精细与超精细结构及光谱的理论研究

精细与超精细结构及光谱的理论研究
精细与超精细结构及光谱的理论研究

独创性声明

本人声明所呈交的论文是我个人在导师的指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表或撰写过的研究成果,也不包含为获得西北师范大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确地说明并表示了谢意。

签名:呈旦奎盘日期:塑』:!:≤

关于论文使用授权的说明

本人完全了解西北师范大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。

(保密的论文在解密后应遵守此规定)

导师签名:<篁耋:进日期:塑f:£:曼

签名:墅目翅导师签名:瑾墨:盟日期:塑f:£:曼

原子物理学碱金属原子光谱的精细结构

§ 碱金属原子光谱的精细结构 一.碱金属光谱的精细结构 碱金属光谱的每一条光谱是由二条或三条线组成,如图所示。 二、定性解释 为了解释碱金属光谱的精细结构,可以做如下假设: 1.P 、D 、F 能级均为双重结构,只S 能级是单层的。 2.若l 一定,双重能级的间距随主量子数n 的增加而减少。 3.若n 一定,双重能级的间距随角量子数l 的增加而减少。 4.能级之间的跃迁遵守一定的选择定则。 根据这种假设,就可以解释碱金属光谱的精细结构。 § 电子自旋同轨道运动的相互作用 一、电子自旋角动量和自旋磁矩 1925年,荷兰的乌伦贝克和古德史密特提出了电子自旋的假设: 每个电子都具有自旋的特性,由于自旋而具有自旋角动量S 和自旋磁矩s ,它 们是电子本身所固有的,又称固有矩和固有磁矩。 自旋角动量: 2*2)1(h s h s s p s ,2 1 s 外场方向投影: 2h m S s z , 2 1 s m 共2个, 自旋磁矩:s s p m e 外场方向投影: 共两个?偶数,与实验结果相符。 1928年,Dirac 从量子力学的基本 方程出发,很自然地导出了电子自旋的 性质,为这个假设提供了理论依据。 二、电子的总角动量 电子的运动=轨道运动+自旋运动 轨道角动量: 2*2)1(h l h l l p l 12,1,0 n l 自旋角动量: 2*2)1(h s h s s p s 21 s 总角动量: s l j p p p 2*2)1(h j h j j p j s l j ,1 s l ,……s l

当s l 时,共12 s 个值 当s l 时,共12 l 个值 由于 2 1 s 当0 l 时,2 1 s j ,一个值。 当 3,2,1 l 时,2 1 l j ,两个值。 例如:当1 l 时,23211 j 21211 j l p 和s p 不是平行或反平行,而是有一定的夹角 当s l j 时 0)1() 1(cos s s s l l l ,o 90 ,称l p 和s p “平行” 当s l j 时 0)1()1(1 cos s s s l l l ,o 90 ,称l p 和s p “反平行” 原子的角动量=电子轨道运动的角动量+电子自旋运动角动量+核角动量。 原子的磁矩=电子轨道运动的磁矩+电子自旋运动磁矩+核磁矩。 三、电子轨道运动的磁矩 电子轨道运动的闭合电流为:T e i “-”表示电流方向与电子运动方向相反 面积:dt r rd r dA 22 121 一个周期扫过的面积: 2)1(h l l p l 是量子化的 B l l l m he l l p m e )1(4)1(2 量子化的。 223102740.94m A m he B ? 玻尔磁子 2h m L l z 空间取向量子化 四、自旋—轨道相互作用能 电子由于自旋运动而具有自旋磁矩: 具有磁矩的物体在外磁场中具有磁能: 电子由于轨道运动而具有磁场: 考虑相对论效应后,再乘以因子2 1做修正 r 是一个变量,用平均值代替:

高考经典课时作业15-2 原子结构、氢原子光谱

高考经典课时作业15-2 原子结构、氢原子光谱 (含标准答案及解析) 时间:45分钟 分值:100分 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A .光电效应实验 B .伦琴射线的发现 C .α粒子散射实验 D .氢原子光谱的发现 2.关于巴耳末公式1λ =R ????122-1n 2的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 3.(2012·高考北京卷)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少 4.(2012·高考江苏卷)如图所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( ) 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢原子( )

量子点的制备及特性分析

班级:物理1201班 姓名:吴为伟 学号:20121800121 时间:2014年7月1日 ——量子点的制备及特性分析 大学物理实验报告

课题意义: 量子点是一种准零维半导体纳米晶体,其三个维度的尺寸都在几到几十纳米,外观恰似一极小的点状物,其内部电子在各方向的运动都受到限制,可以产生类似于原子的分立能级。量子点具有量子尺寸效应、量子限域效应以及表面效应等特殊效应。量子尺寸效应是指半导体量子点的带隙相对于体材料发生蓝移,并且随着量子点尺寸的减小,蓝移量增大,在光学性质方面引起吸收和发射光谱的蓝移现象:而且,相对于体材料,量子点还具有吸收和发光效率高的优点。量子点的这些有益光学特性使其在生物荧光标记、太阳能电池、发光二极管、激光器、探测器、量子计算机等新型光电子器件方面都具有非常重要的应用前景,成为各国科研人员研究的热点,并在多个学科中引起很大的反响。 实验目的: 本课题实验要求通过有机液相法制备CdS量子点、以及对其吸收和荧光光谱的测量,了解量子点的生长过程、吸收和荧光光谱基本原理和特点,以及量子尺寸效应的基础知识。 实验器材: 实验仪器:量子点制备设备一套、分析天平、离心机、吸收谱仪和荧光谱仪等。 化学试剂:硫粉(S)、氧化镉(CdO)、油酸(OA)、十八碳烯(ODE)、甲醇、正己烷、高纯氩气(Ar)等。 实验原理: 有机液相法 即以有机溶液为介质,以具有某些特殊性质的无机物和有机物作为反应原料,在适当的化学反应条件下合成纳米晶材料的方法。通常这些反应物、中间产物、生成物都是对水、空气敏感,在水溶液中不能稳定存在。最常用的方式是在无水无氧条件下的有机溶剂中进行的化学反应。通过改变反应温度、时间、反应物浓度、配体种类、含量等参数,可以制备出具有不同尺寸的纳米晶体。该方法制备的纳米晶体在尺寸和形貌上通常具有很好的单分散性,纳米晶质量高;而且,由于反应是在有机介质中进行,生成的纳米晶在有机溶剂中具有良好的分散性,非常有利于实际应用。 液相法生长纳米晶一般包括三个阶段:成核过程、生长过程和熟化过程。当溶质的量高于溶解度时,溶液过饱和,晶体就会从液体中析出,形成晶核,这就是成核过程。晶核的数量和成核速度是由溶液的过饱和度决定的。溶质从饱和溶液中运输到晶体表面,并按照晶体的结构重排,这就是生长过程。该过程主要是

关于原子物理学试题

高校原子物理学试题 试卷 一、选择题 1.分别用1MeV的质子和氘核(所带电荷与质子相同,但质量是质子的两倍)射向金箔,它们与金箔原子核可能达到的最小距离之比为: A.1/4; B.1/2; C.1; D.2. 2.处于激发态的氢原子向低能级跃适时,可能发出的谱总数为: A.4; B.6; C.10; D.12. 3.根据玻尔-索末菲理论,n=4时氢原子最扁椭圆轨道半长轴与半短轴之比为: A.1; B.2; C.3; D.4. 4.f电子的总角动量量子数j可能取值为: A.1/2,3/2; B.3/2,5/2; C.5/2,7/2; D.7/2,9/2. 5.碳原子(C,Z=6)的基态谱项为 A.3P O ; B.3P 2 ; C.3S 1 ; D.1S O . 6.测定原子核电荷数Z的较精确的方法是利用 A.α粒子散射实验; B. x射线标识谱的莫塞莱定律; C.史特恩-盖拉赫实验; D.磁谱仪. 7.要使氢原子核发生热核反应,所需温度的数量级至少应为(K) A.107; B.105; C.1011; D.1015. 8.下面哪个粒子最容易穿过厚层物质? A.中子; B.中微子; C.光子; D.α粒子 9.在(1)α粒子散射实验,(2)弗兰克-赫兹实验,(3)史特恩-盖拉实验,(4)反常塞曼效应中,证实电子存在自旋的有: A.(1),(2); B.(3),(4); C.(2),(4); D.(1),(3). 10.论述甲:由于碱金属原子中,价电子与原子实相互作用,使得碱金属原子的能级对角量子数l的简并消除. 论述乙:原子中电子总角动量与原子核磁矩的相互作用,导致原子光谱精细结构. 下面判断正确的是: A.论述甲正确,论述乙错误; B.论述甲错误,论述乙正确; C.论述甲,乙都正确,二者无联系; D.论述甲,乙都正确,二者有联系. 二、填充题(每空2分,共20分) 1.氢原子赖曼系和普芳德系的第一条谱线波长之比为(). 2.两次电离的锂原子的基态电离能是三次电离的铍离子的基态电离能的()倍. 3.被电压100伏加速的电子的德布罗意波长为()埃. 4.钠D 1 线是由跃迁()产生的. 5.工作电压为50kV的X光机发出的X射线的连续谱最短波长为()埃. 6.处于4D 3/2 态的原子的朗德因子g等于(). 7.双原子分子固有振动频率为f,则其振动能级间隔为(). 8.Co原子基态谱项为4F 9/2 ,测得Co原子基态中包含8个超精细结构成分,则Co核自旋I=(). 9.母核A Z X衰变为子核Y的电子俘获过程表示()。 10.按相互作用分类, 粒子属于()类.

08物理《原子物理》(参考答案)

以下是本人经过网络和书本查证的出的答案,每题都经过仔细分析与 查找,如有纰漏请指出。 ——From GK 原子物理学习题 一、选择题 (1)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:D A、原子不一定存在核式结构; B、散射物太厚; C、卢瑟福理论是错误的; D、小角散射时一次散射理论不成立。 (2)用相同能量的α粒子束和质子束分别与金箔(bó)正碰,测量金原子核半径的上限。问用质子束所得结果是用α粒子束所得结果的几倍?B A、1/4 ; B、1/2 ; C、1 ; D、2 。 (3)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:D A、质子的速度与α粒子的相同; B、质子的能量与α粒子的相同; C、质子的速度是α粒子的一半; D、质子的能量是α粒子的一半。 (4)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A A、16 ; B、8 ; C、4 ; D、2 。 (5)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)?B A、13.6 ; B、12.09 ; C、10.2 ; D、3.4 。 (6)由玻尔氢原子理论得出的第一玻尔半径a0的数值是:B A、5.29×10-10m ; B、0.529×10-10m ; C、5.29×10-12m; D、529×10-12m 。(7)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:D A、3Rhc/4 ; B、Rhc; C、3Rhc/4e; D、Rhc/e。 (8)弗兰克—赫兹实验使用的充气三极管是在:B A、相对阴极来说板极上加正向电压,栅极(shān jí)上加负电压; B、板极相对栅极是负电压,栅极相对阴极是正电压; C、板极相对栅极是正电压,栅极相对阴极是负电压; D、相对阴极来说板极加负电压,栅极加正电压。 (9)假设氦(hài)原子的一个电子已被电离,如果还想把另一个电子电离,若以eV为单位至少需提供的能量为:A A、54.4 ; B、-54.4 ; C、13.6 ; D、3.4 。 (10)一次电离的氦离子H e+处于第一激发态(n=2)时电子的轨道半径为:B A、0.53?10-10m; B、1.06?10-10m ; C、2.12?10-10m ; D、0.26?10-10m。(11)单个f电子总角动量量子数的可能值为:D A、j =3,2,1,0 ; B、j=±3 ; C、j= ±7/2 , ± 5/2 ; D、j= 5/2 ,7/2 (12)锂(lǐ)原子光谱由主线系、第一辅线系、第二辅线系及柏(bǎi)格曼系组成.这些谱线系中全部谱线在可见光区只有:B A、主线系; B、第一辅线系; C、第二辅线系; D、柏格曼系。

原子物理学试题汇编

部分高校原子物理学试题汇编 试卷A(聊师) 一、选择题 1.分别用1MeV的质子和氘核(所带电荷与质子相同,但质量是质子的两倍)射向金箔,它们与金箔原子核可能达到的最小距离之比为: A.1/4;B.1/2; C.1; D.2. 2.处于激发态的氢原子向低能级跃适时,可能发出的谱总数为: ; ; ; . 3.根据玻尔-索末菲理论,n=4时氢原子最扁椭圆轨道半长轴与半短轴之比为: ;; ; . 电子的总角动量量子数j可能取值为: 2,3/2; 2,5/2; 2,7/2; 2,9/2. 5.碳原子(C,Z=6)的基态谱项为 ;;;. 6.测定原子核电荷数Z的较精确的方法是利用 A.α粒子散射实验; B. x射线标识谱的莫塞莱定律; C.史特恩-盖拉赫实验; D.磁谱仪. 7.要使氢原子核发生热核反应,所需温度的数量级至少应为(K) ;;;. 8.下面哪个粒子最容易穿过厚层物质? A.中子; B.中微子; C.光子; D.α粒子 9.在(1)α粒子散射实验,(2)弗兰克-赫兹实验,(3)史特恩-盖拉实验,(4)反常塞曼效应中,证实电子存在自旋的有: A.(1),(2); B.(3),(4); C.(2),(4); D.(1),(3). 10.论述甲:由于碱金属原子中,价电子与原子实相互作用,使得碱金属原子的能级对角量子数l的简并消除. 论述乙:原子中电子总角动量与原子核磁矩的相互作用,导致原子光谱精细结构. 下面判断正确的是: A.论述甲正确,论述乙错误; B.论述甲错误,论述乙正确; C.论述甲,乙都正确,二者无联系;

D.论述甲,乙都正确,二者有联系. 二、填充题(每空2分,共20分) 1.氢原子赖曼系和普芳德系的第一条谱线波长之比为( ). 2.两次电离的锂原子的基态电离能是三次电离的铍离子的基态电离能的( )倍. 3.被电压100伏加速的电子的德布罗意波长为( )埃. 4.钠D 1线是由跃迁( )产生的. 5.工作电压为50kV 的X 光机发出的X 射线的连续谱最短波长为( )埃. 6.处于4D 3/2态的原子的朗德因子g 等于( ). 7.双原子分子固有振动频率为f ,则其振动能级间隔为( ). 8.Co 原子基态谱项为4F 9/2,测得Co 原子基态中包含8个超精细结构成分,则Co 核自旋I=( ). 9.母核A Z X 衰变为子核Y 的电子俘获过程表示( )。 10.按相互作用分类,τ粒子属于( )类. 三、问答题(共10分) 1.(4分)玻尔氢原子理论的定态假设. 2.(3分)何谓莫塞莱定律? 3.(3分)原子核反应的三阶段描述. 四、计算题(50分) 1.(10分)一个光子电离处于基态的氢原子,被电离的电子重新和质子结合成处于第一激发态的氢原子,同时放出波长为626埃的光子.求原入射光子的能量和自由电子动能. 2.(10分)钠原子3S 和3P 谱项的量子亏损分别为和. 试确定钠原子的电离能和第一激发电势. (R=109735cm -1) 3.(10分)试讨论钠原子漫线系的一条谱线(2D 3/2→2P 1/2)在弱磁场中的塞曼分裂,作出能级分裂跃迁图. 4.(10分)2211Na 的半衰期为年.试求:(1)平均寿命和衰变常数;(2)5mg 22 11Na 减少到1mg 需要多长时间?(ln10=,ln2= 5.(10分)试计算中子与O 17 8核发生(n,2n)反应的反应能和阈能. (M(O 178)=,M(O 168)=,M(O 15 8)=,m n = 试 卷 B (聊 师) 1. α粒子以速率V 0对心碰撞电荷数为Z 的原子核,α粒子所能达到的离核的最小距离等于多少? 2.根据玻尔—索末菲理论,氢原子的主量子数n=3时,电子可能有几种不同形状的轨道,它们相应的轨道角动量,能量是否相等? 3. 单电子原子关于l ,j 的电偶极跃迁定则是什么? 4.基态为4F 3/2的钒原子,通过不均匀横向磁场将分裂为几束?基态钒原子的有效磁矩μJ 等于多少玻尔磁子μB ? 5.试求出磷(P,Z=15).氯(Cl,Z=17)原子基态电子组态和基态谱项. 6.d 电子与s 电子间为LS 耦合,试求出可能合成的总轨道角动量L P 大小. 二、1.假定1H 36Cl 分子的转动常数B=10.7cm -1,试计算最低的两个转动能级的能量

关于氢原子光谱的超精细结构的研究

关于氢原子光谱的超精细结构的研究 摘要:本文通过介绍原子核的结构、原子核的自旋以及核磁矩,讨论了氢原子光谱的超精细结构的产生原因并介绍了相关公式推导。 关键词:光谱;氢原子;超精细结构 原子核的结构 1、原子核 自卢瑟福提出原子的核式模型以来,原子就被分为两部分来处理:一是处于原子中心的原子核,一是绕核运动的电子。除了原子核的质量和电荷外,原子核的其他性质对原子的影响是相当微小的,核外电子的行为对原子核的性质也几乎毫无关系。原子和原子核是物质结构泾渭分明的两个层次。 2、原子核的结构 发现中子之前,人们知道的“基本”粒子只有两种:电子和质子。物理学家开始时有把原子核当做质子和电子的组成体的想法,但一开始就遇到了不可克服的困难。因为假如原子核由质子和电子所组成,那么,我们将无法解释核的自旋,且推导出来的原子核内电子的能量与实验结果不符。在查德威克发现中子之后,海森堡很快就提出了原子核由质子和中子所组成的假说。海森堡把质子和中子统称为核子,并把中子和质子看做核子的两个不同状态。 原子核的自旋以及核磁矩 1、电子自旋 在乌仑贝克和古兹米特提出电子自旋之前,泡利为了解释原子光谱的超精细结构,就提出了原子核作为一个整体必须有自旋的假设。但是,只有在查德威克发现中子之后,人们才理解自旋的起源。实验发现,中子和质子都是费米子,具有的固有角动量(自旋)与电子一样。既然原子核式中子和质子所组成,它的自旋就应该是中子和质子的轨道角动量和自旋之和。我们研究的“原子核的自旋”,都是指原子核基态的自旋。 2、核磁矩 除了核子的自旋磁矩外,我们还要考虑轨道磁矩。下面给出自核自旋的核磁矩的表示式。类似于原子磁矩的表示式,核磁矩和核自旋角动量I成正比。 μI = g IμN I 在磁场中,核自旋磁矩与磁场相互作用所产生的附加能量为 U = -μI ?B = -g IμN Bm I 因为m I有2I+1个值,所以有2I+1个不同的附加能量,于是就发生赛曼能级分裂,一条核能级在磁场中就分裂为2I+1条,相邻两条分裂能级间的能量差为 上述对核自旋磁矩与磁场的相互作用的讨论是下面研究氢原子光谱的超精细结构的基础。 氢原子的超精细结构光谱 最初讨论原子中的电子运动时,只考虑电子和原子核之间的库仑相互作用,后来随着实验水平的提高,人们发现了H的谱线并不是一条,由此引入电子自旋的概念,从而产生了了氢原子的精细结构。

2014届高考物理 15-2原子结构、氢原子光谱领航规范训练

2014届高考物理领航规范训练:15-2原子结构、氢原子光谱 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A.光电效应实验B.伦琴射线的发现 C.α粒子散射实验D.氢原子光谱的发现 解析:光电效应实验说明光的粒子性,伦琴射线的发现说明X射线是一种比光波波长更短的电磁波,氢原子光谱的发现促进了氢原子模型的提出.故C正确. 答案:C 2.关于巴耳末公式1 λ=R? ? ?? ? 1 22 - 1 n2的理解,下列说法正确的是( ) A.所有氢原子光谱的波长都可由巴耳末公式求出 B.公式中n可取任意值,故氢原子光谱是连续谱 C.公式中n只能取不小于3的整数值,故氢原子光谱是线状谱 D.公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 解析:巴耳末公式是经验公式,只适用于氢原子光谱,公式中n只能取n≥3的整数,故C正确. 答案:C 3.(2012·高考北京卷)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加B.放出光子,能量减少 C.吸收光子,能量增加D.吸收光子,能量减少 解析:根据玻尔原子理论知,氢原子从高能级n=3向低能级n=2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B选项正确. 答案:B 4.(2012·高考江苏卷)如图所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

解析:由h ν=h c λ=E 初-E 末可知该原子跃迁前后的能级差越大,对应光线的能量越大, 波长越短.由图知a 对应光子能量最大,波长最短,c 次之,而b 对应光子能量最小,波长最长,故C 正确. 答案:C 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 解析:氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确. 答案:BD 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2 ,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 解析:依题意可知第一激发态能量为E 2=E 1 22,要将其电离,需要的能量至少为ΔE =0 -E 2=h ν,根据波长、频率与波速的关系c =νλ,联立解得最大波长λ=-4hc E 1 ,C 正确. 答案:C 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢 原 子( ) A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长 B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大

量子点实验

量子点的制备实验 1、量子点的制备方法 1.1胶体化学法 胶体化学法就是在胶体溶液中制备纳米晶,通常都会加入一定的稳定剂,稳定剂会和纳米晶体粒子表面原子键合,从而阻止纳米晶粒之间的团聚,这样制得的颗粒单分散性会比较好。利用这种方法合成的纳米晶体粒子粒度可控、表面缺陷较少,但容易发生絮凝和粒子团聚。 1.2模板法 模板法合成的原理很简单,设计一个“笼子’’尺寸为纳米级,让成核和生长在该“纳米笼"中进行,在反应充分进行后,“纳米笼”的大小和形状就决定了作为产物的纳米颗粒的尺寸和形状。模板法的优点:实验装置简单、形态可控、操作容易、适用面广,可以合成更多特殊形态的纳米粒子。 1.3溶胶.凝胶法 溶胶.凝胶法是制成固体粉末的常用方法。该方法主要优点为成本低廉、制备条件简单、制得的纳米材料分散性好、纯度高。 1.4溶剂热法 溶剂热法就是在特制的高压釜中,反应体系为水溶液或有机溶剂,将反应体系加热到临界温度(或接近临界温度),这样在反应体系中产生高压环境,在该环境中进行无机合成与材料制备的一种有效方法。 1.5乳液法 乳液法是指互不相溶的两种液体,在一定量的乳化剂作用下,水相以微液滴状形式分散在油相中所形成的体系。以此为反应体系,进行各种特定的反应,从而制得纳米级颗粒。2.1实验药品与实验设备 2.1.1实验药品

2.2实验表征手段 表征纳米材料的方法各式各样,采用的表征仪器主要有:X射线衍射、透射电镜、紫外一可见吸收光谱、荧光光谱。 XRD分析是以晶体结构为基础,通过对比衍射图谱,分析不同晶体的物相。晶体物相都具有特定的结构参数,包括点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等。结构参数不同,XRD图谱也不同,所以通过比较XRD图谱可以区分出不同的物相以波长极短的电子束做辐射源,用电磁透镜聚焦成像的透射电镜是一种具有高分辨率、高放大倍数的电子光学仪器。它可以通过直接获取直观的纳米材料形貌、结构信息紫外.可见吸收光谱是指当光入射到样品时,样品中的价带电子吸收光子能量,将从基态激发到激发态。因此通过获取样品的透射束,就可以得到被吸收光的波长和强度,获取样品的吸收谱 发射光谱是指物质吸收一定能量后,传递给发光中心,使电子激发至高能态,从高能态再跃迁至不同较低能级时,会发出一定波长的光。发射光谱常常采用某一固定波长激发,通过测量发光强度随着波长(频率或波数)的变化关系,获取发光的能量随波长或频率变化的荧光光谱图。根据发光中心性质的不同可以获得不同的带状或线状谱,以及不同的发光颜色。 3 热注射法制备单分散硫化镉量子点 Cd S是典型的II.VI族半导体,具有优异的光电转化特性,被用来作为太阳能电池的窗口材料。当Cd S变为纳米尺度时,量子尺寸效应使其向短波方向移动,我们能看到的就是颜色的变化。当粒度为5-6nm时,颜色由体材料的黄色变为浅黄色,纳米材料的表面效应引起Cd S纳米颗粒表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化,影响其光学、电学及非线性光学等性质。 本实验采用热注射法,较绿色的氧化镉作为镉源,单质硫粉作为硫源,油酸作为配体利用油酸和吗啡啉的酰胺化反应制备出N.油酰基.吗啡啉,代替传统的有毒、易氧化、易爆炸的TOP或TBP作为单质硫的溶剂,来制备高质量、单分散的Cd S量子点。通过改变反应时间、反应温度、配体的量以及前驱物的摩尔比来控制Cd S量子点的颗粒粒径大小、尺寸分布和反应速度。 3.1单分散Cd S量子点的热注射法制备过程 称取0.0169硫粉(S),加入5mLN.油酰基.吗啡啉(N.OLM),在室温下搅拌溶解,然后抽取到10mL的注射器中作为S的前驱储备液。称取0.0649氧化镉(Cd O),量取1.5mL 油酸(OA)和6mL十八烯(ODE)放入三颈瓶中,在气氛保护下,持续搅拌加热到特定温度下(例如230℃),使Cd O溶解。在这个温度下,将含硫溶液迅速注入到含镉溶液中,此时温度会下降到一个相对应的温度(例如210℃)。维持该温度,间隔不同的反应时间取lmL样注入到2mL甲苯溶液中,加入甲醇,使含Cd S量子点的粗甲苯溶液产生明显浑浊现象,进行离心,使得固体下沉在离心管的底部。将上清液倒掉,再用少量甲苯分散量子点后。重复三次以上,洗掉大部分有机反应物。最后将Cd S量子点分散到甲苯中,做HRTEM、UV-vis、PL、XRD等相关测试。其中PL测试时,所用的激发波长为350nm。大致的制备过程流程如图2.2所示。

高中物理原子结构光谱氢原子光谱教师用书教科版

3.光谱氢原子光谱 学习目标知识脉络 1.了解光谱、连续谱、线状谱等 概念.(重点) 2.知道光谱分析及应用.(重点) 3.知道氢原子光谱的规律.(重 点、难点) 光谱和光谱分析 [先填空] 1.光谱 复色光分解为一系列单色光,按波长长短的顺序排列成一条光带,称为光谱. 2.分类 (1)连续谱:由波长连续分布的彩色光带组成的光谱. (2)发射光谱:由发光物质直接产生的光谱. (3)吸收光谱:连续光谱中某些特定频率的光被物质吸收而形成的谱线. (4)线状谱:由分立的谱线组成的光谱. (5)原子光谱:对于同一种原子,线状谱的位置是相同的,这样的谱线称为原子光谱. 3.光谱分析 (1)定义:利用原子光谱的特征来鉴别物质和确定物质的组成部分. (2)优点:灵敏度、精确度高. [再判断] 1.各种原子的发射光谱都是连续谱.(×) 2.不同原子的发光频率是不一样的.(√) 3.线状谱和连续谱都可以用来鉴别物质.(×) [后思考] 为什么用棱镜可以把各种颜色的光展开? 【提示】不同颜色的光在棱镜中的折射率不同,因此经过棱镜后的偏折程度也不同.

1.光谱的分类 2.光谱分析的应用 (1)应用光谱分析发现新元素; (2)鉴别物体的物质成分;研究太阳光谱时发现了太阳中存在钠、镁、铜、锌、镍等金属元素; (3)应用光谱分析鉴定食品优劣; (4)探索宇宙的起源等. 1.对原子光谱,下列说法正确的是( ) A.原子光谱是不连续的 B.原子光谱是连续的 C.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的 D.各种原子的原子结构不同,所以各种原子的原子光谱也不相同 E.分析物质发光的光谱,可以鉴别物质中含哪些元素 【解析】原子光谱为线状谱,A正确,B错误;各种原子都有自己的特征谱线,故C 错误,D正确;据各种原子的特征谱线进行光谱分析可鉴别物质组成,E正确.故A、D、E. 【答案】ADE 2.关于光谱和光谱分析,下列说法正确的是( ) A.太阳光谱和白炽灯光谱是线状谱 B.霓虹灯和煤气灯火焰中燃烧的钠蒸气产生的光谱是线状谱 C.进行光谱分析时,可以利用线状谱,不能用连续谱

最新原子物理学——碱金属原子光谱的精细结构

§4.3 碱金属原子光谱的精细结构 一.碱金属光谱的精细结构 碱金属光谱的每一条光谱是由二条或三条线组成,如图所示。 二、定性解释 为了解释碱金属光谱的精细结构,可以做如下假设: 1.P 、D 、F 能级均为双重结构,只S 能级是单层的。 2.若l 一定,双重能级的间距随主量子数n 的增加而减少。 3.若n 一定,双重能级的间距随角量子数l 的增加而减少。 4.能级之间的跃迁遵守一定的选择定则。 根据这种假设,就可以解释碱金属光谱的精细结构。 §4.4 电子自旋同轨道运动的相互作用 一、电子自旋角动量和自旋磁矩 1925年,荷兰的乌伦贝克和古德史密特提出了电子自旋的假设: 每个电子都具有自旋的特性,由于自旋而具有自旋角动量S 和自旋磁矩s μ ,它们是电子 本身所固有的,又称固有矩和固有磁矩。 自旋角动量:ππ2*2)1(h s h s s p s =+=,2 1=s

外场方向投影:π2h m S s z =, 21±=s m 共2个, 自旋磁矩:s s p m e -=μ B s s h s s m e p m e μπ μ32)1(-=+-=- = 外场方向投影: B z z S m e μμ±=-= 共两个?偶数,与实验结果相符。 1928年,Dirac 从量子力学的基本方程出发,很自然地导出了电子自旋的性质,为这个假设提供了理论依据。 二、电子的总角动量 电子的运动=轨道运动+自旋运动 轨道角动量:π π2*2)1(h l h l l p l =+= 12,1,0-=n l 自旋角动量:ππ2*2)1(h s h s s p s =+= 2 1=s 总角动量: s l j p p p += π π2*2)1(h j h j j p j =+= s l j +=,1-+s l ,……s l - 当s l >时,共12+s 个值 当s l <时,共12+l 个值 由于 2 1=s 当0=l 时,2 1==s j ,一个值。 当 3,2,1=l 时,2 1±=l j ,两个值。 例如:当1=l 时,23211=+=j 2 1211=-=j π π222)1(h h l l p l =+= ππ2232)1(h h s s p s =+=

最新人教版高中物理试题 专题练习41 原子结构 氢原子光谱

专题练习(四十一)原子结构氢原子光谱 1.(2011·上海高考)卢瑟福利用α粒子轰击金箔嘚实验研究原子结构,正确反映实验结果嘚示意图是( ) 3.(20 12·北京高考)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加 B.放出光子,能量减少 C.吸收光子,能量增加 D.吸收光子,能量减少 解析:氢原子由高能级跃迁到低能级要放出光子,能量减少;由低能级跃迁到高能级要吸收光子,能量增加,氢原子从n=3能级跃迁到n=2能级,即从高能级向低能级跃迁,则要放出光子,能量减少,故A、C、D错误,B正确. 答案:B

4.(2011·四川高考)氢原子从能级m 跃迁到能级n 时辐射红光嘚频率为ν1,从能级n 跃迁到能级k 时吸收紫光嘚频率为ν2,已知普朗克常量为h ,若氢原子从能级k 跃迁到能级m ,则( ) A .吸收光子嘚能量为hν1+hν2 B .辐射光子嘚能量为hν1+hν2 C .吸收光子嘚能量为hν2-hν1 D .辐射光子嘚能量为hν2-hν1 解析:由题意可知:E m -E n =hν1,E k -E n =hν2.因为紫光嘚频率大于红光嘚频率,所以ν2>ν1,即k 能级嘚能量大于m 能级嘚能量,氢原子从能级k 跃迁到能级m 时向外辐射能量,其值为E k -E m =hν2-hν1,故只有D 项正确. 答案:D 5.(2011·大纲全国高考)已知氢原子嘚基态能量为E 1,激发态能量E n =E 1/n 2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中嘚光速.能使氢原子从第一激发态电离嘚光子嘚最大波长为 ( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 . 解析:处于第一激发态时n =2,故其能量E 2=E 14,电离时释放嘚能量ΔE=0-E 2=-E 1 4,而 光子能量ΔE=hc λ,则解得λ=-4hc E 1 ,故C 正确,A 、B 、D 均错. 答案:C 6.(2012·江苏高考)如图所示是某原子嘚能级图,a 、b 、c 为原子跃迁所发出嘚三种波长嘚光.在下列该原子光谱嘚各选项中,谱线从左向右嘚波长依次增大,则正确嘚是( )

07级原子物理复习题

单项选择题 1.卢瑟福由α粒子散射实验得出原子核式结构模型时,所依据的理论基础是: A. 普朗克能量子假设; B. 爱因斯坦的光量子假设; C. 狭义相对论; D. 经典理论。 2.盖革和马斯登使能量为5MeV 的α粒子束垂直射至厚度为1μm 的金箔(Z =79),已知金箔的数密度为5.9?1022cm -3,他们测得散射角大于90°的概率为: A. 10-2; B. 10-4; C. 10-6; D. 10-10。 3.在进行卢瑟福理论实验验证时,发现小角度散射与理论不符,这说明: A. 原子不一定存在核式结构; B. 散射物太厚; C. 卢瑟福理论是错误的; D. 小角散射时,一次散射理论不适用。 4.已知氢原子中的电子在n = 1的轨道上运动形成的电流约为1毫安。则单电子在n = 3的轨道上绕Li 核(Z = 3)旋转时,电子所形成的电流约等于: A. 0.3毫安; B. 1毫安; C. 3毫安; D. 9毫安。 5.一强度为I 的α粒子束垂直射向一金箔,并为该金箔所散射。若θ=90°对应的瞄准距离为b ,则这种能量的α粒子与金核可能达到的最短距离为: A. b ; B. 2b ; C. 4b ; D. 0.5b 。 6.根据α粒子通过金属箔时散射实验结果来判断原子模型特征时,下列哪些不正确: ?? A 原子内部大部分空间是空的 ?? B 原子中的正.负电核均匀分布于整个原子中 ?? C 原子的全部质量几乎集中在中央处很小体积内 ?? D 原子中正电荷集中于中央处很小的体积内 7.卢瑟福由α粒子散射实验得出原子核式结构模型时,所依据的理论基础是: A. 普朗克能量子假设; B. 爱因斯坦的光量子假设; C. 狭义相对论; D. 经典理论。 8.原始的斯特恩-盖拉赫实验是想证明轨道角动量空间取向量子化, 后来结果证明的是: A. 轨道角动量空间取向量子化; B. 自旋角动量空间取向量子化; C. 轨道和自旋角动量空间取向量子化; D. 角动量空间取向量子化不成立。 9.夫兰克--- 赫兹实验证明: ?? A 原子内能级的存在 B 电子的自旋的存在 C 电子的荷质比e/m 有一定值 D 原子的核式结构 10.氢原子基态电离电势和第一激发电势分别是:(ev Rhc 6.13=) A v 6.13-和v 4.3- B v 6.13-和v 2.10- C v 6.13和v 4.3 D v 6.13和v 2.10

高等教育自学考试

物理专业本科毕业论文参考题目 一、物理教学研究方向 1 新课标下基础物理课程改革与发展的趋势 2 主观性试题与客观性试题的比较研究 3 从批判性思维走向批判性教学 4 试论科学探究中的“提出问题” 5 激发物理学习动机的策略 6 物理教学中体验性活动项目的建设与研究 7 高中物理实验的改革研究 8 物理教学中STS教育(科学技术和社会)教育 9 物理教学中的情感教育 10 论中学生物理知识结构的形成过程 11 物理活动课的教学模式 12 物理教学中的决策能力的培养 13 谈微型物理实验 14 物理教学与学生创造能力的培养 15 21世纪的网络教育对物理教学的影响 16 物理教学中多媒体课件的设计 17 多媒体技术与物理教学 18 物理教学中的科学价值观教育 19 物理教学中的环境教育 20 物理教学模式与教学方法 2l 浅谈物理创造教育的模式 22 习题教学与思维能力的培养。 23 论中学物理教育中的化学史教育 24 谈物理教师的素质结构 25 论物理教育中辩证唯物主义观点教育 26 谈物理教学中的审美教育 27 物理课外活动的现状与对策 28 论物理教学中思维能力的培养 29 物理教学中科学方法的培养研究 30 物理式样教学中的问题与对策 3l 物理实验教学与环境意识的培养 32 物理实验教学中如何培养学生的观察能力 33 物理实验教学与创造能力的培养 34 物理教学中创造能力的培养 35 物理课堂顺应教学方法研究

36 定义不完善问题(ill-defined problem)教学研究 37 李约瑟难题与中学物理教育 38 从经营教育到大众教育~我国中学物理教材沿革回顾 39 中学物理学习“差生”的归因分析 40 不同类型高级中学学生学习物理动机的比较分析 4l 谈“从生活走向物理,从物理走向社会” 42 论教学目标、教学内容的无限性与教学时间、教学空间有限性的矛盾 43 教育课程改革与教师职业专业化的思考 44 物理实验在中学素质教育中的地位和作用 45 教育人才的培养与高师教育改革的新思维 46 特殊能力与综合能力的关系与培养 47 在教学中“育人”与理想教育 48 科学用脑和发展高效性学习 49 初中物理习题教学的效益问题 50 物理教学中的素质教育研究 二、普通物理方向 1 氢气辉光放电的基本原理 2 氢分子放电中电子的输运过程研究 3 关于植物细胞内外水分的热力学关系 4 单晶Ni2MnGa马氏体的微观机构分析 5 热传递过程不可逆性的统计分析 6 物理学家的成才与环境 7 爱因斯坦的光子论及其意义 8 关于半波损失问题的探讨 9 关于№直流辉光放电光学发射谱研究 10 离子(断,H’)碰撞截面综述 11 在氢直流辉光中离子H+。的蒙特卡罗模拟 12 氢直流辉光放电中电子的Monte Carlo模型 13 宏观放电参数对N’。碰撞截面的影 14 连续分布的带电体的受力研究 15 电磁感应中的佯谬问题研究 16 关于稳恒电流导体的电荷分布讨论 17 关于能流密度矢量的研究 18 关于洛仑兹力的讨论 19 狭义相对论中几个问题的讨论 20 受迫震动及共振 21 试论阻尼振动 22 质心和质心坐标系 23 刚体平面运动的讨论

量子点

量子点,又称为半导体纳米晶体,由于它的优异光学性能,已经引起了科学界的广泛兴趣。[1-3] 量子点尺寸大约为1-10纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。[4] 量子点具有优异的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱,宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点。量子点良好的光稳定性使它能够很好的应用于组织成像等。相较于体相材料,半导体胶体量子点具有量子限域效应,因而表现出特殊的光学性质。具体表现为:(1)与尺寸相关的发光性质,可以通过尺寸的调节改变量子点的性质。相同材料的量子点,尺寸小的量子点的吸收范围和突光发射峰的波长相比于尺寸大的量子点会有蓝移。(2)发光效率高,光学稳定性好,和有机染料相比量子点的发光性质受自由基的影响更小,因而光学稳定性更高,可以有效地抵抗光氧化。(3)宽而又连续的的吸收光谱,和窄并且对称的发射光谱,并且量子点可以使用单一激发光激发。窄而对称的发射光谱使量子点的发光色彩更纯。(4)较大的斯托克斯位移,不易自萍灭,量子点之间的劳光共振能量转移较低,使劳光效率更高。由于大多数QDs在有机相中制备,人们必须在其表面修饰上适当的亲水性基团,使之可溶,才能进一步应用到各种生化分析体系中. 常见的修饰方法有共价偶联[10]、配体交换[9]、静电吸附[11]、表面硅烷化[10]、特异性结合[2]等. 如Mioskowsk [9]小组采取配体交换法,成功制备了形态均一、发射光位于575nm的核-壳式结构QDs,通过此法,还可将氨基、巯基等功能基团交换到QDs表面,进而拓宽QDs应用范围;此外,Johnson [12]利用生物素与链酶亲和素之间的特异性结合,成功将生物素化的核酸适配体(aptamer)与目标DNA结合的三明治结构和链酶亲和素功能化的双色QDs偶联,实现对DNA基因组的快速、超灵敏检测

第4章 原子的精细结构:电子的自旋解析

第四章原子的精细结构:电子的自旋 玻尔理论考虑了原子主要的相互作用即核与电子的静电作用,较为有效地解释了氢光谱。不过人们随后发现光谱线还有精细结构,这说明还需考虑其它相互作用即考虑引起能量变化的原因。本章在量子力学基础上讨论原子的精细结构。 本章先介绍原子中电子轨道运动引起的磁矩,然后介绍原子与外磁场的相互作用,以及原子内部的磁场引起的相互作用。说明空间量子化的存在,且说明仅靠电子的轨道运动不能解释精细结构,还须引入电子自旋的假设,由电子自旋引起的磁相互作用才是产生精细结构的主要因素。 §4-1原子中电子轨道运动的磁矩 1.经典表示式 在经典电磁学中载流线圈的磁矩为。(若不取国 际单位制,则(为电流所围的面积,是垂直于该积的单位矢量。这里假定电子轨道为圆形,可证明,对于任意形状的闭合轨道,其结果不变。) 电子绕核的运动必定有一个磁矩,设电子旋转频率为,则原子中电子绕核旋转的磁矩为: 定义旋磁比:,则电子绕核运动的磁矩为 上式是原子中电子绕核运动的磁矩与电子轨道角动量之间的关系式。磁矩与轨道角动 量反向,这是因为磁矩的方向是根据电流方向的右手定则定义的,而电子运动方向与电流反向之故。 从电磁学知道,磁矩在均匀外磁场中不受力,但受到一个力矩作用,力矩为 力矩的存在将引起角动量的变化,即

由以上关系可得,可改写为 拉莫尔进动的角速度公式:,表明:在均匀外磁场中高速旋转的磁矩不向靠拢,而是以一定的绕作进动。的方向与一致。进动角频率(or拉莫尔频率)为: 2.量子化条件 此前的两个量子数中,主量子数n决定体系的能量,角动量量子数决定轨道形状。 轨道平面方向的确定:当有一个磁场存在时,磁场的方向即为参考方向,轨道平面的方向也才有意义。 轨道角动量垂直于轨道平面,它相对于磁场方向(定义为z的角度决定了轨道平面的方向,如右图示。 此前得到角动量量子化条件为: 鉴于量子力学的本质,将此条件作一原则性改动,取由量子力学计算所得的结果 , 由此引入第三个量子化条件: 显然,对于一固定的,有(个m值。 3.角动量取向量子化

相关文档
最新文档