高中物理动量守恒定律教案三篇

高中物理动量守恒定律教案三篇
高中物理动量守恒定律教案三篇

高中物理动量守恒定律教案三篇

导读:本文高中物理动量守恒定律教案三篇,仅供参考,如果觉得很不错,欢迎点评和分享。

篇一教学目标:

一、知识目标

1、理解动量守恒定律的确切含义.

2、知道动量守恒定律的适用条件和适用范围.

二、能力目标

1、运用动量定理和牛顿第三定律推导出动量守恒定律.

2、能运用动量守恒定律解释现象.

3、会应用动量守恒定律分析、计算有关问题(只限于一维运动).

三、情感目标

1、培养实事求是的科学态度和严谨的推理方法.

2、使学生知道自然科学规律发现的重大现实意义以及对社会发展的巨大推动作用.

重点难点:

重点:理解和基本掌握动量守恒定律.

难点:对动量守恒定律条件的掌握.

教学过程:

动量定理研究了一个物体受到力的冲量作用后,动量怎样变化,那么两个或两个以上的物体相互作用时,会出现怎样的总结果?这类

问题在我们的日常生活中较为常见,例如,两个紧挨着站在冰面上的同学,不论谁推一下谁,他们都会向相反的方向滑开,两个同学的动量都发生了变化,又如火车编组时车厢的对接,飞船在轨道上与另一航天器对接,这些过程中相互作用的物体的动量都有变化,但它们遵循着一条重要的规律.

(-)系统

为了便于对问题的讨论和分析,我们引入几个概念.

1.系统:存在相互作用的几个物体所组成的整体,称为系统,系统可按解决问题的需要灵活选取.

2.内力:系统内各个物体间的相互作用力称为内力.

3.外力:系统外其他物体作用在系统内任何一个物体上的力,称为外力.

内力和外力的区分依赖于系统的选取,只有在确定了系统后,才能确定内力和外力.

(二)相互作用的两个物体动量变化之间的关系

【演示】如图所示,气垫导轨上的A、B两滑块在P、Q两处,在A、B间压紧一被压缩的弹簧,中间用细线把A、B拴住,M和N 为两个可移动的挡板,通过调节M、N的位置,使烧断细线后A、B 两滑块同时撞到相应的挡板上,这样就可以用SA和SB分别表示A、B两滑块相互作用后的速度,测出两滑块的质量mA\mB和作用后的位移SA和SB比较mASA和mBSB.

高二物理《动量守恒定律》教案

1.实验条件:以A、B为系统,外力很小可忽略不计.

2.实验结论:两物体A、B在不受外力作用的条件下,相互作用过程中动量变化大小相等,方向相反,即△pA=-△pB或△pA+△pB=0

【注意】因为动量的变化是矢量,所以不能把实验结论理解为A、B两物体的动量变化相同.

(三)动量守恒定律

1.表述:一个系统不受外力或受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律.

2.数学表达式:p=p’,对由A、B两物体组成的系统有:mAvA+mBvB=mAvA’+mBvB’

(1)mA、mB分别是A、B两物体的质量,vA、vB、分别是它们相互作用前的速度,vA’、vB’分别是它们相互作用后的速度.【注意】式中各速度都应相对同一参考系,一般以地面为参考系.(2)动量守恒定律的表达式是矢量式,解题时选取正方向后用正、负来表示方向,将矢量运算变为代数运算.

3.成立条件

在满足下列条件之一时,系统的动量守恒

(1)不受外力或受外力之和为零,系统的总动量守恒.

(2)系统的内力远大于外力,可忽略外力,系统的总动量守恒.(3)系统在某一方向上满足上述(1)或(2),则在该方向上系统的总动量守恒.

4.适用范围

动量守恒定律是自然界最重要最普遍的规律之一,大到星球的宏观系统,小到基本粒子的微观系统,无论系统内各物体之间相互作用是什么力,只要满足上述条件,动量守恒定律都是适用的.(四)由动量定理和牛顿第三定律可导出动量守恒定律

设两个物体m1和m2发生相互作用,物体1对物体2的作用力是F12,物体2对物体1的作用力是F21,此外两个物体不受其他力作用,在作用时间△Vt内,分别对物体1和2用动量定理得:F21△Vt=△p1;F12△Vt=△p2,由牛顿第三定律得F21=-F12,所以△p1=-△p2,即:

△p=△p1+△p2=0或m1v1+m2v2=m1v1’+m2v 2’.

【例1】如图所示,气球与绳梯的质量为M,气球的绳梯上站着一个质量为m的人,整个系统保持静止状态,不计空气阻力,则当人沿绳梯向上爬时,对于人和气球(包括绳梯)这一系统来说动量是否守恒?为什么?

高二物理《动量守恒定律》教案

【解析】对于这一系统来说,动量是守恒的,因为当人未沿绳梯向上爬时,系统保持静止状态,说明系统所受的重力(M+m)g跟浮力F平衡,那么系统所受的外力之和为零,当人向上爬时,气球同时会向下运动,人与梯间的相互作用力总是等值反向,系统所受的外力之和始终为零,因此系统的动量是守恒的.

【例2】如图所示是A、B两滑块在碰撞前后的闪光照片部分示意图,图中滑块A的质量为0.14kg,滑块B的质量为0.22kg,所用标尺的最小刻度是0.5cm,闪光照相时每秒拍摄10次,试根据图示回答:

高二物理《动量守恒定律》教案

(1)作用前后滑块A动量的增量为多少?方向如何?

(2)碰撞前后A和B的总动量是否守恒?

【解析】从图中A、B两位置的变化可知,作用前B是静止的,作用后B向右运动,A向左运动,它们都是匀速运动.mAvA+mBvB=mAvA’+mBvB’

(1)vA=SA/t=0.05/0.1=0.5(m/s);

vA′=SA′/t=-0.005/0.1=-0.05(m/s)

△pA=mAvA’-mAvA=0.14*(-0.05)-0.14*0.5=-0.077(kg·m/s),方向向左.

(2)碰撞前总动量p=pA=mAvA=0.14*0.5=0.07(kg·m/s)

碰撞后总动量p’=mAvA’+mBvB’

=0.14*(-0.06)+0.22*(0.035/0.1)=0.07(kg·m/s)

p=p’,碰撞前后A、B的总动量守恒.

【例3】一质量mA=0.2kg,沿光滑水平面以速度vA=5m/s 运动的物体,撞上静止于该水平面上质量mB=0.5kg的物体B,

在下列两种情况下,撞后两物体的速度分别为多大?

(1)撞后第1s末两物距0.6m.

(2)撞后第1s末两物相距3.4m.

【解析】以A、B两物为一个系统,相互作用中无其他外力,系统的动量守恒.

设撞后A、B两物的速度分别为vA’和vB’,以vA的方向为正方向,则有:

mAvA=mAvA’+mBvB’;

vB’t-vA’t=s

(1)当s=0.6m时,解得vA’=1m/s,vB’=1.6m/s,A、B同方向运动.

(2)当s=3.4m时,解得vA’=-1m/s,vB’=2.4m /s,A、B反方向运动.

【例4】如图所示,A、B、C三木块的质量分别为mA=0.5Kg,mB=0.3Kg,mC=0.2Kg,A和B紧靠着放在光滑的水平面上,C以v0=25m/s的水平初速度沿A的上表面滑行到B的上表面,由于摩擦最终与B木块的共同速度为8m/s,求C刚脱离A时,A的速度和C的速度.

高二物理《动量守恒定律》教案

【解析】C在A的上表面滑行时,A和B的速度相同,C在B 的上表面滑行时,A和B脱离.A做匀速运动,对A、B、C三物组成的系统,总动量守恒.

篇二一、教材分析

在第一节课“探究碰撞中的不变量”的基础上总结出动量守恒定律就变得水到渠成。因此本堂课先是在前堂课的基础上由老师介绍物理前辈就是在追寻不变量的努力中,逐渐明确了动量的概念,并经过几代物理学家的探索与争论,总结出动量守恒定律。接下来学习动量守恒的条件,练习应用动量守恒定律解决简单问题。

二、学情分析

学生由于知道机械能守恒定律,很自然本节的学习可以与机械能守恒定律的学习进行类比,通过类比建立起知识的增长点。具体类比定律的内容、适用条件、公式表示、应用目的。

三、教法分析

通过总结前节学习的内容来提高学生的分析与综合能力,通过类比教学来提高学生理解能力。通过练习来提高学生应用理论解决实际问题的能力。整个教学过程要围绕上述能力的提高来进行。

四、教学目标

4.1知识与技能

(1)知道动量守恒定律的内容、适用条件。

(2)能应用动量守恒定律解决简单的实际问题。

4.2过程与方法

在学习的过程中掌握动量守恒定律,在练习的过程中应用动量守恒定律,并掌握解决问题的方法。

4.3情感态度与价值观

体验理论的应用和理论的价值。

五、教学过程设计

[复习与总结]前一节通过同学们从实验数据的处理中得出:两个物体各自的质量与自己速度的乘积之和在碰撞过程中保持不变。今天我还要告诉大家,科学前辈在追寻“不变量”的过程,逐渐意识到物理学中还需要引入一个新的物理量——动量,并定义这个物理量的矢量。

[阅读与学习]学生阅读课本掌握动量的定义。具体有定义文字表述、公式表示、方向定义、单位。

[例题1]一个质量是0.1kg的钢球,以6 m/s 速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动(如图二所示),

求:(1)碰撞前后钢球的动量各是多少?

(2)碰撞前后钢球的动量变化?

分析:动量是矢量,虽然碰撞前后钢球速度的大小没有变化,都是6m/s,但速度的方向变化了,所以动量也发生了变化。为了求得钢球动量的变化量,先要确定碰撞前和碰撞后钢球的动量。碰撞前后钢球是在同一条直线上运动的。选定坐标的方向为矢量正方向。解:略

[阅读与学习]学生阅读课本掌握系统、内力和外力概念。

师:请一个同学举例说明什么系统?什么叫内力?什么叫外力?

生:两个同学站在冰面上做互推游戏。如果我们要研究互推后两

个人的速度大小,可以把两人看成一个系统。两人的相互作用力为内力。两人所受的重力和支持力为外力。

[阅读与学习]学生阅读课本掌握动量守恒定律。

例题2:在列车编组站里,一辆m1=1.8×104kg的货车在平直轨道上以V1=2m/s的速度运动,碰上一辆m2=2.2×104kg的静止的货车,它们碰撞后结合在一起继续运动。求:货车碰撞后运动的速度。

[要求]学生练习后,先做好的学生将解答过程写在黑板上,老师依据学生的解答进行点评。目的让学生学会判断动量守恒定律成立的条件,会利用动量守恒定律列方程,根据计算结果判断运动方向。

例题3:甲、乙两位同学静止在光滑的冰面上,甲推了乙一下,结果两人相反方向滑去。甲推乙前,他们的总动量为零。甲推乙后,他们都有了动量,总动量还等于零吗?已知甲的质量为50kg、乙的质量为45kg,甲的速率与乙的速率之比是多少?

[要求]学生思考后回答问题:因为动量是矢量,正是因为是矢量,两个运动方向相反的人的总动量才能为零。再要求学生列方程求解,并注意矢量的方向。

六、教学反思

因为有前一节课的探究过程和探究结论,在此基础上总结出动量守恒定律,学生很容易接受。课堂中把动量守恒定律与机械能守恒定律进行类比教学收到了很好的效果。对于物理知识的学习应以学生自主学习为主,老师要对学生的学习效果进行有效监控。动量守恒定律

和的简单应用要以学生自主练习为主,老师要对学生的练习结果进行有效点评。篇三一.教材的地位和作用

动量守恒定律是自然界中最重要,最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,甚至对力的作用机制尚不清楚的问题中,动量守恒定律也适用。它是除牛顿运动定律与能量观点外,另一种更广泛的解决动力学问题的方法,而且在今后的磁学,电学中也会用到此定律。

二.知识结构

1,动量守恒定律的表述:如果一个系统不受外力,或者所受外力合力为零,这个系统的总动量保持不变。

2,动量守恒的条件:系统不受外力或者所受外力合力为零。

3,实验验证:两个弹性小球的弹性碰撞。设两个小球的质量分别为M1和M2,碰撞前的速度分别为V1和V2,碰撞后的速度分别为V1`和V2`。

由动量守恒有:

M1·V1+M2·V2=M1·V`1+M2·V`2

4,动量守恒定律的适用范围:小到微观粒子,大到天体,无论是什么性质的相互作用力,即使对相互作用情况还了解得不大清楚,动量守恒定律都是适用的。

5,灵活运用动量守恒定律和注意事项:动量守恒定律具有普适性。当系统受到的合外力不为零,但是在某一方向上的合外力为零,那么在该方向上可以运用动量守恒定律。在运用动量守恒定律之前应严格

检验是否符合动量守恒定律的条件。

三.教学重点和难点

学习本节的主要目的是为了掌握并会应用动量守恒定律这一应用广泛的自然规律,要达到这一目的,每个学生就需要正确理解其成立的条件和使用的特点。而动量又是矢量,因此,确定本节的教学重点和难点为:(1)掌握动量守恒定律及其成立的条件。(2)动量守恒定律的矢量性。

四.教学目标

1,知识与技能

(1)理解动量守恒定律的确切含义和表达式;

(2)能用动量定理和牛顿第三定律推导出动量守恒定律;

(3)知道动量守恒定律的适用条件和适用范围;

2,过程与方法

(1)会用动量守恒定律解释现象;

(2)会应用动量守恒定律分析求解运动问题。

3,情感、态度、价值观

(1)通过动量守恒定律的推导,培养实事求是的科学态度和严谨的推理方法;

(2)通过动量守恒定律的学习,进一步掌握物理学的思维方法及研究规律。了解物理学来源于生产实践。

(3)通过实验现象的准确观察、深入思考、抓主要矛盾,抽象概括,形成规律。反过来利用规律指导实践,发现新的规律。理论与实

践相辅相成,在掌握客观规律的基础上逐步认识自然、改造自然。

五.学生分析

在学习动量守恒定律之前,同学们已经学习了动量定理和牛顿运动定律,具有了一定的基础,重要的是推导动量守恒定律的数学表达式。

六.教学设计(两课时)

1.导入新课

首先,请学生回顾动量及动量定理:P=MV;Ft=P1-P0=△P

动量定理研究了一个物体受力一段时间后,它的动量怎样变化。那么物体相互作用,又会怎样呢?

(1)请两个同学穿上旱冰鞋,靠近站在教室前边,让学生甲推乙学生一下,学生观察现象。

(2)学生讨论发生的现象。

2.新课教学

(1)实验、观察,初步得到两辆小车在相互作用前后,动量变化之间的关系

a,用多媒体课件:介绍实验装置。

把两个质量相等的小车静止地放在光滑的水平木板上,它们之间装有弹簧,并用细线把它们拴在一起。

b,用CAI课件模拟实验的做法:

实验一:第一次用质量相等的两辆小车,剪断细线,观察两辆小车到达挡板的先后。

实验二:在其中的一辆小车上加砝码,使其质量变为原来的2倍,重做上述实验并注意观察小车到达两块木挡板的先后。

c,学生在气垫导轨上分组实验并观察;

d,实验完毕后各组汇报实验现象;

e,教师针对实验现象出示分析思考题:

①两小车在细线未被剪断前各自动量为多大?总动量是多大?

②剪断细线后,在弹力作用下,两小车被弹出,弹出后两小车分别做什么运动?

③据两小车所做的运动,分析小球运动的距离、时间,得到它们的速度有什么关系?

④据动量等于质量与速度的乘积,分析在弹开后各自的动量和总动量各为多大?

⑤比较弹开前和弹出后的总动量,你得到什么结论?

f,学生讨论后,回答上述问题。

(2)动量守恒定律的推导

a,用多媒体展示下列物理情景:

在光滑水平面上做匀速运动的两个小球,质量分别是M1和M2,沿着同一直线向相同的方向运动,速度分别是v1和v2,且v1>v2,经过一段时间后,m2追上了m1,两球发生碰撞,碰撞后的速度分别是V`1和V`2,根据动量守恒定理列出表达式,并板书。

(3)动量守恒定律的条件和内容:

a,学生结合实验和推导实例中的条件初步分析得到动量守恒定

律的条件。

b.学生阅读课文,总结得到动量守恒定律:

一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变,这个结论叫动量守恒定律。

c,教师板书动量守恒定律的表达式,并叙述各个字母表示的物理量。

(4)动量守恒定律的适用范围

a,学生阅读课文有关的内容。

b,学生总结动量守恒定律的适用范围。

c,教师归纳:小到微观粒子,大到天体,无论是什么性质的相互作用力,即使对相互作用情况还了解得不大清楚,动量守恒定律都是适用的。

(5)安排课堂练习题,分组展示。

(6)课堂小结:

通过本节课的探讨学习,我们知道了:

a,动量守恒定律研究的是相互作用的物体组成的系统;

b,在理想状态下即始终满足守恒条件时,系统“总动量保持不变”不仅是指系统初末两个状态的总动量相等,而是整个过程中任意两个时刻总动量都相等,但是、决不能认为系统内的每一个物体的总动量保持不变;

c,动量守恒的条件是:不受外力或所受外力之和为0;

d,动量守恒定律是自然界普遍适用的基本规律之一,不仅适用于

宏观物体的低速运动,对微观现象和高速运动同样适用。

(7)安排课后练习题。

七.教案设计反思和课后反思

教案设计反思:《动量守恒定律》是人教版高中物理选修3-5中最重要的一节,学生在学习这一节时有一定难度,特别是判断是否满足动量守恒。要想学习好这一节就需要知道动量守恒定律的推导过程以及推导方法。在学习了动量守恒之后就需要学会判断动量是否守恒,这就是动量守恒的条件。高考物理选修3—5中的第二小题就是与动量守恒有关的计算,属于物理选修3—5中的必考内容。在教案的设计中,重点放在了动量守恒的推导和动量守恒的条件上。在练习题中着重练习动量守恒的条件。

课后反思:

临漳柳园中学物理陈义强

《动量守恒定律》教案1

《动量守恒定律》教案 ★新课标要求 (一)知识与技能 掌握运用动量守恒定律的一般步骤 (二)过程与方法 知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。 (三)情感、态度与价值观 学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。 ★教学重点 运用动量守恒定律的一般步骤 ★教学难点 动量守恒定律的应用. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 1.动量守恒定律的内容是什么? 2.分析动量守恒定律成立条件有哪些? 答:①F合=0(严格条件) ②F内远大于F外(近似条件) ③某方向上合力为0,在这个方向上成立。 (二)进行新课 1.动量守恒定律与牛顿运动定律 师:给出问题(投影教材11页第二段) 学生:用牛顿定律自己推导出动量守恒定律的表达式。 (教师巡回指导,及时点拨、提示)

推导过程: 根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是 1 11m F a = , 222m F a = 根据牛顿第三定律,F 1、F 2等大反响,即 F 1= - F 2 所以 2211a m a m -= 碰撞时两球间的作用时间极短,用t ?表示,则有 t v v a ?-'=111, t v v a ?-'= 22 2 代入2 211a m a m -=并整理得 221 12211v m v m v m v m '+'=+ 这就是动量守恒定律的表达式。 教师点评:动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。 2.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。 (2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。 (3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量

高中物理-学习并验证碰撞中的动量守恒定律教案

高中物理-学习并验证碰撞中的动量守恒定律教案 教学目标: 1、知道动量守恒定律的内容,掌握动量守恒定律成立的条件,并在具体问题中判断动量是否守恒。 2、学会沿同一直线相互作用的两个物体的动量守恒定律的推导。 3、知道动量守恒定律是自然界普遍适用的基本规律之一。 教学重点: 动量守恒定律及其守恒条件的判定。 教学难点: 对动量守恒定律条件的掌握。 教具准备:斜槽、小球等。 教学过程 (一)引入新课 前面已经学习了动量定理,那么我们首先回顾一下动量定理的定义:物体所受合力的冲量等于物体的动量变化。表达式为:Ft=mv′-mv=p′-p,或Ft=△p 由此看出冲量是力在时间上的积累效应。动量定理公式中的F 是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时,F 是合外力对作用时间的平均值。p 为物体初动量,p′为物体末动量,t 为合外力的作用时间。 下面再来研究两个发生相互作用的物体所组成的物体系统,在不受外力的情况下,二者发生相互作用前后各自的动量发生什么变化,整个物体系统的动量又将如何? (二)以两球发生碰撞为例讨论“引入”中提出的问题,进行理论推导。 画图: 设想水平桌面上有两个匀速运动的球,它们的质量分别是1m 和2m ,速度分别是1v 和2v ,而且21v v >。则它们的总动量(动量的矢量和)。经过一定时间1m 追上2m ,并与之发生碰撞,设碰后二者的速度分别为'1v 和' 2v ,此时它们的动量的矢量和,即总动量'+'='+'='221121v m v m p p p 。 板书:221121v m v m p p p +=+= '+'='+'='221121v m v m p p p 下面从动量定理和牛顿第三定律出发讨论p 和p '有什么关系.设碰撞过程中两球相互作用力分别是1F 和2F ,力的作用时间是t .根据动量定理,1m 球受到的冲量是11111v m v m t F -' =;

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

高中库仑定律学案教案

高中库仑定律学案教案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

第二节 库仑定律 知识目标: 1.掌握库仑定律,知道点电荷的概念,并理解真空中的库仑定律. 2.会用库仑定律进行有关的计算. 能力目标: 1.渗透理想化方法,培养学生由实际问题进行简化抽象建立物理模型的能力. 2.渗透控制度量的科学研究方法 德育目标: 通过元电荷的教学,渗透物质无限可分的辩证唯物主义观点. 教学重点: 库仑定律和库仑力的教学. 教学难点: 关于库仑定律的教学 教学方法: 实验归纳法、讲授 库仑定律教学过程: 一、电荷间的相互作用:同种电荷相互排斥,异种电荷相互吸引。 提问:那么电荷之间的相互作用力和什么有关系呢 结论、电荷之间存在着相互作用力,力的大小与电量的大小、电荷间距离的大小有关,电量越大,距离越近,作用力就越大;反之电量越小,距离越远,作用力就越小。作用力的方向,可用同种电荷相斥,异种电荷相吸的规律确定。 电荷间的作用力与它们带的电荷量以及距离有关,那么电荷之间相互作用力的大小会不会与万有引力的大小具有相似的形式呢 早在我国东汉时期人们就掌握了电荷间相互作用的定性规律,定量讨论电荷间相互作用则是两千年后的法国物理学家库仑.库仑做了大量实验,于1785年得出了库仑定律. 二、库仑定律: 1.内容:真空中两个静止的点电荷的相互作用跟它们所带电量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。 2.库仑定律表达式:22 1r Q Q K F 3.对库仑定律的理解: (1)库仑定律的适用条件:真空中,两个点电荷之间的相互作用。 a :不考虑大小和电荷的具体分布,可视为集中于一点的电荷. b :点电荷是一种理想化模型.

高中物理-动量守恒定律教案

高中物理-动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。 师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生

的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块, 此系统从子弹开始入射木块到弹簧压缩到最短的过程中,

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

《动量守恒定律》教学设计

《动量守恒定律》教学设计 【设计思路】 为提高学生的科学素养,增强学生对物理情景的感性认识和理性认识,培养学生利用数学方法解决物理问题的能力。面向全体学生,倡导探究式学习,注重与现实生活的联系,按照《高中物理新课程标准》的要求,依据新课程改革的基本理念,利用多媒体为课堂创设情景,师生共同归纳总结探究结果,提高课堂效率。 【教材分析】 动量守恒定律是自然界最重要的规律之一,重点把握动量守恒的条件,能用动量守恒定律解决一维空间物体相互作用问题。 【学情分析】 学生在理解动量定理基础上,对冲量、动量的矢量性,以及动量的相对性、瞬时性已有初步的认识,对有关一个物体的动量问题基本能解决,对物体受力分析的能力达到一定水平。但对动量定理的运用能力,特别是有关相对同一参考系时动量相对性仍然不够明确,对动量计算中如何取正负值一知半解,存在畏难心理。 【知识、技能目标】 (1)理解动量守恒定律的内容,掌握动量守恒定律成立的条件,并能在具体问题中判断系统的动量是否守恒; (2)运用动量守恒定律解释有关现象,分析解决一维运动的问题。 【方法、过程目标】 (1)体验用实验探究动量守恒的过程与方法; (2)学会理论思维的方法,能结合动量定理和牛顿第三定律导出动量守恒定律的表达式。【德育目标】 (1)通过亲历实验探究和动量守恒定律的推导过程,培养学生实事求是的科学态度和严谨的推理方法; (2)领悟动量守恒定律是自然界普遍适用的基本规律之一。 【教学重难点】 重点:动量守恒定律及其守恒条件的判定。 难点:动量守恒定律的矢量性。 【教学方法】 实验探究法、推理归纳法、案例分析法 【教学用具】 气垫导轨、光电门和光电计时器,已称量好质量的两个滑块(附有弹簧圈和尼龙拉扣),课件。【课时安排】 1课时 (45分钟) 【教学过程】 (一)导入新课 (1分钟) 前面学过的动量定理只研究了一个物体受力作用一段时间后动量变化的规律,那么当两个物体相互作用时,他们各自的动量又怎样变化呢? (二)新课教学 1、实验探究:物体碰撞时动量变化的规律 我们现在来研究在光滑水平面上沿着一条直线运动的物体发生碰撞时动量变化的规律。(15分钟) ●学生猜想与假设。让学生对两个物体碰撞时的运动情况与动量变化的情况进行大胆的猜想,并与同学进行讨论。 ●学生制定计划与设计由学生设计实验。包括实验仪器和器材的选择,需要测量的物理量以及数据的处理。

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

高中物理_复习:《验证动量守恒定律实验》教学设计学情分析教材分析课后反思

复习:《实验:验证动量守恒定律》教学设计 一、教学目标: 【知识与技能】 1、明确验证动量守恒定律的基本思路; 2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法; 3、掌握实验数据处理的方法; 【过程与方法】 1、学习根据实验要求,设计实验,完成气垫导轨实验和斜槽小球碰撞实验的设计方法; 2、学习根据实验数据进行处理、归纳、总结的方法。 【情感态度与价值观】 1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。 2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。 3、在对实验数据处理、误差处理的过程中合作探究、头脑风暴,提高学生合作探究能力。 4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。 【教学重难点】 教学重点:验证动量守恒定律的实验探究 教学难点:速度的测量方法、实验数据的处理. 【教学过程】 (一)复习导入:问题1、动量守恒定律的内容是什么? 2、动量守恒的条件是什么? (二)讲授新课 实验方案一:气垫导轨以为碰撞实验 1、实验器材 气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等. 2、实验步骤

(1)测质量:用天平测出滑块的质量. (2)安装:正确安装好气垫导轨. (3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量;②改变滑块的初速度大小和方向③通过放置橡皮泥、振针、胶布等改变能量损失). (4)验证:一维碰撞中的动量守恒. (5)数据处理 1.滑块速度的测量:v =Δx Δt ,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间. 2.验证的表达式:m 1v 1+m 2v 2=m 1v′1+m 2v′2。 (6)注意事项 气垫导轨应水平 [典例1] 现利用图(a)所示的装置验证动量守恒定律.在图(a)中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器(图中未画出)的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计时器(未完全画出)可以记录遮光片通过光电门的时间. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. 实验测得滑块A 的质量m1=0.310 kg ,滑块B 的质量m2=0.108 kg ,遮光片的 宽度d =1.00 cm ;打点计时器所用交流电的频率f =50.0 Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计时器显示的时间为ΔtB =3.500 ms ,碰撞前后打出的纸带如图(b)所示. (b) 若实验允许的相对误差绝对值× 100%最大为5%,本实验是否在误差范围内验证了动量守恒

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

库仑定律 说课稿 教案 教学设计

库仑定律 本节分析 本章的核心是库仑定律,它既是电荷之间相互作用的基本规律,又是学习电场强度的基础.因此,在本节教学中对电荷之间的相互作用,不仅要求学生定性知道,而且通过库仑定律的教学还要求定量了解,但对库仑定律的解题应用,则只限于真空中两个点电荷之间相互作用的一些简单计算.库仑定律是静电学的第一个实验定律,是学习电场强度的基础.本节的教学内容主线有两条:知识层面上掌握真空中点电荷之间相互作用的规律即库仑定律;方法层面上研究多个变量之间关系的方法,间接测量一些不易测量的物理量的方法,及研究物理问题的其他基本方法. 学情分析 学生在高一已经学习了万有引力的基本知识,为过渡到本节的学习起着铺垫作用.上一节学生已经学习了电荷及电荷守恒定律,知道了使物体带电的几种方法,并且知道了在物体起电的过程中,系统的电荷是守恒的.同时,学生在初中也明确知道电荷之间是有相互作用的:同号电荷相互排斥,异号电荷相互吸引.高二的学生已具备了一定的探究能力、逻辑思维能力及推理演算能力.能在教师指导下通过观察、思考,发现一些问题和解决问题.教学目标 ●知识与技能 (1)掌握库仑定律,知道点电荷的概念,并知道库仑定律的适用条件. (2)运用库仑定律进行有关的计算. ●过程与方法 (1)渗透理想化方法,培养学生由实际问题进行简化抽象建立物理模型的能力. (2)渗透控制变量的科学研究方法. ●情感、态度与价值观 通过对本节学习,培养学生从微观的角度认识物体带电的本质,认识理想化是研究自然科学常用的方法,培养科学素养,认识类比的方法在现实生活中的广泛应用.教学重难点 ●重点:库仑定律及适用条件. ●难点:库仑定律的实验.

16.3动量守恒定律教案

16.3动量守恒定律 主备人:审核人:主讲教师:授课班级:【三维目标】 一、知识与技能: 1.理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 2.,会应用动量守恒定律分析计算有关问题。 二、过程与方法: 在理解动量守恒定律的确切含义的基础上正确区分内力和外力; 三. 情感、态度与价值观: 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。 【教学重点】:动量的概念和动量守恒定律。 【教学难点】:动量的变化和动量守恒的条件。 【教学方法】:教师启发、引导,学生讨论、交流。 【教学用具】:投影片,多媒体辅助教学设备。 【教学过程】: 【自主学习】 指导学生完成“知识体系梳理” 【新知探究】 一. 设疑激趣,创设研究情境 设置悬念:鸡蛋是我们每天都需要的营养食品,如果我将这只生鸡蛋用力扔出去,鸡蛋的命运会怎样? 演示:站在教室中部用力将鸡蛋水平扔向竖直悬挂在黑板前的大绒布。 提问:你观察到什么现象? 学生:扔在绒布上鸡蛋没破。 教师从绒布下拿出那只鸡蛋并提问:如果站在同一位置将同一只鸡蛋以相同的力向墙上扔,会出现什么结果? 演示:用力将鸡蛋水平扔向墙壁(墙壁上事先贴有白纸)。 学生:鸡蛋破了。 激疑:两种情况下鸡蛋与墙或布作用前的动量可以认为是相同的,作用后的 动量变为零,鸡蛋的动量变化是相同的。但究竟是什么原因使得鸡蛋出现不

同的结局? 教师:再请大家看一段录象。 教师演示课件:播放几个体育运动的视频录象(在节奏感强烈的音乐背景下 依次出现亚运会跳高、拳击、跳马、吊环等比赛镜头)。 提问:看完这段录象后,我们可能会提出很多问题,比如跳高、跳马、吊环运动员落地时为什么要落在软垫上?激烈的拳击比赛中,运动员为什么要戴拳击手套?以上这些问题是大家熟悉却不能科学解释的问题,也正是本节课我们要研究的问题。 课件显示: 二. 分层展开,引导自主探究 1. 关于物体动量的变化跟哪些因素有关的研究 ①提出假说 教师:要解决刚才提出的问题,必须首先研究、解决物体的动量变化跟哪些因素有关这一问题。你们先猜一猜看,物体的动量变化与哪些因素有关? 学生甲猜想:可能与物体的质量和它受到的力有关。 学生乙猜想:可能与物体受到的力的大小和力的作用时间有关。 ②定性验证 教师:同学们会提出各种不同的假说,这些假说是否正确?请你们操作第一个学习软件,先对两个实例进行定性讨论,由此你能得出什么结论? 学生:动手操作学习软件并相互协作讨论。 学生计算机显示:讨论题—— a.一辆以某一速度行驶的汽车,关闭发动机后,要使汽车停下来即使它的动 量为零,如果你是驾驶员可以采取哪些措施? b.静止的足球,要使它运动起来即使它获得一定的动量,可用哪些方法? 请一学生回答对讨论题的分析结果:…… 学生归纳:物体动量的变化跟物体所受力的大小和作用时间的长短有关。 ③定量验证 提问:你得出的这一结论是否正确?你如何验证? 学生提出观点:可以采用数学推导的方法。 教师:很好!数学推导的方法也称定量分析法,请大家继续研究。 学生:继续操作计算机进行定量分析推导。 学生计算机显示(动画):一个质量为m 的物体,初速度为v ,在合外力F 的作用下,经过时间t,速度变为v',该物体动量的变化与什么有关? v v'

验证动量守恒定律

实验:验证动量守恒定律教案 【教学目标】 1.掌握动量守恒定律适用范围。 2.会用实验验证动量守恒定律。 【教学重难点】 会用实验验证动量守恒定律。 【教学过程】 一、实验思路 教师:两个物体在发生碰撞时,作用时间很短。根据动量定理,它们的相互作用力很大。如果把这两个物体看作一个系统,那么,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是有些力的矢量和为0,有些力与系统内两物体的相互作用力相比很小。因此,在可以忽略这些外力的情况下,碰撞满足动量守恒定律的条件。 问题:我们应该怎样设计实验,使两个碰撞的物体所组成的系统所受外力的矢量和近似为0? 学生思考,教师总结。 我们研究最简单的情况:两个物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动。应该尽量创造实验条件,使系统所受外力的矢量和近似为0。 二、物理量的测量 1 / 11

研究对象确定后,还需要明确所需测量的物理量和实验器材。 问题:想要验证动量守恒定律,需要测量哪些物理量? 学生思考,教师总结: 根据动量的定义,很自然地想到,需要测量物体的质量,以及两个物体发生碰撞前后各自的速度。 教师:那么物体的质量我们可以直接用天平测量,物体碰撞前后的速度呢? 学生回忆之前我们学习了哪些测量物体速度的方法。最后教师总结可行的方法进行实验的设计。 (一)方案一:利用斜槽上滚下的小球验证动量守恒定律 1.实验步骤: (1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球。 (2)安装:按照图甲所示安装实验装置,调整固定斜槽使斜槽底端 2 / 11

水平。 (3)铺纸:白纸在下,复写纸在上且在适当位置铺放好,记下重垂线所指的位置O。 (4)放球找点,不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次。用圆规画尽量小的圆把所有的小球落点圈在里面。圆心F就是小球落点的平均位置。 (5)碰撞找点,把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次。用步骤4的方法,标出碰后入射小球落点的平均位置和被撞小球落点的平均位置N,如图所示。 (6)验证:连接N,测量线段OP、OM、ON的长度。将测量数据填入表中。最后代入m1·OP。 (7)结束:整理好实验器材放回原处。 2.数据处理: 验证的表达式:m1·OP=m1·OM+m2·ON (二)方案二:研究气垫导轨上滑块碰撞时的动量守恒 本案例中,我们利用气垫导轨来减小摩擦力,利用光电计时器测量滑块碰撞前后的速度。实验装置如图所示,可以通过在滑块上添加已知质量的物块来改变碰撞物体的质量。 3 / 11

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

电荷库仑定律教学设计完整版

电荷库仑定律教学设计 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《电荷库仑定律》教学设计 教材:人教版高中物理选修1-1第1章第1节 课题:电荷库仑定律 课时:2课时 一、教材分析 1.库仑定律既是电荷间相互作用的基本规律,又是学习电场强度的基础,不仅要求学生定性知道,而且还要求定量了解和应用。 2.本节摩擦起电、两种电荷的相互作用、电荷量的概念初中已接触,已经有了一定的基础,在复习初中知识的基础上,应着重从原子结构的角度讲解物体带电的本质。 3.通过对使物体带电的方法接触起电、摩擦起电和感应起电的分析,让学生体会到使物体带电的实质是电子发生转移,从而打破了物体的电中性,失去电子的物体带上了正电荷,得到电子的物体带上了负电荷。过渡到电荷守恒定律,水到渠成,对高中学生而言很容易接受,进一步巩固守恒思想。 4.在分析思考的过程中学生体会到电荷守恒定律以及元电荷的概念。同时教学中渗透“透过现象看本质”的思想。 5.展示库仑定律的内容和库仑发现这一定律的过程,并强调该定律的条件和远大意义。 二、学情分析 学生在初中已经学习了电学的基本知识,为过渡到本节的学习起着铺垫作用,学生已具备了一定的探究能力、逻辑思维能力及推理演算能力。能在老师指导下通过观察、思考,发现一些问题和解决问题。因此有必要把初中学过的两种电荷及其相互作用、电荷量的概念、摩擦起电的知识复习一下。 三、教学方法分析及建议 1.在学生初中学习的基础上,可以通过演示实验或者媒体播放复习并巩固电荷的有关知识;先运用教材上给出的简单易行的实验,让学生观察摩擦后的塑料片之间的相互作用力,猜想作用力的大小跟哪些因素有关;然后通过实验定性验证猜想是否正确,并在这个基础上介绍库仑定律的发现过程。 2.讲解点电荷时,可以对照质点的概念进行讲解,要讲清点电荷是一种理想化的物理模型。 3.物理发展史上的重要概念及重大规律的建立都是经科学家艰辛的探索而完成的,都是对原有思维方式突破的结果,体现出了科学家的创造性。如何充分利用这宝贵的素材,需要教师创设问题情景对学生“诱思”、“导思”,在本节课中,对库仑定律得出过程进行了尝试。 4.利用“思考与讨论”的问题,比较库仑定律与万有引力定律的异同。 5.要做好演示实验,使学生清楚地知道什么是静电感应现象。在此基础上,使学生知道,感应起电不是创造了电荷,而是使物体中的正负电荷分开,使电荷从物体的一部分转移到另一部分,进一步说明电荷守恒定律。 四、教学目标 (一)知识与技能 1.了解人类对电现象的认识过程,体会人类探索自然规律的科学方法、科学态度和科学精神。 2.了解元电荷的大小,了解电荷守恒定律,知道摩擦起电和感应起电的实质不是创造电荷,而是电荷的转移。 3.理解库仑定律的含义和表达式,知道静电常量。了解库仑定律的适用条件,学习用库仑定律解决简单的问题。 4.渗透理想化思想,培养由实际问题进行简化抽象思维建立物理模型的能力。 (二)过程与方法 1.教师通过实验法、问题教学法启发学生理解抽象的电荷知识。

大学物理实验《用气垫导轨验证动量守恒定律》

实验八 用气垫导轨验证动量守恒定律 [实验目的] 1.观察弹性碰撞和完全非弹性碰撞现象。 2.验证碰撞过程中动量守恒和机械能守恒定律。 [实验仪器] 气垫导轨全套,MUJ-5C/5B 计时计数测速仪,物理天平。 [实验原理] 设两滑块的质量分别为m 1和m 2,碰撞前的速度为10v 和20v ,相碰后的速度为1v 和2v 。根据动量守恒定律,有 2211202101v m v m v m v m +=+ (1) 测出两滑块的质量和碰撞前后的速度,就可验证碰撞过程中动量是否守恒。其中10v 和20v 是在两个光电门处的瞬时速度,即x /t , t 越小此瞬时速度越准确。在实验里我们以挡 光片的宽度为x ,挡光片通过光电门的时间为t ,即有220110/,/t x v t x v ??=??=。 实验分两种情况进行: 1. 弹性碰撞 两滑块的相碰端装有缓冲弹簧,它们的碰撞可以看成是弹性碰撞。在碰撞过程中除了动量守恒外,它们的动能完全没有损失,也遵守机械能守恒定律,有 2 2 2211220221012 1212121v m v m v m v m +=+ (2) (1)若两个滑块质量相等,m 1=m 2=m ,且令m 2碰撞前静止,即20v =0。则由(1)、 (2)得到 1v =0, 2v =10v 即两个滑块将彼此交换速度。 (2)若两个滑块质量不相等,21m m ≠,仍令20v =0,则有 2211101v m v m v m += 及 22221121012 12121v m v m v m += 可得

1021211v m m m m v +-= , 102 11 22v m m m v += 当m 1m 2时,两滑块相碰后,二者沿相同的速度方向(与10v 相同)运动;当m 1 m 2 时,二者相碰后运动的速度方向相反,m 1将反向,速度应为负值。 2. 完全非弹性碰撞 将两滑块上的缓冲弹簧取去。在滑块的相碰端装上尼龙扣。相碰后尼龙扣将两滑块扣在一起,具有同一运动速度,即 v v v ==21 仍令020=v 则有 v )m m (v m 21101+= 所以 102 11 v m m m v += 当m 2=m 1时,102 1 v v = 。即两滑块扣在一起后,质量增加一倍,速度为原来的一半。 [实验内容] 1.安装好光电门,光电门指针之间的距离约为50cm 。导轨通气后,调节导轨水平,使滑块作匀速直线运动。计数器处于正常工作状态,设定挡光片宽度为厘米,功能设定在“碰撞”位置。调节天平,称出两滑块的质量m 1和m 2。 2.完全非弹性碰撞 (1)在两滑块的相碰端安置有尼龙扣,碰撞后两滑块粘在一起运动,因动量守恒,即 v m m v m )(21101+= (2) 在碰撞前,将一个滑块(例如质量为m 2)放在两光电门中间,使它静止(020=v ),将另一个滑块(例如质量为m 1)放在导轨的一端,轻轻将它推向m 2滑块,记录10v 。 (3) 两滑块相碰后,它们粘在一起以速度v 向前运动,记录挡光片通过光电门的速度v 。 (4) 按上述步骤重复数次,计算碰撞前后的动量,验证是否守恒。 可考察当m 1=m 2的情况,重复进行。 3.弹性碰撞 在两滑块的相碰端有缓冲弹簧,当滑块相碰时,由于缓冲弹簧发生弹性形变后恢复原状,在碰撞前后,系统的机械能近似保持不变。仍设020=v ,则有 2211101v m v m v m +=

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

相关文档
最新文档