2) 2. 光纤传感主要分类及其特点 (2) 3 光纤传感器目前在各领域的主要应用 (2) 4 光纤传感技术在国内的发展情况 (3) 5.光纤传感器的发展前景 (3) 参考文献 (4) 课后体会 (5) 奇思妙想 (6) 换位思考 (7)

光纤传感技术及其应用 学生姓名:刘后勇 摘要 随着现代测量技术的发展,近二十年来光纤传感器越来越受到人们的重视。与传统的电类传感器相比,光纤传感器具有不受电磁干扰、适用范围广、分辨率高、易复用、体积小、重量轻等显著优点。所以光纤传感器技术及其发展受到了人们的广泛关注。本文主要从以下几个方面入手简略的介绍光纤传感器技术及其应用。首先介绍了光纤传感技术在国内外的发展情况;然后介绍了光纤传感技术,包括分类和特点;介绍了光纤传感器目前在各领域的主要应用;最后介绍光纤传感器的发展前景。 关键词:光纤传感器,光纤传感器技术,光纤传感器的应用

航空仪表简答题

一、航空仪表简答题 1,油量表的三种结构形式是什么?P45 答:一种是利用浮子将油面高度转换成浮子位移的浮子式油量表;一种是将油面高度转换成电容量的电容式油量表;一种是用测量管道中的叶轮转速来测量燃料流量,从而指示剩余油量的叶轮式油量表。 2、简述座舱压力与高度的关系?P137 答:飞行高度在2000米以下,座舱压力调节器不起作用,内、外气压一样;达到2000米后,座舱压力调节器开始工作,内、外气压差增大;飞行高度继续升高,座舱内气压变化率与大气压的变化率相等。 3、简述综合罗盘的两种工作状态?P302 答;一种是当飞机加速、转弯、盘旋飞行时,磁罗盘不能正常工作,必须断开磁罗盘对航向陀螺的校正,利用航向陀螺对所给定空间方位保持稳定特性来测量飞机航向的陀螺半罗盘工作状态;另一种是当飞机处在静基座状态,且不在强磁区,利用磁罗盘精确测量飞机磁航向的特点,进行磁校正后由磁罗盘测出的磁航向稳定,使综合航向指示器指示磁航向的磁校正工作状态。 4、简述远读地平仪在做斤斗动作时的指示情况?P283 答:平飞时,小飞机与俯仰刻度盘的地面一致,机轮朝下,表示平飞;上仰角小于90°+—5°时,俯仰刻度盘向下转动,表示飞机的仰角;上仰角超过90°+—5°时,飞机迅速转动180°,机轮朝上,表示倒飞;飞机到达斤斗轨迹的顶点时,飞机与俯仰刻度盘的地面一致,机轮朝上,表示倒飞。 5、简述气压式高度表的真空膜盒中的第一温度补偿片的补偿原理?P119 答:当气压一定,温度大于+15℃时,由于真空膜盒的弹性系数变小,在气压作用下产生一向下位移量,此时第一温度补偿片向上弯曲,正好双金属片位移量补偿膜盒向下的附加位移量;当温度低于+15℃时,真空膜盒弹性系数变大,产生向上的位移量,双金属片向下弯曲,补偿膜盒硬中心向上的位移量。 6、简述目前常用的三种加压供氧制度?P375 答:1、面罩内保持总压力为115mmHg,最大余压为25~30mmHg,此供氧仍有中等缺氧现象,但装备轻巧、简便,最大使用高度为15km.2、面罩内保持总压力为130mmHg,最大余压为75mmHg,此供氧缺氧有所减轻,但装置复杂,最大使用高度为18km.3、面罩内保持总压力为1445mmHg,可以在高空飞行时长时间工作,最大余量为145mmHg,最大高度为38km。 7、简述垂直陀螺减小盘旋误差和纵向加速度误差原理?P273 答;当飞机倾斜角大于10°+—2°时,切断修正电路;当飞机转弯或盘旋角速度为0.1°~0.3°/s时,经延时5~15秒角速度信号器触电断开,横向修正电路断开,在纵向修正电路中串联1纵向断修电门,与修正电机相连;当飞机纵向加速度水平分量大于1.14~1.67m/s2时,两触点自动断开,切断纵向修正电路,减小了地平仪的正向加速度误差。 8、简述铂铑—铂热电偶、镍络—镍铜热电偶和镍钴—镍铝锰热电偶分别属于那种热电偶,测量温度范围和优缺点?P23 答:铂铑—铂热电偶,属于贵金属热电偶。测量温度范围大,精度高,可以再氧化性或中性介质中长期使用,但价格昂贵;镍络—镍铜热电偶,属于廉价金属热电偶,测量温度范围较低,有寄生热电势和冷端温度误差;镍钴—镍铝锰热电偶,属于高温廉价金属热电偶,但热电特性不稳定,重复性较差。

仪器分析知识总结(改进版)

仪器分析复习资料(改进版) 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 校准曲线包括工作曲线和标准曲线: 工作曲线:配置4到6个不同浓度的标准溶液,加入与实际样品类似的基体中制成加标模拟样品采用和实际样品相同的分析方法测定(经过预处理的),以加标模拟样品的浓度为横坐标,响应信号为纵坐标绘制的标准曲线。 没有经过预处理的为标准曲线 标准参考物质法:取与待测试样相似的一定量标准参考物质,在规定的实验条件下进行检测根据测量值与给定的标准参考量值计算相对误差,越小越准确。 加标回收法:没有标准参考物质的条件下,向样品中加入一定量的被测成分的纯物质或者已知量的标准物质,两份试样同时按照相同的分析步骤加标的一份所得结果减去未加标的一份,差值同标准物质的理论值只比即加标回收率。(越接近100%越好) 注意事项:加标物质不能过多,一般为测量物含量的0.5-2.0倍,加标后的总含量不应超过方法测定的总含量。加标物质的浓度应该高,体积小,不超过原始试样体积的1% 标准方法比较法:和国标(已知方法)得到的结果比较。至少设计9组,分浓度的高,中,低三个浓度。 线性:被测物信号值与试样中被测物浓度直接呈正比关系的程度 线性范围:待测物质的浓度或量和测量信号值呈线性关系的浓度或者量的范围。(从测定的最低浓度扩展到校正曲线偏离线性浓度的范围。) ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题 1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv 的关系时,将产生吸收光谱。M+hv→M* 发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。M*→M+hv 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 第6章原子吸收光谱法(P130) 1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。 原子吸收光谱位于光谱的紫外区和可见区。 优点:灵敏度高,准确度高,选择性好,分析速度块,试样用量少,应用范围光 缺点:换等频率频繁,不可同时测定多个元素,对于难溶解元素有困难。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): 自然宽度:由原子本身性质引起,在无外界因素影响情况下谱线仍有一定宽度,这种宽度为自然宽度△VN ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收; ③具有良好的稳定性和重现形;④操作简单及低的干扰水平等。 锐线光源:指发射线的半宽度比吸收线半宽度窄得多,且发射中心频率与吸收线中心频率相一致的光源。 石墨炉原子化法的过程:干燥,灰化,原子化,净化 1.测量条件选择 ⑴分析线:一般用共振吸收线。 ⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。 ⑶灯电流:按灯制造说明书要求使用 ⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值 ⑸进样量:(主要指非火焰方法) 2.分析方法 (1).工作曲线法 最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。 ⑵. 标准加入法 标准加入法能消除基体干扰,不能消背景干扰。使用时,注意要扣除背景干扰。 Boltman分布定律:(Nj,N0分别代表单位体积内激发态原子数和基态原子数)1,Nj/N0值温度越高,比值越大2,在同一温度下,不同元素电子跃迁的能级Ej值越小,共振波长越长,比值越大。 习题 ⒈引起谱线变宽的主要因素有哪些? ⑴自然变宽:无外界因素影响时谱线具有的宽度 ⑵多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 ⑶.压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起

飞机维护基本知识总结

第一章 第一节 基本技能:是指机务人员对飞机进行维护的基本技术能力。包括:擦洗涂油、充添加挂、拆装分解、焊接测量、加固保险和校验调整等,通常被称为机务人员的“六项技能”。 一、常工量具: 1、解刀:主要用来紧固或拆卸螺钉。按刀口形状分为一字解刀和十字解刀;按外形分为直解刀、弯解刀、丁字解刀;按构造分为木柄解刀、夹柄解刀、串心解刀和塑柄解刀。 2、钳子:是用来夹持或切断金属丝的工具。飞机上使用的有:尖嘴钳、克丝钳、平口钳、鱼嘴钳、铅钳和剥线钳。 3、扳手:是用来紧固或拆卸螺栓、螺帽的工具。常用的有:开口扳手、梅花扳手、套筒扳手、内六角扳手、钩形扳手、测力矩扳手、活动扳手和棘轮扳手。 三、工具的保管和使用要求: 1、立清单、做标记、专人保管; 2、勤清点、不乱放、防止丢失; 3、不乱用、不抛掷、以防损坏; 4常擦洗、防锈蚀、保证良好。 四、常用量具: 1、塞尺:又称千分垫,由薄厚不同、数量不等的港片组成。主要用来测量机件平面之间的间隙。 2、游标卡尺:又称钢卡尺。可用来测量零件的长度、内径和外径,带深度尺的还能测量零件的深度,待划线脚的还可以用来划线。(0.1;0.05;0.02) 3、钢索张力计:又称钢索张力表,是用来测量钢索张力的专用工具。 4、气压表:又称压力表,是用来测量某些机件内部空气压力的专用量具。 五、量具的保管及使用要求: 1、各种量具应立清单,做标记,妥善保管。 2、在使用前应查明量具是否准确,并明确其用途及使用方法,按照不同的用途及使用要求雅格执行规定。使用中轻拿轻放,严禁抛掷。 3、使用后应擦洗干净,及时存放,不随意放置。 4、对压力表与飞机上各种仪表一样,要定期检验,保证指示的准确性。 六、地面设备:是飞机进行维护工作的重要保障。 1、工作梯:是专供机务人员进行飞机检修和飞行准备时使用的攀登设备。 2、千斤顶:是飞机的起重设备,有机械式和液压式两种。 3、轮挡:飞机停放时挡住机轮,以防飞机滑动。 第二节 一、机件的连接:(不可拆卸连接和可拆卸连接) 1、不可拆卸的连接:焊接、铆接、胶接。 2、可拆卸的连接:螺钉连接、螺栓连接、罗桩连接、销子连接、卡箍连接、螺纹接头连接、铰链连接、夹布胶管连接、锁扣连接、插销接头连接、导线连接。 3、螺钉连接:主要用来连接和固定蒙皮、盖板等较薄的机件。连接方法:将螺钉穿过机件的安装孔,然后噢再拧入另一机件的螺纹孔内,这样机件就被连接起来。 4、螺栓连接:飞机上采用较多的一种受力较大的连接方法。通常与垫片、螺帽、开口销配合使用。

传感器概念总结

概念总结 1.2.传感器 定义:能感受(或响应)规定的被测量,并按照一定的规律转换成可用输出信号的器件或置。组成:一般由敏感元件、转换元件、其他辅助元件组成。 1.敏感元件——感受被测量,并输出与被测量成确定关系的其他量的元件。 2.转换元件——直接感受被测量而输出与被测量成确定关系的电量。 3.信号调理与转换电路——能把传感元件输出的电信号转换为便于显示、记录和控制 的有用信号的电路。 组成框图: 1.4.静态特性、性能指标 静态检测:测量时,检测系统的输入、输出信号不随时间变化或变化很慢。静态检测时系统所表现出的响应特性称为静态响应特性。一般用标定曲线来评定静态特性;用最 小二乘法原理求出标定曲线的拟合直线。 性能指标:1.测量范围:最小输入量和最大输入量之间的范围。 2.灵敏度:指输出增量与输入增量的比值,即 3.非线性度:标定曲线与拟合直线的偏离程度。非线性度=,B为最大 偏差,A为全量程 4.回程误差:输入量增大或减小时,对于同一输入量得到的两个输出量的差值与 全量程的比值。 5.稳定度和漂移:稳定度指规定的条件下保持其测量特性不变的能力。 漂移指输出量发生于输入量无关的、不需要的变化。 漂移包括零点漂移、灵敏度漂移。二者又可分为时间漂移、温 度漂移 6.重复性:输入量按同一方向多次测量时所得特性曲线不一致的程度。 7.分辨力:表示检测系统或仪表装置能够检测被测量最小变化量的能力。通常 以最小量程单位表示。 8.精确度:精密度(测量结果分散性)、正确度(偏离真值程度)、精确度(综 合优良程度)

1.5.动态特性、性能指标 动态特性:检测时,输入量改变,其输出量能立即随之不失真的改变的特性。 研究方法:1.微分方程2.传递函数3.频率响应函数4.单位脉冲响应函数 不失真测量条件:检测系统的幅频特性为常数,相频特性为线性。 3.1电阻式传感器 定义:把被测参量转换为电阻变化的传感器。 类型:电位器式、电阻应变式、热敏效应式。 电阻应变式传感器核心部件:电阻应变片,作用是实现应变——电阻的转换。应变片可分为 金属电阻应变片和半导体应变片。 1.金属电阻应变片工作原理:利用金属材料的电阻定律。应变片结构尺寸发生变化时,其 电阻也发生相应变化。 2.半导体应变片工作原理:基于半导体材料的压阻效应。半导体材料的某一轴受到外力作 用时,其电阻率发生变化。 电阻式传感器测量电路:桥式电路。其指标有桥路灵敏度、非线性、负载特性。 桥臂比: 灵敏度:电压值: 其中单臂系数为1/4,半桥为1/2,全桥为1。 减小或消除非线性误差的方法:1.提高桥臂比2.采用差动电桥3.采用高内阻的恒流源电桥 应用举例:1.柱力式传感器 2.电阻应变仪:测量电阻应变片应变量的仪器,分为静态、动态两类。 3.2.电容式传感器 定义:利用将非电量的变化转换为电容量的变换来实现对物理量测量。 特点:1.受本身发热影响小2.静态引力小3.动态响应好4.结构简单,适应性强5.非线性测量结构:两个金属极板、中间夹一层电介质构成。电容器时间上是一种存储电场能的原件。类型:变极距型、变极板面积型、变介质型 1.变极距型:常做成差动形式,可减少极距增加灵敏度。 2.变极板面积型:有线位移、角位移两种。线位移又分为平面线位移、圆柱线位移。 灵敏度比变极距型低。 3.变极板面积型:可做测厚仪。 电容式传感器测量电路:桥式电路,调频震荡电路、运算放大式电路、脉冲调宽型电路。应用举例:1.测厚仪2.测电缆偏心3.加速度计4.压力传感器 3.3.电感式传感器 定义:利用电磁感应原理将被测非电量的变化转换为线圈的自感系数L或互感系数M的变化的装置 类型:自感式、互感式。 1.自感式传感器:通过改变磁路磁阻来改变自感系数。又分为:气隙厚度变化型、

航空仪表01

航空仪表 飞行员需要不断地了解飞机的飞行状态、发动机的工作状态和其他分系统如座舱环境系统、电源系统等的工作状况,以便按飞行计划操纵飞机完成飞行任务;各类自动控制系统需要检测控制信息以便实现自动控制。这些信息都是由航空仪表以及相应的传感器和显示系统提供的。 飞机要测量的参数很多,归纳起来可以分为飞行参数、发动机参数和系统状态参数(如座舱环境参数、飞行员生理参数、飞行员生命保障系统参数等)。相应的,航空仪表按功用可分为飞行仪表、发动机仪表和系统状态仪表等。 同一个参数的测量原理和测量方法也很多,几乎涉及机械、电气、电子、无线电、光学等领域,这里主要介绍一些重要参数的测量原理。 3.5.1 飞行仪表 这类仪表反映飞机运动状态和飞行参数,使驾驶员能正确地驾驶飞机。主要可分为全静压系统仪表、指示飞行姿态和航向的仪表等。 全静压系统仪表 全静压系统利用感受的全压和静压,分别输人膜盒内外,压力差促使膜盒变形,带动指针指示飞机的速度、高度等飞行参数,从而构成各种仪表。这类仪表有空速表、气压式高度表、升降速度表和大气数据中心系统等。 用来测量气流全压和静压的管子称为全静压管,因用它测量飞机相对于空气运动的速度(即空速),故又称空速管(图3.5.1)。全静压管是一根细长的管子,远远伸在飞机机头或翼尖受气流干扰最小的地方,以免所感受到的气压受到飞机的影响。全静压管正对气流的小口叫全压口,后面是全压室,这里感受的是迎面气流的全压(总压,即动压加静压)。离头部一定的距离处,沿管周开几个小孔叫静压孔,这里不是正对迎面气流,在静压室中感受的是大气的静压。 由于全静压系统仪表是利用大气压强随高度、速度的变化,使金属膜盒产生膨胀或压缩变形带动仪表指针转动,所以也称为膜盒仪表、气压仪表。 空速表。空速是指飞机在纵轴对称平面内相对于气流的运动速度。空速是重要的飞行参数之一。根据空速,飞行员可以判断作用在飞机上的空气动力的情况,从而正确地操纵飞机;根据空速,还可以进行领航计算。 空速表就是用来测量飞机空速的仪表。 空速表是通过测量全静压管的全压与静压之差(动压)来指示飞机速度的(图3.5.2)。全静压管盖受到的全压和静压,分别用导管连到空速表的开口膜盒内外。这样,飞行中膜盒内外的压力差等于气流的动压。膜盒在压力差作用下膨胀,通过传动机构,使指针指出相应的速度值。空气密度一定时,空速越大,动压也越大,膜盒膨胀得越厉害,指针指出的速度值就越大。这种根据相对气流的动压测出的速度叫做指示空速,或叫表速。 气流的动压不仅与飞机和空气的相对速度(称为真空速)有关,而且与空气密度有关。如果飞机和空气的相对速度不变而改变高度,则由于空气密度的变化,指示空速会随之改变。因此,上述空速表还不能确实地反映飞机的真实空速。为了使飞行员了解飞机的真空速,在有些空速表中装有空气密度补偿机构,形成组合式空速表(图3.5.3),以指示真空速值。

相关文档
最新文档