浮子流量计如何选择流量范围

浮子流量计如何选择流量范围
浮子流量计如何选择流量范围

浮子流量计主要测量对象是单相液体或气体,液体中含有微粒固体或气体中含有液滴通常不适用。因为浮子在液流中附着微粒或微小气泡均会影响测量值,例如微流量仪表使用一段时期后浮子附着肉眼不出的附着层,也会改变流量示值百分之几。如只要现场指示,首先考虑价廉的玻璃管浮子流量计,如温度、压力不能胜任则选用就地指示金属管浮子流量计。玻璃管浮子流量计应选带有透明防护罩,一旦玻璃锥管破裂,可挡住流体正向散溅,以作紧急处理。用于气体时应选用导杆或带棱筋导向的仪表,以避免操作不慎浮子击碎锥管。如需要远传输出信号作总量积算或流量控制,一般选用电信号输出的金属管浮子流量计。如环境气氛有防爆要求而现场又有控制仪表用气源,则优先考虑气远传金属浮子流量计,若选用电远传仪表则必须是防爆型。

浮子流量计如何选择流量范围:按实际使用介质密度选择仪表流量范围,这里所谓实际使用状态介质密度,液体是指使用时的密度,气体指使用状态下的密度,或标准状态下密度进行使用压力和温度的修正。通常仪表刻度的流量范围,液体是常温水标定值,气体是空气标定换算到工程标准状态(20℃,0.10133MPa)的值。将实际使用密度按式(4)或式(5)换算后再选择合适的流量范围和口径,但必须是使用介质粘度与标定介质粘度相接近,亦即认为α不变的前提下使用。

液体介质:式中Q水-待选定用水实流标定仪表的最大流量,L/h;

Q-被测液体的最大流量,L/h;

ρf-浮子密度,g/cm3,对于空心的浮子ρf=Gf/V,Gf为浮子质量(g),V为浮子体积,cm3;

ρ,ρ水-被测液体和水的密度,g/cm3。

气体介质:式中Q空-待选定用空气实流标定仪表的最大流量,m3/h;

Q-被测气体的最大流量,m3/h;

ρ-被测气体的密度,kg/m3;

P-被测气体使用状态下绝对压力,MPa;

T-被测气体使用状态下热力学温度,K。

浮子流量计优点可用于较低雷诺数,选用粘度不敏感形状的浮子,流通环隙处雷诺数只要大于40或500,雷诺数变化流量系数即保持常数,亦即流体粘度变化不影响流量系数。这数值远低于标准孔板等节流差压式仪表最低雷诺数104-105的要求。大部分浮子流量计没有上游直管段要求,或者说对上游直管段要求不高。浮子流量计有较宽的流量范围度,一般为10:1,最低为5:1,最高为25:1。流量检测元件的输出接近于线性。压力损失较低。浮子流量计无锥管破裂的风险。与玻璃管浮子流量计相比,使用温度和压力范围宽。https://www.360docs.net/doc/6c3672829.html,

金属管浮子流量计说明书

金属管浮子流量计说明书 金属管浮子流量计采用可变面积式测量原理,适用于测量液体,气体。全金属结构,有指示型、电远传型、耐腐型、高压型、夹套型、防爆型。具有0-10mA,4-20mA的标准模拟量信号输出和现场指示。累积,数字通讯,现场修改测量参数,不同的供电方式功能,带有磁性过滤器和特殊规格品种。广泛应用于,石油、化工、发电、制药、食品、水处理等。复杂,恶劣环境条件,及各种介质条件的流量测量过程中 工作原理 金属管浮子流量计 金属管浮子流量计浮子在测量管中,随着流量的变化,将浮子向上移动,在某一位置浮子所受的浮力与浮子重力达到平衡。此时浮子与孔板(或锥管)间的流通环隙面积保持一定。环隙面积与浮子的上升高度成正比,即浮子在测量管中上升的位置代表流量[1]的大小,变化浮子的位置由内部磁铁传输到外部的指示器,使指示器正确地指示此时的流量值。这就使得指示器壳体不和测量管直接接触,因此,即使安装限位开关或变送器,仪表可用于高温,高压工作条件下。 特点 金属管浮子流量计是工业自动化过程控制中常用的一种变面积流量测量仪表。它具有体积小,检测范围大,使用方便等特点。它可用来测量液体、气体以及蒸汽的流量,特别适宜低流速小流量的介质流量测量。 测量部分特点: 1、坚固的全金属结构设计型浮子流量计; 2、采用独立概念设计的测量管指示 3、可选择不锈钢、哈氏合金、钛材、PTFE材料测量系统; 4、低压力损失 设计;5、短行程、小型结构设计、仪表总高度250 ;6、磁性耦合结构确 保数据传输、信号更加稳定;7、保温或伴热夹套;8、垂直、水平、各种

安装方式更适合不同使用场合;9适用于小口径和低流速介质流量测量;10、工作可靠,维护量小,寿命长;11、对于直管段要求不高;12、较宽的流量 比10:1;13、双行大液晶显示,可选现场瞬时/累计流量显示,可带背光; 14、单轴灵敏指示;15非接触磁耦合传动;16金属结构,适于高温、高 压和强腐蚀性介质;17、可用于易燃、易爆危险场合;18、选二线制、电 池、交流供电方式;19、多参数标定功能;20、带有数据恢复,数据备份 及掉电保护功能具 结构原理 金属浮子流量计的流量检测元件是由一根自下向上扩大的垂直锥形管和一个沿着锥管轴上下移动的浮子组所组成。工作原理如图1所示,被测流体从下向上经过锥管1和浮子2形成的环隙3时,浮子上下端产生差压形成浮子上升的力,当浮子所受上升力大于浸在流体中浮子重量时,浮子便上升,环隙面积随之增大,环隙处流体流速立即下降,浮子上下端差压降低,作用于浮子的上升力亦随着减少,直到上升力等于浸在流体中浮子重量时,浮子便稳定在某一高度。浮子在锥管中高度和通过的流量有对应关系。体积流量Q的基本方程式为(1)当浮子为非实芯中空结构(放负重调整量)时,则(2)式中α——仪表的流量系数,因浮子形状而异;ε——被测流体为气体时气体膨胀系数,通常由于此系数校正量很小而被忽略,且通过校验已将它包括在流量系数内,如为液体则ε=1; △F——流通环形面积,m2;g——当地重力加速度,m/s2;Vf——浮子体积,如有延伸体亦应包括,m3;ρf——浮子材料密度,kg/m3;ρ——被测流体密度,如为气体是在浮子上游横截面上的密度,kg/m3;Ff——浮子工作直径(最大直径)处的横截面积,m2;Gf——浮子质量,kg。流通环形面积与浮子高度之间的关系如式(3)所示,当结构设计已定,则d、β为常量。 式中有h的二次项,一般不能忽略此非线性关系,只有在圆锥角很小时,才可视为近似线性。m2(3)式中d——浮子最大直径(即工作直径),m;h——浮子从锥管内径等于浮子最大直径处上升高度,m;β——锥管的圆锥角;a、b——常数。口径15-40mm透明锥形管浮子流量计典型结构如图2所示。透明锥形管4用得最普遍是由硼硅玻璃制成,习惯简称玻璃管浮子流量计。流量分度直接刻在锥管4外壁上,也有在锥管旁另装分度标尺。锥管内腔有圆锥体平滑面和带导向棱筋(或平面)两种。浮子在锥管内自由移动,或在锥管棱筋导向下移动,较大口平滑面内壁仪表还有采用导杆导向。图3是直角型安装方式金属管浮子流量计典型结构,通常适用于口径15-40mm以上仪表。锥管5和浮子4组成流量检测元件。套管(图3未表示)内有导杆3的延伸部分,通过磁钢耦合等方式,将浮子的位移传给套管外的转换部分。转换部分有就地指示和远传信号输出两大类型。除直角安装方式结构外还有进出口中线与锥管同心的直通型结构,通常用于口径小于10-15mm的仪表。 主要技术参数

浮子流量计的工作原理

浮子流量计的工作原理 1、浮子流量计简述 浮子流量计又称转子流量计,是将浮子垂直放在一个竖直的锥管内,流体在锥管内自下而上流过,使浮子在平衡位置上静止下来,按其平衡位置的高度来进行流量的测量。浮子流量计在测量过程中始终保持浮子前后的压降不变,通过改变流通面积来进行流量的测量,故它又被称为面积流量计或变面积流量计或恒压降流量计。 浮子流量计按其制造材料的不同,可分为玻璃管浮子流量计和金属管浮子流量计两大类。玻璃管浮子流量计结构简单,浮子的位置清晰可见,刻度直观,成本低廉,通常只用于常温常压下透明介质的流量测量。这种流量计一般只有就地指示,不能远传流量信号。金属管浮子流量计由于采用金属锥管,流量计工作时无法看到浮子的位置和工作情况,需要用间接的方法给出浮子的位置,因此按其传输信号的不同,又可分为远传型(电远传和气远传)和就地指示型两种。这种流量计常用于高温、高压、不透明及腐蚀性介质的流量测量,由于其具有很高的可靠性,因此常用于工业过程控制领域。 2、工作原理 浮子流量计的流量检测元件是由一只自下而上扩大的垂直锥形管和一个沿着锥管轴线上下移动的浮子所组成。工作原理如图所示,被测流体从下向上经过锥管和浮子形成环形流通面积(以下简称环通面积)时,浮子上下两端产生的压差形成浮子上升的力,当浮子所受上升力大于浸在流体中浮子的重量时,浮子便上升,环通面积随之增大,环通面积处流体流速下降,浮子上下两端压差降低,作用于浮子的上升力也随之减小,直到上升力等于浸在流体中浮子的重量时,浮子便稳

定在某一高度。浮子在锥管中的高度和通过的流量有一一对应的关系。浮子流量计的体积流量公式为 式中,α——浮子流量计的流量系数﹔ Df——零刻度处锥管的内径﹔ h———浮子高度﹔ φ——锥管的锥角﹔ Vf-—浮子的体积,m3; ρf———流体的密度,kg/ m3; ρf——浮子密度,kg/m3; Af--—浮子最大迎流面积,m2 流量qv,与浮子高度h之间为一一对应的近似线性关系。在进行稍大流量测量时,为达到必要的环通面积,减少φ角,势必要增加锥管的长度。因此,早期的金属管浮子流量计口径、长度不一,口径越大,长度也越大,达到500~600mm 长,非常笨重,制造和使用都不方便。现在已有多种方式进行线性化处理,各口径的金属管浮子流量计大都已统一制造成250mm长度的短管型流量计。 对于玻璃管浮子流量计,h-qv的对应关系直接刻度在流量计的锥管上。为使刻度均匀,制造时也将锥管的锥角减小一些,长度增大一些。 3、刻度换算 从上式可知,对于不同的流体,由于密度ρ不同,所以qv与h之间的对应关系也将不同,原来的流量刻度将不再适用。原则上浮子流量计应该用实际流体介质进行标定。但是,对于浮子流量计的制造厂家来说,由于受到标定设备的限制,不可能对所有的浮子流量计都根据用户的要求进行实际流体标定,所以浮子流量计用来测量非标定流体时,应该对浮子流量计的读数进行修正,这就是浮子流量计的刻度换算。这--过程可以由生产厂家按用户要求换算完成后直接刻度在浮子流量计的刻度盘上或玻璃锥管上。对于远传型浮子流量计,其远传信号也进行同样的刻度换算。

1-15000气体流量标准装置

山东计量院1-25000m3/h气体流量标准装置技术方案 一、装置主要技术指标 1、装置型式:负压法临界流气体流量标准装置。 2、被检表种类:速度式(涡轮流量计、旋进旋涡流量计、涡街流量计、超声波流量计、分流旋翼式蒸汽流量计等)、容积式(腰轮流量计、湿式气体流量计、工业膜式燃气表)、质量流量计(热式气体质量流量计、科利奥力式质量流量计等)、差压式气体流量计等气体流量计,工业燃气表能满足G10~G65膜式燃气表的检定。装置并能进行密封性实验。 3、被检表口径: 150、200、250、300、350、400、500、600八种规格。 4、检定台位:九个检定台位DN150、DN200、DN250、DN300、DN350、DN400、DN500、DN600、一个工业燃气表检定台位。 5、流量范围:(1~25000)m3/h(工况)。 6、装置工作压力:负压(101.325Kpa附近) 7、压力波动:<20Pa。 8、喷嘴不确定度:优于0.15%(中国计量院检定证书) 9、绝压变送器:±0.075% 10、温度变送器:±0.2% 11、计时器,满足规程要求1×10 ,并单独配置,采用台湾威达计时板TMC10,晶振8M。

12、装置综合不确定度:U=0.2%~0.25% k = 2 二、参照的主要标准 1)、ISO9300:1990 《采用临界流文丘里喷嘴的气体流量测量》2)、JJG643—2003 《标准表法流量标准装置》计量检定规程3)、JJG620—2008 《临界流流量计》计量检定规程 4)、GB/T 2624-2003 《流量测量节流装置用孔板、喷嘴和文丘 里管测量充满圆管的流体流量》 5)、JJG198—1994 《速度式流量计》计量检定规程 6)、JJG1029-2008 《涡街流量计》计量检定规程 7)、JJG1037-2008 《涡轮流量计》计量检定规程 8)、JJG897-1995 《质量流量计》计量检定规程 9)、JJG633-2005 《气体容积式流量计》试行计量检定规程10)、JJG640-1994 《差压式流量计》计量检定规程 11)、JJG257-2007 《浮子流量计计量》计量检定规程12)、JJG577-2005 《膜式燃气表计量》计量检定规程ISO9300:1990 《采用临界流文丘里喷嘴的气体流量测量》13)JJG620—2008 《临界流流量计检定规程》 14)JJG897-2005 《质量流量计检定规程》 三、装置技术方案 1.工作原理简述 根据气体动力学原理,当气体通过临界流喷嘴时,在喷嘴上、下

LZB玻璃转子流量计操作规程

玻璃转子流量计使用规程 一.概述 玻璃转子流量计(以下简称流量计)是用来测量非混浊液体、气体等单相介质流量的仪表之一。该仪表具有结构简单、维修和使用方便、价格便宜等优点。主要用于化工、石油、轻工、医药、化肥、化纤、电力、冶金、食品、制糖、燃料、造纸、环保及科研部门。 二.工作原理与结构 仪表测量部分为一根垂直安装的玻璃锥管和管内的浮子所组成。锥管的大端向上,浮子随流量大小沿锥管轴线方向上下移动。当流体自下而上通过锥管时,由于流体的作用,浮子上下端面产生一差压,浮子在此差压作用下上升。当作用在浮子上的上升力与浮子所受的重力、浮力及粘性力三者的合力相等时,浮子便稳定在某一高度上。这时浮子在锥管中的高度与所通过的流量有对应关系。该高度就是流量大小的量度。 锥管上刻有流量刻度,流量计的读数按图一所示的读数位置读取流量示值。 图一玻璃转子流量计读数位置 我公司生产的流量计的结构按口径不同可分为表盘式、可换式和固定式三种。 表盘式结构如图二所示,它适合于口径为4、6、10mm的流量计。主要支撑件是支板2和带有针阀的下基座9及上基座3,针阀用于调节流经仪表的流量,流入、流出咀与管路用软管联接,支板上有两个螺孔用来固定仪表。 可换式结构如图三所示,它适用于口径为15、25、40mm的流量计。带法兰基座1和内衬填料8通过两支板6与锥管相连接,以压紧盖7加以密封,镶有不锈钢或塑料等制成的镶套,以提高耐腐蚀性,基座的两法兰与管路相连接,只需将螺栓9(上下共8个)旋下,就能取出锥管,进行清洗或更换。 固定式结构如图四所示,它适用于口径为50、80、100mm的流量计。?基本结构与可换式相类同,但内部不装镶套且锥管不能单独拆卸。中间装一导杆,测量大流量时,可以保证浮子依然能顺着导杆上下平稳地滑动,也可保护锥管免遭损坏。

五种仪表的注意事项

一,万用表 可用于测量电压。电流。电阻。 一、操作事项 (1)在使用万用表之前,应先进行“机械调零”,即在没有被测电量时,使万用表指针指在零电压或零电流的位置上。 (2)在使用万用表过程中,不能用手去接触表笔的金属部分,这样一方面可以保证测量的准确,另一方面也可以保证人身安全。 (3)在测量某一电量时,不能在测量的同时换档,尤其是在测量高电压或大电流时,更应注意。否则,会使万用表毁坏。如需换挡,应先断开表笔,换挡后再去测量。 (4)万用表在使用时,必须水平放置,以免造成误差。同时,还要注意到避免外界磁场对万用表的影响。 (5)万用表使用完毕,应将转换开关置于交流电压的最大挡。如果长期不使用,还应将万用表内部的电池取出来,以免电池腐蚀表内其它器件。 二、欧姆挡的使用 (1)选择合适的倍率。在欧姆表测量电阻时,应选适当的倍率,使指针指示在中值附近。最好不使用刻度左边三分之一的部分,这部分刻度密集很差。 (2)使用前要调零。 (3)不能带电测量。 (4)被测电阻不能有并联支路。 (5)测量晶体管、电解电容等有极性元件的等效电阻时,必须注意两支笔的极性。 (6)用万用表不同倍率的欧姆挡测量非线性元件的等效电阻时,测出电阻值是不相同的。这是由于各挡位的中值电阻和满度电流各不相同所造成的,机械表中,一般倍率越小,测出的阻值越小。 三、万用表测直流 (1)进行机械调零。 (2)选择合适的量程档位。 (3)使用万用表电流挡测量电流时,应将万用表串联在被子测电路中,因为只有串连接才能使流过电流表的电流与被测支路电流相同。测量时,应断开被测支路,将万用表红、黑表笔串接在被断开的两点之间。特别应注意电流表不能并联接在被子测电路中,这样做是很危险的,极易使万表烧毁。 (4)注意被测电量极性。 (5)正确使用刻度和读数。 (6)当选取用直流电流的2.5A挡时,万用表红表笔应插在2.5A测量插孔内,量程开关可以置于直流电流挡的任意量程上。 (7)如果被子测的直流电流大于2.5A,则可将2.5A挡扩展为5A挡。方法很简单,使用者可以在“2.5A”插孔和黑表笔插孔之间接入一支0.24欧姆的电阻,这样该挡位就变成了5A 电流挡了。接入的0.24A电阻应选取用2W以上的线绕电阻,如果功率太小会使之烧毁。万用表的三个基本功能是测量电阻、电压、电流,所以俗称三用表。现在的万用表添加了好多新功能,尤其是数字式万用表,如测量电容值,三极管放大倍数,二极管压降等,更有一种会说话的数字万用表,能把测量结果用语言播报出来。 万用表最大的特点是有一个量程转换开关,各中功能就是靠这个开关来切换的。基本上,用A-来表示测直流电流,一般毫安档和安培档各又分几档。V-表示测直流电压,高级点的万用

气体流量测定与流量计标定

实验二气体流量测定与流量计标定 一、实验目的 气体属于可压缩流体。气体流量的测量,虽然有一些与用于不可压缩流体相同的测量仪表但也有不少专用于气体的测量仪表,在测量方法和检定方法上也有一些特殊之处。显然,气体流量的测量与液体一样,在工业生产上和科学研究中,都是十分重要的。尤其是在近代,工业生产规摸的大型化和科学实验的微型化,往往这些流量、温度、压力等的检测仪表就成为关键问题。 目前,工业用有LZB系列转子流量计,实验室用有LZW系列微型转子流量计,可供选用。对于市售定型仪表,若流体种类和使用条件都按照规格规定,则读出刻度就能知道流量。但从精度上考虑,仍有必要重新进行校正。转子流量计自制是有困难的,因锥形玻璃管的锥度手工难于制作。但是,在科学研究中或其它某种场合,有时,不免还要根据某种特殊需要,创制一些新型测量仪表和自制一些简易的流量计。不论是市售的标准系列产品还是自制的简易仪表,使用前,尤其是使用一段时间后,都需要进行校正,这样才能保证计量的准确、可靠。 气体流量计的标定,一般采用容积法,用标准容量瓶量体积,或者用校准过的流量计作比较标定。在实验室里,一般采用湿式气体流量计作为标准计量器。它属于容积式仪表,事先应经标准容量瓶校准。实验用的湿式流量计的额定流量,一般有 0.2m3·h—1和0.5m3·h—1两种。若要标定更大流量的仪表,一般采用气柜计量体积。实验室往往又需用微型流量计,现时一般采用皂膜流量计来标定。 本实验采用标准系列中的转子流量计和自制的毛细管流量计来测量空气流量。并用经标准容量瓶直接校准好的湿式流量作为标准,用比较法对上述两种流量计进行检定,标定出流量曲线.,对毛细管流量计标定。通过本实验学习气体流量的测量方法,以及气体流量计的原理、使用方法和检定方法。同时,这些知识和实验方法对学习者在进行以下各项实验时,肯定会有帮助,尤其时对今后所从事的各种实验研究工作,也是有益处的。 二、实验原理 1.湿式气体流量计 该仪器属于容积式流量计。它是实验室常用的一种仪器,其构造主要由圆鼓形壳

流量计通用技术规范

流量计 通用技术规范

本规范对应的专用技术规范目录 流量计 采购标准技术规范使用说明 1. 本采购标准技术规范分为标准技术规范通用部分、标准技术规范专用部分以及本规范使用说明。 2. 采购标准技术规范通用部分原则上不需要设备招标人(项目单位)填写,更不允许随意更改。如对其条款内容确实需要改动,项目单位应填写《项目单位通用部分条款变更表》并加盖该网、省公司招投标管理中心公章及辅助说明文件随招标计划一起提交至招标文件审查会。经标书审查同意后,对通用部分的修改形成《项目单位通用部分条款变更表》,放入专用部分,随招标文件同时发出并视为有效。 3. 采购标准技术规范专用部分分为标准技术参数、项目单位需求部分和投标人响应部分。《标准技术参数表》中“标准参数值”栏是标准化参数,不允许项目单位和投标人改动。项目单位对“标准参数值”栏的差异部分,应填写“项目单位技术差异表”,“投标人保证值”栏应由投标人认真逐项填写。项目单位需求部分由项目单位填写,包括招标设备的工程概况和招标设备的使用条件。对扩建工程,可以提出与原工程相适应的一次、二

次及土建的接口要求。投标人响应部分由投标人填写“投标人技术参数偏差表”,提供销售业绩、主要部件材料和其他要求提供的资料。 4. 投标人填写“技术参数和性能要求响应表”时,如与招标人要求有差异时,除填写“技术偏差表”外,必要时应提供相应试验报告。 5. 有关污秽、温度、海拔等需要修正的情况由项目单位提出并在专用部分技术差异表明确表示。 6. 采购标准技术规范的页面、标题等均为统一格式,不得随意更改。

目录 1总则 (1) 1.1 一般规定 (1) 1.2 投标人应提供的资格文件 (1) 1.3 工作范围和进度要求 (1) 1.4 技术资料 (1) 1.5 标准和规范 (1) 1.6 必须提交的技术数据和信息 (2) 2 性能要求 (2) 3 主要技术参数 (2) 4 外观和结构要求 (2) 5 验收及技术培训 (3) 6 技术服务 (3) 附录A 供货业绩 (4) 附录B 仪器配置表 (4)

浮子流量计说明书

1前言 非常感谢您选择丹东通博电器(集团)有限公司的产品。 MTF 型智能金属管浮子流量计已获1项外观专利,专利号:ZL02 3 53133.9. MTF 型智能金属管浮子流量计已通过国家防爆认证,认证标志:Exia ⅡCT4,Exd ⅡCT4。 使用前请仔细阅读使用说明书,特别是与防爆相关的环境温度等各项要求。 2概述 a) 本产品执行标准代号:Q/AMM 014-2010; b) 产品特点:MTF 型智能金属浮子流量计是我公司研制开发的智能系列仪表,是模拟、数字 与微处理器相结合的产品。该流量计将流体流量信号变换为对应模拟电压信号并转换成4~20mA 两线制电流输出并且加载HART 协议通讯,具有高精度,低漂移,抗干扰能力强等特点。并可以实现对仪表的远程组态、监测、维护、及校准等功能。可构成生产过程测量、监督管理系统。 c) 主要用途及适用范围:适用于小流量,低雷诺数的介质流量测量; d) 防爆标志: 3 结构特征与工作原理 a ) 总体结构及其工作原理、工作特性: 工作原理:见图1 图1 被测介质自下而上垂直流过测量器,将测量器中浮子浮起,浮子内置磁钢与指示器内转轴上的检测磁钢耦合。当介质浮力,阻力与浮子重力平衡时,浮子停留在某一位置,浮子位置的高低即为被测介质流量的大小。浮子内的磁钢与检测磁钢耦合,使检测磁钢旋转。由于检测磁钢为径向充磁,所以在霍尔传感器处的磁场发生变化,此变化正比与流量大小,霍尔传感器把磁信号转变为直流mV 器 单片机等 外围电路 两线制 输出 尔 传 感 霍

信号,经单片机处理,输出两线制(4-20)mA电流信号并加载符合HART协议通讯的数字信号。 总体结构: 流量计主要由测量器和指示器两大部分组成,按连接方式的不同可分为垂直安装和水平安装两种,如图2、图3所示 图2垂直式式安装图3水平式安装 b) 主要部件或功能单元的结构、作用及其工作原理: 测量器部分 基本型:全部零件均由304制造,适用于液体测量。 防腐型:内衬聚四氟乙烯,适用于腐蚀性介质的测量。 夹套型:用于介质需要保温或冷却场合。 阻尼型:适用于气体、蒸汽测量。 注:防腐、夹套、无水平安装型式。 指示器部分 将流体流量信号变换为对应模拟电压信号并转换成4~20mA两线制电流输出并且加载HART协议通讯。 4主要规格及技术参数 a)选型表

电磁流量计在线校准规范

“电磁流量计在线校准规范”编写启动会在开封召开 2006年4月16日至17日,由中国水协设备委主办、开封仪表有限公司承办的“电磁流量计在线校准规范”编写启动会在河南开封召开。来自全国21个城市的自来水公司领导、专业技术人员,3家电磁流量计生产厂商代表以及流量计相关专家参加了会议。会议分别由中国水协设备委办公室主任濮立安和佛山市水业集团公司副总经理黄国贤主持。 中国水协设备委会长助理兼设备委主任孙文章在会议上作重要讲话时,他指出,这个会议是专家、学会协会、自来水公司和生产企业相结合的会议,是一个绝对有成果绝对有成效的会议。同时他多次强调计量的重要性,计量是管理基础的基础,一定要做好计量工作,加强计量管理,多抓标准和规范。 会上中国仪器仪表行业协会流量仪表专业委员会委员教授级高工蔡武昌做了题目为“流量仪表的现场校准和验证”以及国家水大流量站苗豫生副站长做了题目为“供水行业大口径流量计在线校准方法的研究”的专家讲座。北京、上海、广州、成都、长春等水司的代表各自介绍了他们在电磁流量计在线校准方面的经验以及运用中遇到的问题。 从会议上了解的情况可知,现在大部分水司对电磁流量计进行在线校准的方法有以下两种: 1、超声波流量计对比法 采用超声波流量计作为标准表,将标准表与被测电磁流量计串联,可以同时显示被测管道的瞬时流量与累积流量,通过对比标准表与被测流量计从而确定被测流量计的准确度。 优点:操作方便,能对流量计进行整体校准;通用性强,限制条件较少。 缺点:超声波流量计比电磁流量计的精度低;使用时受环境因素(例如管道液体的流态等)的影响较大。 2、电磁流量计参数校验法 (1)利用生产厂家提供的模拟器代替传感器给转换器送标准信号,用数字万用表和频率计分别测量输出电流和输出频率与标准值进行比较,计算出误差。 (2)用指针万用表分别测量励磁线圈电阻值,励磁线圈对地阻值,测量电极对地阻值。具体测量值与生产厂家所提供的数据进行比较,根据数据的变化情况可以判定电磁流量计的性能是否发生改变,能否保证测量精度。 优点:检测精度较高。 缺点:只能对电磁流量计的传感器和转换器分别测量,不能整体测量;通用性不强,一个标准只能适用于一个厂家的流量计。 最后经大会讨论,决定把“电磁流量计在线校准规范”分为两部分内容进行编写:第一部分《流量计在线比对规范》(题目暂定)由国家水大流量计量站副站长苗豫生和长春水务集团有限责任公司计量处宋雪峰主要编写;第二部分《电磁流量计电参数校准规范》(题目暂定)由上海市申波自来水物探工程技术有限公司陆浩亮和广州市自来水公司彭及坤主要编写。其它水司根据自己公司的实际情况参与其中一部分编写。根据我司的情况,我司主要配合广州自来水公司参与这次编写。 电磁流量计的在线校准问题一直是困扰供水企业的一个难题。因为它的不易拆卸性,需停水、停产并且投入大量的人力、物力和财力进行离线检定;同时没有现行的准确判定依据来解释用户对在线流量仪表准确度的质疑,给供水企业带来了不必要的经济和声誉上的损失。因此编写适用于供水行业的《电磁流量计在线校准规程》非常必要,它具有紧迫感和科学实用性,其意义重大而深远。

LZB玻璃转子流量计使用说明书

LZB玻璃转子流量计使用说明书 一、用途与特点 玻璃转子流量计是用来测量流体(液休、气体)瞬时流量的常用仪表。它广泛的应用于化工、食品、环保、冶金、机械、制药等生产单位和科研部门,它具有如下特点: 1、测量瞬时流量精度高; 2、测量范围可达1:10; 3、压力损失小; 4、结构简单、操作方便、价格低廉; 5、适用腐蚀性流体的测量。 二、工作原理 在垂直的透明锥管内,装有可上下移动的浮子(转子),当液体自下而上流经锥管时,被浮子节流,在浮子上下游之间产生差压,浮子在此差压作用下上升。当使浮子上升的力与浮子所受的重力,浮子及粘性力三者的合力相等时,浮子上于平衡位置,因此流经流量计的流体流量与浮子的上升高度,亦即与流量计的流通面积之间存在着一定的比例关系,浮子的位置高度可作为流量量度,其关系式如下: 容积流量 式中:а—流量系数 ε—膨胀系数 △F—流通面积即锥管与浮子之间的环隙面积 Vt—浮子体积 ρf—浮子材料的密度 ρ—被测流休的密度 F1—浮子工作直径处的横截面积 三、结构 本厂生产的玻璃转子流量计分为基型和防腐型两大类,它们通常由锥管、浮子、与管路连接的上、下基座、密封胶环、防护罩等配件组成,根据通径及流量大小,分为三种结构形式。 1、N3、DN4、DN6、DN10等四种通径与管路连接形式因流量小分为软管连接和螺纹连接两种。其结构和连接尺寸见图1、表1。 1、流出嘴; 2、基座; 3、上压紧帽; 4、锥形玻璃管; 5、有机罩壳; 6、支承板; 7、浮子; 8、下压紧帽; 9、下基座; 10、流入嘴; 11、针形阀。

图1 D N 3、D N 4、D N 6、D N 10结构示意图 N N N N N N 连接,因测量流量大在浮子中间设计有导杆以防止浮子撞坏锥管。其结构和连接尺寸见图2,表2(D N 15不带导杆) 。 3、 防腐型流量计,是根据测量介质要求,采用相应的耐腐蚀材料,以满足用户的工艺要求。 1、基座 2、铭牌 3、罩壳 4、锥管 5、浮子 6、压盖 7、密封圈及隔膜 8、螺钉 9、衬套 图2 D N 15、D N 25、D N 40、D N 50、D N 80、D N 100结构示意图

超声波流量计的优缺点以及注意事项

超声波流量计的优缺点以及注意事项 超声波流量计的优缺点以及注意事项 外夹式或者管段式超声波流量仪表是以"速度差法"为原理,测量圆管内液体流量的仪表。它采用了先进的多脉冲技术、信号数字化处理技术及纠错技术,使流量仪表更能适应工业现场的环境,计量更方便、经济、准确。产品达到国内外先进水平,可广泛应用于石油、化工、冶金、电力、给排水等领域。 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。 原理 根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。 超声流量计和超声波流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,它是发展迅速的一类流量计之一。 超声波流量计采用时差式测量原理:一个探头发射信号穿过管壁、介质、另一侧管壁后,被另一个探头接收到,同时,第二个探头同样发射信号被*个探头接收到,由于受到介质流速的影响,二者存在时间差Δt,根据推算可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt,进而可以得到流量值Q 优缺点 优点 超声波流量计是一种非接触式仪表,它既可以测量大管径的介质流量也可以用于不易接触和观察的介质的测量。它的测量准确度很高,几乎不受被测介质的各种参数的干扰,尤其可以解决其它仪表不能的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。 缺点 现今所存在的缺点主要是可测流体的温度范围受超声波换能铝及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。目前我国只能用于测量200℃以下的流体。另外,超声波流量计的测量线路比一般流量计复杂。这是因为,一般工业计量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500m/s左右,被测流体流速(流量)变化带给声速的变化量zui大也是10-3数量级.若要求测量流速的准确度为1%,则对声速的测量准确度需为10-5~10-6数量级,因此必须有完善的测量线路才能实现,这也正是超声波流量计只有在集成电路技术迅速发展的前题下才能得到实际应用的原因。 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。 超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。 超声波流量计换能器的压电元件常做成圆形薄片,沿厚度振动。薄片直径超过厚度的10倍,以保证振动的方向性。压电元件材料多采用锆钛酸铅。为固定压电元件,使超声波以合适的角度射入到流体中,需把元件故人声楔中,构成换能器整体(又称探头)。声楔的材料不仅要求强度高、耐老化,而且要求超声波经声楔后能量损失小即透射系数接近1。常用的声楔材料是有机玻璃,因为它透明,可以观察到声楔中压电元件的组装情况。另外,某些橡胶、塑料及胶木也可作声楔材料。 特点功能 特点 ◆独特的信号数字化处理技术,使仪表测量信号更稳定、抗干扰能力强、计量更准确。 ◆无机械传动部件不容易损坏,免维护,寿命长。 ◆电路更优化、集成度高、功耗低、可靠性高。 ◆智能化标准信号输出,人机界面友好、多种二次信号输出,供您任意选择。 ◆管段式小管径测量经济又方便,测量精度高。 注意事项

0109.金属转子流量计应用注意事项

金属转子流量计应用注意事项 为了保证金属转子流量计正常工作并达到要求的测量精度,一般应注意以下几点: 金属转子流量计必须垂直安装,流体自下而上流过流量计,且垂直度优于2°,水平安装时水平夹角优于2°;安装在工艺管线上的金属管浮子流量计应加旁路,以便处理故障或吹洗时不影响生产;金属转子流量计入口处应有5倍管径以上长度的直管段,出口应有250mm直管段,以保证仪表测量精度;如果介质中含有铁磁性物质,应安装磁过滤器;如果介质中含有固体杂质,应考虑在阀门和直管段之间加装过滤器;当用于气体测量时,应保证管道压力不小于5倍流量计的压力损失,以使浮子稳定工作;如果被测介质的温度高于220℃或流体温度过低易发生结晶时,需采取隔热保护措施时,应选用夹套型,以便进行冷却或保温;管道法兰、紧固件、密封垫与流量计法兰标准相同才能使仪表正常安装运行该产品一般装置正常运行后,不需要维护,故障多发生在装置刚刚启动时,由于管道吹洗不干净,而发生浮子被固体颗粒卡住现象,此时指示器的指针停在一位置不动。这时首先应关闭流量计两边的阀门,然后拆下上法兰,取出浮子进行清洗,再重新装好。注意紧固上法兰螺母要平衡拧紧,并垫好垫圈;为了避免由于管道引起的流量计变形,工艺管线的法兰必须与流量计的法兰同轴并且相互平行,适当地管道支撑以避免管道振动和减小流量计的轴向负荷,测量系统中控制阀应安装在流量计的下游;由于仪表是通

过磁耦合传递信号的,所以为了保证仪表的性能,安装周围至少10cm 处,不允许有铁磁性物质存在;测量气体的仪表,是在特定压力下校准的,如果气体在仪表的出口直接排放到大气,将会在浮子处产生气压降,并引起数据失真。如果是这样的工况条件,应在仪表的出口安装一个阀门;带有液晶显示的仪表,金属转子流量计安装时要尽量避免阳光直射显示器,以免降低液晶使用寿命;带有池供电的仪表,安装时要尽量避免阳光直射、高温环境(≥65℃)以免降低锂电池的容量和和寿命。

流量计安装规范

转子流量计安装要求: 1、实际的系统工作压力不得超过流量计的工作压力。 2、应保证测量部分的材料、内部材料和浮子材质与测量 介质相容; 3、环境温度和过程温度不得超过流量计规定的最大使用 温度; 4、转子流量计必须垂直地安装在管道上,并且介质流向 必须由下向上; 5、流量计法兰的额定尺寸必须与管道法兰相同。 6、为避免管道引起的变形,配合的法兰必须在自由状态 对中,以消除应力; 7、为避免管道振动和最大限度减小流量计的轴向负载, 管道应有牢固的支架支撑; 8、截流阀和控制流量都必须在流量计的下游。 9、支管段要求在上游侧5DN,下游侧3DN(DN是管道的通 径); 质量流量计安装 1、传感器的刚性和无应力支撑 2、避免把传感器安装在管道的最高位置,因为气泡会集 结和滞留,在测试系统中引起测量误差;

3、如果不能避免过长的下游管道(一般不大于3M),应多 装一个通流阀; 4、与输送泵的距离至少要大于传感器本身长度的4倍(两 法兰之间距离),如果泵引起多余的振动,必须用绕性管或连接管进行隔离。 5、调节阀、检查观察窗等附加装置都应安装在离传感器 至少1X“L”远处(L为传感器安装法兰之间距离) 6、支架不能安装在法兰或外壳上,一般离法兰的距离为 20~200mm; 电磁流量计安装 1、电磁流量计,特别是小于DN100mm(4”)的小流量计, 在搬运时受力部位切不可在信号变送器的任何地方,应在流量计的本体。 2、按要求选择安装位置,但不管位置如何变化,电机轴 必须保持基本水平。 3、电磁流量计的测量管必须在任何时候都是完全注满介 质的; 4、安装时,要注意流量计的正负方向或箭头方向应于介 质流方向一致。

金属管浮子流量计说明书

金属管浮子流量计 一.概述 金属管浮子流量计是基于浮子位置测量的一种变面积流 量仪表。采用全金属结构、Modular概念设计,因其具有体积 小、压损小、量程比大(10:1)、安装维护方便等特点,故广 泛应用于各行业复杂、恶劣环境下、对小流量、低流速、各种 苛刻介质条件的流量测量与过程控制。 金属管浮子流量计的系列产品,针对不同的用户需求、不 同场合,有多种测量形式供用户可选;按输出形式分有就地指 示型、远传输出型、控制报警型;按防爆要求分类,又可分为 普通型、本质安全型、隔离防爆型三种。 金属管浮子流量计采用了国际先进的Honeywell无接触 检测磁场角度变化的磁测传感器、并配以Motorola微处理系 统,可实现液晶指示、累积、远传输出(4~20mA)、脉冲输 出、上下限报警输出等功能,该型智能信号变送器具有及高的精度和可靠性,完全可以取代进口同类型仪表,且具有性价比高、多参数标定、掉电保护等特点。 金属管浮子流量计的设计制作还考虑了用户工艺流向要求,有垂直安装式、上进下出安装式、侧进侧出安装式、底进侧出安装式、螺纹连接式、水平安装式等安装方式可选。 二.结构及原理 金属管浮子流量计由二部分组成: ?传感器---测量管及浮子; ?信号变送器----指示器; 传感器的触液材质有四种:不锈钢、哈氏合 金、钛材、不锈钢衬PTFE;用户可根据不同的 工艺压力及介质的腐蚀性要求,选择不同的触液 材质,来满足工艺的耐压及介质防腐的需要。根 据不同的测量要求,用户在选型时,可以选择不 同的指示器组合,来实现不同的测量要求。具体 指示器形式与其对应功能见指示器型谱表。 流量的测量是由指示器内的变送器通过耦 合磁钢感受浮子位置的变化来完成流量的指示 和信号的远传输出的。当被测介质自下而上流经 测量管时,浮子受重力、浮力及流体流速对浮子 垂直向上的推动力三者平衡时,浮子即相对静止 在某个位置,这个位置随浮子与锥管的环面积、 流体流速而变化,浮子的位置即对应被测介质流 量的大小。

转子流量计水流量标准装置操作规程

转子流量计水流量标准装置操作规程 一、检定前准备工作 1、把转子流量计垂直安装在装置上,其倾斜度1.0级和1.5级应不超2°,低于1.5级应不超5°。 2、缓慢打开调节阀,让水流过流量计冲走试验管道和流量计内的杂质,然后将流量调到流量计上限运行,把积存在管道内的气体和附着在浮子上的气泡全部排除后方可进行检定。 3、关闭所用工作容器底阀湿罐,打开底阀排水后滴水1分钟关闭底阀。 二、检定 1、调好流量,设定检定时间,等浮子稳定后启动时间控制器使换向器换向,使水流入所用工作容器内,一次检定完毕读取工作容器标尺高度,查出相应容积V S 。 2、计算转子流量计刻度状态下的实际水体积。 ()[]201-+=s S S t V V β 计算流量计在刻度状态下的实际流量t V q v = 。 3、计算示值误差max q q q E v vs I -=,流量计每次检定的基本误差22s I E δδ+=,如果装置误差s δ不超出流量计基本误差限的三分之一 时,装置的误差可忽略不计。 4、金属转子流量计和带导杆的玻璃转子流量计应作正反行程的检定,正反行程每点检定次数均不少于2次,计算回差%100max ?-=q q q E d u h 。 5、在流量计的流量范围内至少选择5个均匀分布的流量检定点(包括流量计的上限流量和下限流量)每个检定点检定次数均不少于2次,各次检定步骤均按上几点进行,计算重复性()%100max ??= q q E v i r 。

6、流量计的基本误差、回差、重复性均取各检定点或各检定次的最大值。 三、流量计的基本误差应不超过基本误差限;回差应不超过基本误差限的绝对值;重复性应不超过基本误差限的绝对值的二分之一。

浮子流量计如何选择流量范围

浮子流量计主要测量对象是单相液体或气体,液体中含有微粒固体或气体中含有液滴通常不适用。因为浮子在液流中附着微粒或微小气泡均会影响测量值,例如微流量仪表使用一段时期后浮子附着肉眼不出的附着层,也会改变流量示值百分之几。如只要现场指示,首先考虑价廉的玻璃管浮子流量计,如温度、压力不能胜任则选用就地指示金属管浮子流量计。玻璃管浮子流量计应选带有透明防护罩,一旦玻璃锥管破裂,可挡住流体正向散溅,以作紧急处理。用于气体时应选用导杆或带棱筋导向的仪表,以避免操作不慎浮子击碎锥管。如需要远传输出信号作总量积算或流量控制,一般选用电信号输出的金属管浮子流量计。如环境气氛有防爆要求而现场又有控制仪表用气源,则优先考虑气远传金属浮子流量计,若选用电远传仪表则必须是防爆型。 浮子流量计如何选择流量范围:按实际使用介质密度选择仪表流量范围,这里所谓实际使用状态介质密度,液体是指使用时的密度,气体指使用状态下的密度,或标准状态下密度进行使用压力和温度的修正。通常仪表刻度的流量范围,液体是常温水标定值,气体是空气标定换算到工程标准状态(20℃,0.10133MPa)的值。将实际使用密度按式(4)或式(5)换算后再选择合适的流量范围和口径,但必须是使用介质粘度与标定介质粘度相接近,亦即认为α不变的前提下使用。 液体介质:式中Q水-待选定用水实流标定仪表的最大流量,L/h; Q-被测液体的最大流量,L/h; ρf-浮子密度,g/cm3,对于空心的浮子ρf=Gf/V,Gf为浮子质量(g),V为浮子体积,cm3; ρ,ρ水-被测液体和水的密度,g/cm3。

气体介质:式中Q空-待选定用空气实流标定仪表的最大流量,m3/h; Q-被测气体的最大流量,m3/h; ρ-被测气体的密度,kg/m3; P-被测气体使用状态下绝对压力,MPa; T-被测气体使用状态下热力学温度,K。 浮子流量计优点可用于较低雷诺数,选用粘度不敏感形状的浮子,流通环隙处雷诺数只要大于40或500,雷诺数变化流量系数即保持常数,亦即流体粘度变化不影响流量系数。这数值远低于标准孔板等节流差压式仪表最低雷诺数104-105的要求。大部分浮子流量计没有上游直管段要求,或者说对上游直管段要求不高。浮子流量计有较宽的流量范围度,一般为10:1,最低为5:1,最高为25:1。流量检测元件的输出接近于线性。压力损失较低。浮子流量计无锥管破裂的风险。与玻璃管浮子流量计相比,使用温度和压力范围宽。https://www.360docs.net/doc/6c3672829.html,

转子流量计的校正

实验十五 转子流量计的校正 转子流量计是使用较广泛的一种流量测量仪器,其上标有流量刻度值,但在使用前,一般需进行校正。 一.实验目的 (1) 了解转子流量计流量测定的工作原理。 (2) 获得转子流量计的校正实验刻度值。 (3) 明确流量计校正的重要性和掌握校正方法。 二.实验原理 转子流量计的流体通道为一垂直的锥角约为4。的微锥形玻璃管内置一转子(也称浮子)。当被测流体以一定流量自下而上流过锥形管时,在转子的上、下端面形成一个压差,该压差产生了升力,当升力达到一定值时,便能将转子向上浮起。但随着转子的上浮,转子与锥形管之间的环隙通道面积增大,环隙中流速减小,转子两端的压差也随之减小。 因此,当转子浮升至某一高度,转子所受的升力恰好等于其重力时,转子便平衡悬浮在此高度上。转子的这一平衡悬浮高度,随转子的两端面的压差,也即流量的大小而变化,它可由转子的受力平衡导出,参见图15-1,转子上,下端的压差按伯努利定律由两部分组成。一部分由位差引起的,该部分压差造成的升力即为通常所说的浮力F 1,其值等于同体积流体的重量。另一部分由动能差引起,其值为F 2 f A u u F )(221202-=ρ (1) 根据物料衡算关系 01 01u A A u = (2) 式中:A f ——转子最大截面积。 A 0——转子平衡时相应于0—0处的环隙面积。 A i——玻璃管截面积。 V f ——转子体积 ρf ——转子密度 f A A A u F ])(1[221 0202-=ρ (3) 这样转子的受力平衡条件为 g V f f ρ=+g V f ρf A A A u ])(1[221 020-ρ (4)

H250金属管浮子流量计说明书(全集)

H250金属管浮子流量计说明书(全集) 一.简述: H250型流量计产品适用于测量液体、气体的全金属结构金属管浮子流量计。相对于应测量介质的某一流量,磁性浮子在测量管中对应一全浮子位置,这个浮子位置通过指示器中的磁钢耦合给指针,由刻度盘和指针读出相应的流量值。浮子流量计适用于垂直管道,介质低进上出的工艺流程。坚固结构设计的H250型金属管浮子流量计可广泛应用于复杂、恶劣环境条件及各种介质条件的流量测量过程中。 H250特点 测量部分 坚固的全金属结构设计型浮子流量计。采用独立,modular概念设计的测量管及指示器,更便于库存,维修的配件的更换。可选择不锈钢哈氏合金、钛材、PTFE材质测量系统。新型磁铁耦合结构设计,确保数据传输信号更加稳定。保温或伴热夹套。新型设计比H27、H29运行更加安全稳定可靠。更适合于恶习劣环境和腐蚀严重的介质。具有良好的搞热性和抗振性。 H250流量计选配M7或M9指示器: M9指示器功能和特点: 在指示器中采用一块耦合磁钢完成流量指示、电信号转换和为控制流量波动而设计的阻尼功能,使仪表动行更加安全稳定、可靠。采用模块式组合设计,可在现场快速的给仪表增加电信号输出、上下限开关、流量累积功能,各功能单元板为插装结构,具有更换部件简单、方便、定位准确的特点。解决了老型产品由于各环节的人为因素而产生的故障以及至使仪表更换部件后精度降低的缺陷,使仪表的可靠性能得到很大的提高。采用最新型的ESK Ⅱ信号转换器兼有HART协议能讯功能。可用PC机或HART协议手持通讯器现场进行术参数的重新设定。可在就地流量指示型仪表内选择安装: -带4~20mA线性输出和HART协议并无磁滞后的ESK Ⅱ信号转换器(本安型)。 -带有6位LED显示的流量累计单元板 -带有上限、下限报警开关的单元板(本安装)。 M7指示器功能和特点: 就地指示器线性流量刻度指示。 可选择安装: 4~20mA 线性输出ESK变送器(本安或隔爆型)。 0.02~0.1MPa气动信号变送器输出。 上下限报警开关。 电磁兼容性(EMC) 可变面积流量计 型号:H250/.../M7/ESK H250/.../M9/ESK Ⅱ 与89/336/EEC要求相一致,符合EN 50081-1:1993,

相关文档
最新文档