七年级数学竞赛讲义附练习及答案

七年级数学竞赛讲义附练习及答案
七年级数学竞赛讲义附练习及答案

七年级数学竞赛讲义附练习及答案(12套)

初一数学竞赛讲座

第1讲数论的方法技巧(上)

数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重.

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有:

1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的.

特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数.

2.若a|c,b|c,且a,b互质,则ab|c.

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即

其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的. (1)式称为n的质因数分解或标准分解.

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:

d(n)=(a1+1)(a2+1)…(a k+1).

5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的.

下面,我们将按解数论题的方法技巧来分类讲解.

一、利用整数的各种表示法

对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有:

1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0;

2.带余形式:a=bq+r ;

4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数.

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字?

解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位

数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是:

990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222.

比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2.

所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8.

例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来.

解:依题意,得

a+b+c >14,

说明:求解本题所用的基本知识是,正整数的十进制表示法和最简单的不定方程.

例3 从自然数1,2,3,…,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?

解:设a ,b ,c ,d 是所取出的数中的任意4个数,则a+b+c=18m ,a+b+d=18n ,其中m ,n 是自然数. 于是c-d=18(m-n ).

上式说明所取出的数中任意2个数之差是18的倍数,即所取出的每个数除以18所得的余数均相同. 设这个余数为r ,则a=18a 1+r ,b=18b 1+r ,c=18c 1+r , 其中a 1,b 1,c 1是整数. 于是a+b+c=18(a 1+b 1+c 1)+3r.

因为18|(a+b+c ),所以18|3r ,即6|r ,推知r=0,6,12. 因为1000=55×18+10,所以,从1,2,…,1000中可取6,24,42,…,996共56个数,它们中的任意3个数之和能被18整除.

例4 求自然数N ,使得它能被5和49整除,并且包括1和N 在内,它共有10个约数.

解:把数N 写成质因数乘积的形式:N=n a

n a a a a P ?????Λ43217532

由于N 能被5和72=49整除,故a 3≥1,a 4≥2,其余的指数a k 为自然数或零. 依题意,有(a 1+1)(a 2+1)…(a n +1)=10.

由于a 3+1≥2,a 4+1≥3,且10=2×5,故a 1+1=a 2+1=a 5+1=…=a n +1=1, 即a 1=a 2=a 5=…a n =0,N 只能有2个不同的质因数5和7,因为a 4+1≥3>2,故由(a 3+1)(a 4+1)=10知,a 3+1=5,a 4+1=2是不可能的. 因而a 3+1=2,a 4+1=5,即N=52-1×75-1=5×74=12005.

例5 如果N 是1,2,3,…,1998,1999,2000的最小公倍数,那么N 等于多少个2与1个奇数的积?

解:因为210=1024,211=2048>2000,每一个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=210,所以,N 等于10个2与某个奇数的积.

说明:上述5例都是根据题目的自身特点,从选择恰当的整数表示形式入手,使问题迎刃而解.

二、枚举法

枚举法(也称为穷举法)是把讨论的对象分成若干种情况(分类),然后对各种情况逐一讨论,最终解决整个问题.

运用枚举法有时要进行恰当的分类,分类的原则是不重不漏. 正确的分类有助于暴露问题的本质,降低问题的难度. 数论中最常用的分类方法有按模的余数分类,按奇偶性分类及按数值的大小分类等.

例6 求这样的三位数,它除以11所得的余数等于它的三个数字的平方和. 分析与解:三位数只有900个,可用枚举法解决,枚举时可先估计有关量的范围,以缩小讨论范围,减少计算量.

设这个三位数的百位、十位、个位的数字分别为x,y,z. 由于任何数除以11所得余数都不大于10,所以x2+y2+z2≤10,

从而1≤x≤3,0≤y≤3,0≤z≤3. 所求三位数必在以下数中:

100,101,102,103,110,111,112,120,121,122,130,200,201,202,211,212,220,221,300,301,310.

不难验证只有100,101两个数符合要求.

例7 将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数. 问:小于2000的自然数中有多少个魔术数?

解:设P为任意一个自然数,将魔术数N(N<2000=接后得PN,下面对N 为一位数、两位数、三位数、四位数分别讨论.

⑴当N为一位数时,PN=10P+N,依题意N︱PN,则N︱10P,由于需对任意数P成立,故N︱10,所以N=1,2,5;

⑵当N为两位数时,PN=100P+N,依题意N︱PN,则N︱100P,故N|100,所以N=10,20,25,50;

⑶当N为三位数时,PN=1000P+N,依题意N︱PN,则N︱1000P,故N|1000,

所以N=100,125,200,250,500;

⑷当N为四位数时,同理可得N=1000,1250,2000,2500,5000. 符合条件的有1000,1250.

综上所述,魔术数的个数为14个.

说明:(1)我们可以证明:k位魔术数一定是10k的约数,反之亦然.

(2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题容易解决.

例8 有3张扑克牌,牌面数字都在10以内. 把这3张牌洗好后,分别发给小明、小亮、小光3人. 每个人把自己牌的数字记下后,再重新洗牌、发牌、记数,这样反复几次后,3人各自记录的数字的和顺次为13,15,23. 问:这3张牌的数字分别是多少?

解:13+15+23=51,51=3×17.

因为17>13,摸17次是不可能的,所以摸了 3次, 3张扑克牌数字之和是17,可能的情况有下面15种:

①1,6,10 ②1,7,9 ③1,8,8 ④2,5,10 ⑤2,6,9

⑥2,7,8 ⑦3,4,10 ⑧3,5,9 ⑨3,6,8 ⑩3,7,7

(11)4,4,9 (12)4,5,8 (13)4,6,7 (14)5,5,7 (15)5,6,6

只有第⑧种情况可以满足题目要求,即3+5+5=13;3+3+9=15;5+9+9=23.

这3张牌的数字分别是3,5和9.

例9 写出12个都是合数的连续自然数.

分析一:在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96. 我们把筛选法继续运用下去,把考查的范围扩大一些就行了.

解法1:用筛选法可以求得在113与127之间共有12个都是合数的连续自然数:

114,115,116,117,118,119,120,121,122,123,124,125,126.

分析二:如果12个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数……第12个是13的倍数,那么这12个数就都是合数.

又m+2,m+3,…,m+13是12个连续整数,故只要m是2,3,…,13的公倍数,这12个连续整数就一定都是合数.

解法2:设m为2,3,4,…,13这12个数的最小公倍数. m+2,m+3,m+4,…,m+13分别是2的倍数,3的倍数,4的倍数……13的倍数,因此12个数都是合数.

说明:我们还可以写出13!+2,13!+3,…,13!+13(其中n!=1×2×3×…×n)这12个连续合数来.

同样,(m+1)!+2,(m+1)!+3,…,(m+1)!+m+1是m个连续的合数.

三、归纳法

当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径. 这种从特殊到一般的思维方法称为归纳法.

例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作:

(1)将左边第一个数码移到数字串的最右边;

(2)从左到右两位一节组成若干个两位数;

(3)划去这些两位数中的合数;

(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;

(5)所余的两位质数保持数码次序又组成一个新的数字串.

问:经过1999次操作,所得的数字串是什么?

解:第1次操作得数字串711131131737;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173.

不难看出,后面以4次为周期循环,1999=4×499+3,所以第1999次操作所得数字串与第7次相同,是3117.

例11 有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张卡片舍去,把下一张卡片放在这一摞卡片的最下面. 再把原来的第三张卡片舍去,把下一张卡片放在最下面. 反复这样做,直到手中只剩下一张卡片,那么剩下的这张卡片是原来那一摞卡片的第几张?

分析与解:可以从简单的不失题目性质的问题入手,寻找规律. 列表如下:

设这一摞卡片的张数为N,观察上表可知:

(1)当N=2a(a=0,1,2,3,…)时,剩下的这张卡片是原来那一摞卡片的最后一张,即第2a张;

(2)当N=2a+m(m<2a)时,剩下的这张卡片是原来那一摞卡片的第2m张.

取N=100,因为100=26+36,2×36=72,所以剩下这张卡片是原来那一摞卡

片的第72张.

说明:此题实质上是著名的约瑟夫斯问题:传说古代有一批人被蛮族俘虏了,敌人命令他们排成圆圈,编上号码1,2,3,…然后把1号杀了,把3号杀了,总之每隔一个人杀一个人,最后剩下一个人,这个人就是约瑟夫斯. 如果这批俘虏有111人,那么约瑟夫斯的号码是多少?

例12要用天平称出1克、2克、3克……40克这些不同的整数克重量,至少要用多少个砝码?这些砝码的重量分别是多少?

分析与解:一般天平两边都可放砝码,我们从最简单的情形开始研究.

(1)称重1克,只能用一个1克的砝码,故1克的一个砝码是必须的.

(2)称重2克,有3种方案:

①增加一个1克的砝码;

②用一个2克的砝码;

③用一个3克的砝码,称重时,把一个1克的砝码放在称重盘内,把3克的砝码放在砝码盘内. 从数学角度看,就是利用3-1=2.

(3)称重3克,用上面的②③两个方案,不用再增加砝码,因此方案①淘汰.

(4)称重4克,用上面的方案③,不用再增加砝码,因此方案②也被淘汰. 总之,用1克、3克两个砝码就可以称出(3+1)克以内的任意整数克重.

(5)接着思索可以进行一次飞跃,称重5克时可以利用:9-(3+1)=5,

即用一个9克重的砝码放在砝码盘内,1克、3克两个砝码放在称重盘内. 这样,可以依次称到1+3+9=13(克)以内的任意整数克重. 而要称14克时,按上述规律增加一个砝码,其重为:14+13=27(克),可以称到1+3+9+27=40(克)以内的任意整数克重.

总之,砝码的重量为1,3,32,33克时,所用砝码最少,称重最大,这也

是本题的答案.

这个结论显然可以推广,当天平两端都可放砝码时,使用1,3,

这是使用砝码最少、称重最大的砝码重量设计方案.

练习1

1.已知某个四位数的十位数字减去1等于其个位数字,个位数字加2等于百位数字,这个四位数的数字反着顺序排列成的数与原数之和等于9878. 试求这个四位数.

3.设n是满足下列条件的最小自然数:它们是75的倍数且恰有75

4.不能写成两个奇合数之和的最大偶数是多少?

5.把1,2,3,4,…,999这999个数均匀排成一个大圆圈,从1开始数:隔

过1划掉2,3,隔过4,划掉5,6……这样每隔一个数划掉两个数,转圈划下去. 问:最后剩下哪个数?为什么?

6.圆周上放有N枚棋子,如下图所示,B点的一枚棋子紧邻A点的棋子. 小洪首先拿走B点处的1枚棋子,然后顺时针每隔1枚拿走2枚棋子,连续转了10周,

9次越过A. 当将要第10次越过A处棋子取走其它棋子时,小洪

发现圆周上余下20多枚棋子. 若N是14的倍数,则圆周上还有

多少枚棋子?

7.用0,1,2,3,4五个数字组成四位数,每个四位数中均

没有重复数字(如1023,2341),求全体这样的四位数之和.

8.有27个国家参加一次国际会议,每个国家有2名代表. 求证:不可能将54位代表安排在一张圆桌的周围就座,使得任一国的2位代表之间都夹有9个人.

练习1答案:

1.1987.

(a+d)×1000+(b+c)×110+(a+d)= 9878.

比较等式两边,并注意到数字和及其进位的特点,可知:a+d=8,b+c=17.

已知c-1=d,d+2=b,可求得:a=1,b=9,c=8,d=7.

即所求的四位数为1987.

2.1324,1423,2314,2413,3412,共5个.

3.432.

解:为保证n是75的倍数而又尽可能地小,因为75=3×5×5,所以可设n 有三个质因数2,3,5,即n=2α×3β×5γ,其中α≥0,β≥1,γ≥2,并且

(α+1)(β+1)(γ+1)=75.

易知当α=β=4,γ=2时,符合题设条件. 此时

4.38.

解:小于38的奇合数是9,15,21,25,27,33.

38不能表示成它们之中任二者之和,而大于38的偶数A,皆可表示为二奇合数之和:A末位是0,则A=15+5n;A末位是2,则A=27+5n;A末位是4,则A=9+5n;A末位是6,则A=21+5n;A末位是8,则A=33+5n .

其中n为大于1的奇数. 因此,38即为所求.

5.406.

解:从特殊情况入手,可归纳出:如果是3n个数(n为自然数),那么划1圈剩下3n-1个数,划2圈剩下3n-2个数……划(n-1)圈就剩3个数,再划1圈,最后剩下的还是起始数1.

36<999<37,从999个数中划掉(999-36=)270个数,剩下的(36=)729个数,

即可运用上述结论.

因为每次划掉的是2个数,所以划掉270个数必须划135次,这时划掉的第270个数是(135×3=)405,则留下的36个数的起始数为406. 所以最后剩下的那个数是406.

6.23枚.

解:设圆周上余a枚棋子. 因为从第9次越过A处拿走2枚棋子到第10次将要越过A处棋子时小洪拿走了2a枚棋子,所以,在第9次将要越过A处棋子

时,圆周上有3a枚棋子. 依此类推,在第8次将要越过A处棋子时,圆周上有32a枚棋子……在第1次将要越过A处棋子时,圆周上有39a枚棋子,在第1次将要越过A处棋子之前,小洪拿走了[2(39a-1)+1]枚棋子,所以N=2(39a-1)+1+39a=310a-1.

若N=310a=59049a-1是14的倍数,则N就是2和7的公倍数,所以a必须是奇数;

若N=(7×8435+4)a-1=7×8435a+4a-1是7的倍数,则4a-1必须是7的倍数,当a=21,25,27,29时,4a-1不是7的倍数,当a=23时,4a-1=91=7×13,是7的倍数.

当N是14的倍数时,圆周上有23枚棋子.

7.259980.

解:用十进位制表示的若干个四位数之和的加法原理为:

若干个四位数之和=千位数数字之和×1000+百位数数字之和×100+十位数数字之和×10+个位数数字之和.

以1,2,3,4中之一为千位数,且满足题设条件的四位数有4×3×2=24(个). 这是因为,当千位数确定后,百位数可以在其余4个数字中选择;千、百位数确定后,十位数可以在其余3个数字中选择;同理,个位数有2种可能. 因此,满足条件的四位数的千位数数字之和为(1+2+3+4)×4×3×2=240.

以1,2,3,4中之一为百位数时,因为0不能作为千位,所以千位数也有3种选择;十位数也有3种选择(加上0);个位数有2种选择. 因此,百位数数字之和=(1+2+3+4)×18=180. 同理,十位数数字之和、个位数数字之和都是180.

所以满足条件的四位数之和为240×1000+180×(1+10+100)= 259980.

8.将54个座位按逆时针编号:1,2,…,54. 由于是围圆桌就座,所以从1号起,逆时针转到55,就相当于1号座;转到56,就相当于2号座;如此下去,显然转到m,就相当于m被54所除的余数号座.

设想满足要求的安排是存在的. 不妨设1和11是同一国的代表,由于任一国只有2名代表,于是11和21不是同一国代表,下面的排法是:21和31是同一国的代表;31和41不是同一国的代表;41和51是同一国的代表;51和61不是同一国的代表(61即7号座).

由此,20k+1和20k+11是同一国的代表,若20k+1,20k+11大于54,则取这个数被54除的余数为号码的座位.

取k=13,则261和271是同一国的,而261被54除的余数是45,271被54除的余数是1,这就是说,1号座与45号座是同一国的代表,而我们已设1号与11号座是同一国的代表. 这样,1号、11号、45号的三位代表是同一国的,这是不可能的. 所以题目要求的安排不可能实现.

初一数学竞赛讲座

第2讲数论的方法技巧(下)

四、反证法

反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的.

反证法的过程可简述为以下三个步骤:

1.反设:假设所要证明的结论不成立,而其反面成立;

2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾;

3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.

运用反证法的关键在于导致矛盾. 在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的.

解:如果存在这样的三位数,那么就有

100a+10b+c=(10a+b)+(10b+c)+(10a+c). 上式可化简为 80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9. 这表明所找的数是不存在的.

说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾.

例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加. 试说明,得到的和中至少有一个数字是偶数.

解:假设得到的和中没有一个数字是偶数,即全是奇数. 在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此

第二列数字的和b+c≤9. 将已知数的前两位数字a,b与末两位数

字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数

与它相加,和的数字都是奇数”这一性质. 照此进行,每次去掉首

末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾. 故和的数字中必有偶数.

说明:显然结论对(4k+1)位数也成立. 但对其他位数的数不一定成立. 如12+21,506+605等.

例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币. 小红由1枚1分硬币和1枚5分硬币开始,反复将硬币塞入机器,能否在某一时刻,小红手中1分的硬币刚好比1角的硬币少10枚?

解:开始只有1枚1分硬币,没有1角的,所以开始时1角的和1分的总枚数为 0+1=1,这是奇数. 每使用一次该机器,1分与1角的总枚数记为Q. 下面考查Q的奇偶性.

如果塞入1枚1分的硬币,那么Q暂时减少1,但我们取回了1枚1角的硬币(和1枚5分的硬币),所以总数Q没有变化;如果再塞入1枚5分的硬币(得到4枚1角硬币),那么Q增加4,而其奇偶性不变;如果塞入1枚1角硬币,那么Q增加2,其奇偶性也不变. 所以每使用一次机器,Q的奇偶性不变,因为开始时Q为奇数,它将一直保持为奇数.

这样,我们就不可能得到1分硬币的枚数刚好比1角硬币数少 10的情况,因为如果我们有P枚1分硬币和(P+10)枚1角硬币,那么1分和1角硬币的总枚数为(2P+10),这是一个偶数. 矛盾.

例 4在3×3的方格表中已如右图填入了9个质数. 将表中

同一行或同一列的3个数加上相同的自然数称为一次操作. 问:

你能通过若干次操作使得表中9个数都变为相同的数吗?为什么?

解:因为表中9个质数之和恰为100,被3除余1,经过每一

次操作,总和增加3的倍数,所以表中9个数之和除以3总是余1. 如果表中9个数变为相等,那么9个数的总和应能被3整除,这就得出矛盾!

所以,无论经过多少次操作,表中的数都不会变为9个相同的数.

五、构造法

构造法是一种重要的数学方法,它灵活多样,数论中的许多问题都可以通过构造某些特殊结构、特殊性质的整数或整数的组合来解决.

例5 9999和99!能否表示成为99个连续的奇自然数之和?

解:9999能. 因为9999等于99个9998之和,所以可以直接构造如下:

9999=(9998-98)+(9998-96)+…=(9998-2)+9998+(9998+2)+…=(9998+96)+(9998+98).

99!不能. 因为99!为偶数,而99个奇数之和为奇数,所以99!不能表示为99个连续奇数之和.

说明:利用构造法证明存在性问题,只要把满足题设要求的数学对象构造出来就行.

例6 从1,2,3,…,999这999个数中,要求划去尽量少的数,使得余下的数中每一个数都不等于另外两个数的乘积. 应划去哪些数?

解:我们可划去2,3,…,30,31这30个数,因为划去了上述这30个数之后,余下的数中,除1以外的任何两个数之积将大于322

=1024>999. 另一方面,可以通过构造三元数组来证明30是最少的个数.

(2,61,2×61),(3,60,3×60),(4,59,4×59),…, (30,33,30×33),(31,32,31×32).

上面写出的这些数都是互不相同的,并且这些数中的最大数为 31×32=992. 如果划去的数少于30个,那么上述三元数组至少剩下一个,这样就不满足题设条件. 所以,30是最少的个数.

六、配对法

配对的形式是多样的,有数字的凑整配对,也有集合间元素与元素的配对(可用于计数). 传说高斯8岁时求和(1+2+…+100)首创了配对. 像高斯那样,善于使用配对技巧,常常能使一些表面上看来很麻烦,甚至很棘手的问题迎刃而解. 例7 求1,2,3,…,9999998,9999999这9999999个数中所有数码的和. 解:在这些数前面添一个数0,并不影响所有数码的和. 将这1000万个数两两配对,因为0与9999999,1与9999998,…,4999999与5000000各对的数码和都是9×7=63. 这里共有5000000对,故所有数码的和是63×5000000=315000000.

例8 某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号. 若号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”. 例如号码 0734,因 0+7=3+4,所以这个号码的购物券是幸运券. 试说明,这个商场所发的购物券中,所有幸运券的号码之和能被101整除.

解:显然,号码为9999的是幸运券,除这张幸运券外,如果某个号码n 是幸运券,那么号码为m=9999-n 的购物券也是幸运券. 由于9999是奇数,所以m ≠n.

由于m+n=9999,相加时不出现进位,所以除去号码是9999这张幸运券之外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的倍数.

因为9999=99×101,所以所有幸运券号码之和能被101整除.

例9已知最简分数n m 可以表示成: 88

131211++++=Λn m . 试说明分子m 是质数89的倍数.

解法一:仿照高斯求和(1+2+3+…+n )的办法,将和

①②两式相加,得

从而2m ×88!=89×k (k 是正整数).

因为89为奇质数,所以89不能整除 88!,从而89|m.

解法二:作配对处理 ??? ???++?+?=??? ??+++??? ??++??? ??+=4544187

21881189451441871218811ΛΛn m 将括号内的分数进行通分,其公分母为1×88×2×87×3×86×…×44×45=88!,

从而m ×88!=89×k (k=n ×q ).

因为89为奇质数,所以89不能整除88!,从而89|m.

七、估计法

估计法是用不等式放大或缩小的方法来确定某个数或整个算式的取值范围,以获取有关量的本质特征,达到解题的目的.

在数论问题中,一个有限范围内的整数至多有有限个,过渡到整数,就能够对可能的情况逐一检验,以确定问题的解.

例10已知一个整数等于4个不同的形如1

+m m (m 是整数)的真分数之和,求这个数,并求出满足题意的5组不同的真分数.

解:因每一真分数满足11

21<+≤m m ,而所求的数整S 是四个不同的真分数之和,因此2<S <4,推知S=3. 于是可得如下5组不同的真分数:

??????????????????????????????1211,65,43,21,2019,54,43,21,1514,109,32,21,2423,87,32,21,4241,76,32,21 例11 已知在乘积1×2×3×…×n 的尾部恰好有106个连续的零,求自然数n 的最大值.

分析:若已知n 的具体数值,求1×2×…×n 的尾部零的个数,则比较容易解决,现在反过来知道尾部零的个数,求n 的值,不大好处理,我们可以先估计n 大约是多少,然后再仔细确定n 的值.

解:当n =400时,数1,2,3,…,400中共有805400=

??

????个数是5的倍数,其中有1654002=??????个数是52的倍数,有354002=??

????个数是5

3的倍数. 因此,乘积1×2×3×…×400中含质因数5的个数为80+16+3=99(个). 又乘积中质因数2的个数多于5的个数,故n=400时,1×2×…×n 的尾部有99个零,还需 7个零,注意到425中含有2个质因数5,所以

当n=430时,1×2×…×n 的尾部有106个零;

当n=435时,1×2×…×n 的尾部有107个零.

因此,n 的最大值为434.

练习2

1.将两个自然数的差乘上它们的积,能否得到数45045?

2.如下图,给定两张3×3方格纸,并且在每

一方格内填上“+”或“-”号. 现在对方格纸中任

何一行或一列进行全部变号的操作. 问:可否经过

若干次操作,使图(1)变成图(2)? 3.你能在3×3的方格表中每个格子里都填一 个自然数,使得每行、每列及两条对角线上的三数之和都等于1999吗?若能,请举出一例;若不能,请说明理由.

示,求出表达式;若不能表示,请给出证明.

5.公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的. 试说明,所有幸运车票号码的和能被13整除.

6.N 是由5个不同的非零数字组成的五位数,且N 等于这5个数字中取3个不同数字构成的所有三位数的和,求出所有的这种五位数N.

7.证明:没有最大的质数.

练习2 答案:

1.不可能. 因为45045是奇数,所以它只能表示成3个奇数的连乘积,但是对任何两个奇数x 和y (x <y )来说,y-x 都是偶数,从而45045≠xy (x-y ). 而如果x 和y 中有偶数,则亦不可能.

2.不能. 假设图(1)在第一、二、三行经过m 1,m 2,m 3次操作,而第一、

二、三列经过n 1,n 2,n 3次操作变成图(2). 由于图(1)和图(2)左上角符号相反,而从“+”号变到“-”号要进行奇数次变号,故(m 1+n 1)是奇数. 同理(m 1+n 2)是偶数,(m 2+n 1),(m 2+n 2)都是奇数. 这样(m 1+n 1)+(m 1+n 2)

+(m 2+n 1)+(m 2+n 2)是奇数. 但这个和又等于2(m 1+m 2+n 1+n 2),是偶数,矛盾.

3.不能. 若能填入九个自然数a 1,a 2,…,a 8,a 9满足题

设条件(如图所示),则有a 1+a 5+a 9=1999,a 2+a 5+a 8=1999,

a 3+a 5+a 7=1999,a 4+a 5+a 6=1999.

相加得(a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9)+3a 5=4×1999,

而a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9=3×1999,所以3a 5=1999,

a 5=31999与a 5是自然数矛盾. 4.19991949;398414813327+=不能. 解:因为 3984

14811283411241128641831283412783473327+=??+?=??+=???=?= 所以3327能表示成m

l 11+的形式,且398414813327+=. 将一切形如m

l 11+的数(其中m l ,为大于1的自然数),从大到小排列,前几项为4

34121,653121,12121=+=+=+. 显然,凡界于65与1之间的分数p q 不能表示成m l 11+的形式,而1999

1949却界于65与1之间,所以不能表示成m

l 11+的形式. 5.解:设幸运车票的号码为A ,则号码为A ′=999999-A 的车票也是幸运的,并且A ′≠A (因为999999是奇数),因而A+A ′=1001×999=13×77×999能被 13整除. 所以,所有幸运车票号码的和也能被13整除.

6.35964.

=(a 1+a 2+a 3+a 4+a 5)(100×12+10×12+12)

=1332(a 1+a 2+a 3+a 4+a 5).

应是1332×9=11988的倍数. 又15=1+2+3+4+5≤a 1+a 2+a 3+a 4+a 5≤9+8+7+6+5=35,

所以a 1+a 2+a 3+a 4+a 5只能为18,27.

当a 1+a 2+a 3+a 4+a 5=18时,

但2+3+9+7+6≠18,不合题意;

当a 1+a 2+a 3+a 4+a 5=27时,符合题意.

所以,所求的五位数为35964.

7.证明:假设有最大质数P. 将所有小于等于P的质数相乘再加1,所得结果如果是质数,那么这个质数大于P,与假设矛盾;所得结果如果不是质数,那么它的每一个质因数都不同于小于等于P的质数,也就是说这些质因数都是大于P的质数,与假设矛盾. 所以假设不成立,即没有最大的质数.

8.9504.

解:若先依次计算

的值再求和,则很繁杂. 我们的解法是采用配对,这也是求和的一种有效技巧.

=199,(这里{x}=x[x])

同理可知

我们有

=198×48=9504.

初一数学竞赛讲座

第3讲奇偶分析

我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类. 被2除余1的属于一类,被2整除的属于另一类. 前一类中的数叫做奇数,后一类中的数叫做偶数. 关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等. 灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题. 用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果.

例1 右表中有15个数,选出5个数,使它们

的和等于30,你能做到吗?为什么?

分析与解:如果一个一个去找、去试、去算,

那就太费事了. 因为无论你选择哪5个数,它们的

和总不等于30,而且你还不敢马上断言这是做不到的. 最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的.

例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面). 小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加. 试问,小丽所加得的和数能否为2000?

解:不能.

由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000.

说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结.

例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同. 试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由.

解:不能.

如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数. 所以这98个号码数的总和是个偶数,但是这98个数的总和为

1+2+…+98=99×49,是个奇数,矛盾!所以不能按要求排成.

例4 如右图,把图中的圆圈任意涂上红色或蓝色.

问:有无可能使得在同一条直线上的红圈数都是奇数?

请说明理由.

解:不可能.

如果每条直线上的红圈数都是奇数,而五角星有五

条边,奇数个奇数之和为奇数,那么五条线上的红圈共

有奇数个(包括重复的). 从另一个角度看,由于每个

圆圈是两条直线的交点,则每个圆圈都要计算两次,因

此,每个红圈也都算了两次,总个数应为偶数,得出矛盾. 所以,不可能使得在同一条直线上的红圈数都是奇数.

说明:上述两题都是从两个不同的角度去分析处理同一个量,而引出矛盾的.

例5 有20个1升的容器,分别盛有1,2,3,…,20厘米3水. 允许由容器A向容器B倒进与B容器内相同的水(在A中的水不少于B中水的条件下). 问:在若干次倒水以后能否使其中11个容器中各有11厘米3的水?

解:不可能.

在倒水以后,含奇数立方厘米水的容器数是不会增加的. 事实上以(偶,偶)(偶,奇)(奇,奇)来表示两个分别盛有偶数及偶数,偶数及奇数,奇数及奇数立方厘米水的容器. 于是在题中条件限制下,在倒水后,(偶,偶)仍为(偶,偶);而(偶,奇)会成为(偶,奇)或(奇,偶);(奇,奇)却成为(偶,偶). 在任何情况下,盛奇数立方厘米水的容器没有多出来.

因为开始时有10个容器里盛有奇数立方厘米的水,所以不会出现有11个盛有奇数立方厘米水的容器.

例6 一个俱乐部里的成员只有两种人:一种是老实人,

永远说真话;一种是骗子,永远说假话. 某天俱乐部的全

体成员围坐成一圈,每个老实人两旁都是骗子,每个骗子

两旁都是老实人. 外来一位记者问俱乐部的成员张三:

“俱乐部里共有多少成员?”张三答:“共有45人. ”

另一个成员李四说:“张三是老实人. ”请判断李四是老

实人还是骗子?

分析与解:根据俱乐部的全体成员围坐一圈,每个老实人两旁都是骗子,每个骗子两旁都是老实人的条件,可知俱乐部中的老实人与骗子的人数相等,也就是说俱乐部的全体成员总和是偶数. 而张三说共有45人是奇数,这说明张三是骗子,而李四说张三是老实人,说了假话,所以李四也是骗子.

说明:解答此题的关键在于根据题设条件导出老实人与骗子的人数相等,这里实质上利用了对应的思想.

类似的问题是:

围棋盘上有19×19个交叉点,现在放满了黑子与白子,且黑子与白子相间地放,并使黑子(或白子)的上、下、左、右的交叉点上放着白子(或黑子). 问:能否把黑子全移到原来的白子的位置上,而白子也全移到原来黑子的位置上?

提示:仿例6. 答:不能.

例7 某市五年级99名同学参加数学竞赛,竞赛题共30道,评分标准是基础分15分,答对一道加5分,不答记1分,答错一道倒扣1分. 问:所有参赛同学得分总和是奇数还是偶数?

解:对每个参赛同学来说,每题都答对共可得165分,是奇数. 如答错一题,就要从165分中减去6分,不管错几道,6的倍数都是偶数,165减去偶数,差还是奇数. 同样道理,如有一题不答,就要减去4分,并且不管有几道题不答,4的倍数都是偶数,因此,从总分中减去的仍是偶数,所以每个同学的得分为奇数. 而奇数个奇数之和仍为奇数,故99名同学得分总和一定是奇数.

例8 现有足够多的苹果、梨、桔子三种水果,最少要分成多少堆(每堆都有苹果、梨和桔子三种水果),才能保证找得到这样的两堆,把这两堆合并后这三种水

果的个数都是偶数.

分析与解:当每堆都含有三种水果时,三种水果的奇偶情况如下表:

可见,三种水果的奇偶情况共有8种可能,所以必须最少分成9堆,才能保证有两堆的三种水果的奇偶性完全相同,把这两堆合并后这三种水果的个数都是偶数.

说明:这里把分堆后三种水果的奇偶情况一一列举出来,使问题一目了然.

例9 有30枚2分硬币和8枚5分硬币,5角以内共有49种不同的币值,哪几种币值不能由上面38枚硬币组成?

解:当币值为偶数时,可以用若干枚2分硬币组成;

当币值为奇数时,除1分和3分这两种币值外,其余的都可以用1枚5分和若干枚2分硬币组成,所以5角以下的不同币值,只有1分和3分这两种币值不能由题目给出的硬币组成.

说明:将全体整数分为奇数与偶数两类,分而治之,逐一讨论,是解决整数问题的常用方法.

若偶数用2k表示,奇数用2k+1表示,则上述讨论可用数学式子更为直观地表示如下:

当币值为偶数时,2k说明可用若干枚2分硬币表示;

当币值为奇数时,2k+1=2(k-2)+5,

其中k≥2. 当k=0,1时,2k+1=1,3. 1分和3分硬币不能由2分和5分硬币组成,而其他币值均可由2分和5分硬币组成.

例10 设标有A,B,C,D,E,F,G的7盏灯顺次排成一行,每盏灯安装一个开关. 现在A,C,D,G这4盏灯亮着,其余3盏灯没亮. 小华从灯A开始顺次拉动开关,即从A到G,再从A开始顺次拉动开关,他这样拉动了999次开关后,哪些灯亮着,哪些灯没亮?

解:一盏灯的开关被拉动奇数次后,将改变原来的状态,即亮的变成熄的,熄的变成亮的;而一盏灯的开关被拉动偶数次后,不改变原来的状态. 由于999=7×142+5,

因此,灯A,B,C,D,E各被拉动143次开关,灯F,G各被拉动142次开关. 所以,当小华拉动999次后B,E,G亮,而A,C,D,F熄.

例11 桌上放有77枚正面朝下的硬币,第1次翻动77枚,第2次翻动其中的76枚,第3次翻动其中的75枚……第77次翻动其中的1枚. 按这样的方法翻动硬币,能否使桌上所有的77枚硬币都正面朝上?说明你的理由.

分析:对每一枚硬币来说,只要翻动奇数次,就可使原先朝下的一面朝上. 这一事实,对我们解决这个问题起着关键性作用.

解:按规定的翻动,共翻动1+2+…+77=77×39次,平均每枚硬币翻动了39次,这是奇数. 因此,对每一枚硬币来说,都可以使原先朝下的一面翻朝上. 注意到:

77×39=77+(76+1)+(75+2)+…+(39+38),

根据规定,可以设计如下的翻动方法:

第1次翻动77枚,可以将每枚硬币都翻动一次;第2次与第77次共翻动77枚,又可将每枚硬币都翻动一次;同理,第3次与第76次,第4次与第75次……第39次与第40次都可将每枚硬币各翻动一次. 这样每枚硬币都翻动了39次,都由正面朝下变为正面朝上.

说明:(1)此题也可从简单情形入手(如9枚硬币的情形),按规定的翻法翻动硬币,从中获得启发.

(2)对有关正、反,开、关等实际问题通常可化为用奇偶数关系讨论.

例12 在8×8的棋盘的左下角放有9枚棋子,组成一个3×3的正方形(如左下图). 规定每枚棋子可以跳过它身边的另一枚棋子到一个空着的方格,即可以以它旁边的棋子为中心作对称运动,可以横跳、竖跳或沿着斜线跳(如右下图的1号棋子可以跳到2,3,4号位置). 问:这些棋子能否跳到棋盘的右上角(另一个3×3的正方形)?

解:自左下角起,每一个方格可以用一组数(行标、列标)来表示,(自下而上)第i行、(自左而右)第j列的方格记为(i,j). 问题的关键是考虑9枚棋子(所在方格)的列标的和S.

一方面,每跳一次,S增加0或偶数,因而S的奇偶性不变. 另一方面,右上角9个方格的列标的和比左下角9个方格的列标之和大

3×(6+7+8)-3×(1+2+3)=45,

这是一个奇数.

综合以上两方面可知9枚棋子不能跳至右上角的那个3×3的正方形里.

奇偶分析作为一种分析问题、处理问题的方法,在数学中有广泛的应用,是处理存在性问题的有力工具,本讲所举例题大多属于这类问题. 这种方法具有很强的技巧性,尤其是选择什么量进行奇偶分析往往是很困难的. 选准了,只须依据奇偶数的性质,分析这个量的奇偶特征,问题便迎刃而解;选不好,事倍功半. 同学们应认真领会本讲所举例题,以把握选择合适的量进行奇偶分析的技巧.

练习3

1.下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?

□+□=□□-□=□

□×□=□□÷□=□

2.任意取出1234个连续自然数,它们的总和是奇数还是偶数?

3.一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每一个数都是前两个数的和. 如右所示:1,1,2,3,5,8,13,21,34,55,…

试问:这串数的前100个数(包括第100个数)中,有多少个偶数?

4.能不能将1010写成10个连续自然数之和?如果能,把它写出来;如果不能,说明理由.

5.能否将1至25这25个自然数分成若干组,使得每一组中的最大数都等于组内其余各数的和?

6.在象棋比赛中,胜者得1分,败者扣1分,若为平局,则双方各得0分. 今有若干个学生进行比赛,每两人都赛一局. 现知,其中有一位学生共得7分,另一位学生共得20分,试说明,在比赛过程中至少有过一次平局.

7.在黑板上写上1,2,…,909,只要黑板上还有两个或两个以上的数就擦去其中的任意两个数a,b,并写上a-b(其中a≥b). 问:最后黑板上剩下的是奇数还是偶数?

8.设a1,a2,…,a64是自然数1,2,…,64的任一排列,令b1=a1-a2,b2=a3-a4,…,b32=a63-a64;

c1=b1-b2,c2=b3-b4,…,c16=b31-b32;

d1=c1-c2,d2=c3-c4,…,d8=c15-c16;

……

这样一直做下去,最后得到的一个整数是奇数还是偶数?

练习3答案:

1.至少有6个偶数.

2.奇数. 解:1234÷2=617,所以在任取的1234个连续自然数中,奇数的个数是奇数,奇数个奇数之和是奇数,所以它们的总和是奇数.

3.33. 提示:这串数排列的规律是以“奇奇偶”循环.

4.不能.

如果1010能表示成10个连续自然数之和,那么中间2个数的和应当是1010÷5=202. 但中间2个数是连续自然数,它们的和应是奇数,不能等于偶数202. 所以,1010不能写成10个连续自然数之和.

5.不能. 提示:仿例3.

6.证:设得7分的学生胜了x1局,败了y1局,得20分的学生胜了x2局,败了y2局. 由得分情况知:

x1-y1=7,x2-y2=20.

如果比赛过程中无平局出现,那么由每人比赛的场次相同可得x1+y1=x2+y2,即x1+y1+x2+y2是偶数. 另一方面,由x1-y1=7知x1+y2为奇数,由x2-y2=20知x2+y2为偶数,推知x1+y1+x2+y2为奇数. 这便出现矛盾,所以比赛过程中至少有一次平局.

7.奇数. 解:黑板上所有数的和S=1+2+…+909是一个奇数,每操作一次,总和S减少了a+b-(a-b)=2b,这是一个偶数,说明总和S的奇偶性不变. 由于开始时S是奇数,因此终止时S仍是一个奇数.

七年级数学竞赛讲义附练习及答案全套下载(共12份)

七年级数学竞赛讲义附练习及答案(12套) 初一数学竞赛讲座 第1讲数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力. 数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”. 因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了. 任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作. ”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重. 数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆. 主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r (0≤r<b),且q,r是唯一的. 特别地,如果r=0,那么a=bq. 这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即 其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的. (1)式称为n的质因数分解或标准分解. 4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)=(a1+1)(a2+1)…(a k+1).

5.整数集的离散性:n 与n+1之间不再有其他整数. 因此,不等式x <y 与x ≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决. 这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ; 4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数. 例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差. 结果小明发现,无论白色卡片上是什么数字,计算结果都是1998. 问:红、黄、蓝3张卡片上各是什么数字? 解:设红、黄、白、蓝色卡片上的数字分别是a 3,a 2,a 1,a 0,则这个四位 数可以写成:1000a 3+100a 2+10a 1+a 0,它的各位数字之和的10倍是10(a 3+a 2+a 1+a 0)=10a 3+10a 2+10a 1+10a 0,这个四位数与它的各位数字之和的10倍的差是: 990a 3+90a 2-9a 0=1998,110a 3+10a 2-a 0=222. 比较上式等号两边个位、十位和百位,可得a 0=8,a 2=1,a 3=2. 所以红色卡片上是2,黄色卡片上是1,蓝色卡片上是8. 例2 在一种室内游戏中,魔术师请一个人随意想一个三位数abc (a,b,c 依次是这个数的百位、十位、个位数字),并请这个人算出5个数cab bca bac acb ,,,与cba 的和N ,把N 告诉魔术师,于是魔术师就可以说出这个人所想的数abc . 现在设N=3194,请你当魔术师,求出数abc 来. 解:依题意,得

2017七年级,下册数学期末试卷

E D A 2017七年级下册数学期末模拟试卷 一、选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一个是正确的.) 1、下面四个图形中,∠1与∠2为对顶角的图形是() A、B、C、D、 2、调查下面问题,应该进行抽样调查的是() A、调查我省中小学生的视力近视情况 B、调查某校七(2)班同学的体重情况 C、调查某校七(5)班同学期中考试数学成绩情况 D、调查某中学全体教师家庭的收入情况 3、点3 (- P,)2位于() A、第一象限 B、第二象限 C、第三象限 D、第四象限 4、如图是某机器零件的设计图纸, 在数轴上表示该零件长度(L)合格尺寸, 正确的是( ) A、 B、 C、 D、 5、下列命题中,是假命题的是() A、同旁内角互补 B、对顶角相等 C、直角的补角仍然是直角 D、两点之间,线段最短 6、下列各式是二元一次方程的是() A.0 3= + -z y x B. 0 3= + -x y xy C. 0 3 2 2 1 = -y x D. 0 1 2 = - +y x 7、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x,y的是(). A、 ? ? ?x–y= 49 y=2(x+1)B、?? ?x+y= 49 y=2(x+1)C、?? ?x–y= 49 y=2(x–1)D、?? ?x+y= 49 y=2(x–1) 8、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多 少道题?如果设小明答对x道题,则他答错或不答的题数为20-x. 根据题意得:() A、10x-5(20-x)≥120 B、10x-5(20-x)≤120 C、10x-5(20-x)> 120 D、10x-5(20-x)<120 二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上. 9、电影票上“6排3号”,记作(6,3),则8排6号记作__________ . 10、 ? ? ? = - = + = 9 6 2 _________ y x y ax a时,方程组 ? ? ? - = = 1 8 y x 的解为. 11、如图,直线a、b被直线c所截,若要a∥b,需增加条件(填一个即可). 12、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200 名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约 有名学生“不知道”. 13、甲地离学校4km,乙地离学校1km,记甲乙两地之间的距离为km d,则d的取值范围为. 三、解答题(本大题共5小题,每小题7分,共35分) 14、解方程组 1 528 y x x y =- ? ? += ? . 15、解不等式 1 32 2 x x - ≥+,并把它的解集在数轴上表示出来. 16、将一副直角三角尺如图放置,已知∠EAD=∠E=450,∠C=300, AE BC ∥,求AFD ∠的度数. 17、已知等腰三角形的周长是14cm.若其中一边长为4cm,求另外两边长. 9.9 10.1 9.9 10.1 L=10±0.1

七年级数学竞赛训练题(绝对值)

七年级数学竞赛题之二---绝对值 知识点: 1.去绝对值的符号法则:a =?? ???-=)0()0(0)0( a a a a a 2.绝对值的基本性质: (1)非负性质:a ≥0 ,b a ab =, b a b a =(b ≠0), a 2=22a a =,b a b a +≤+, b a b a b a +≤-≤- 3.绝对值的几何意义 从数轴上看,a 表示数a 的点到原点的距离(长度,非负);b a -表示数a 和数b 两点间的距离。 练习 1.若一个数的绝对值为4,则这个数是 。 2.已知︱a-2︱+︱b-3︱=0,则a= ,b= . 3.若a 与b 互为相反数,则100a+100b=( ) A.0 B.1 C.2 D.3 4.绝对值和相反数都等于本身的数是 。 5.若a 是有理数,则︱a ︱一定是( ) A.正数 B.非正数 C. 负数 D. 非负数 6.下列说法正确的是( ) A.-︱a ︱一定是负数 B.若︱a ︱=︱b ︱,则a 与b 互为相反数 C.只有两个数相等时它们的绝对值才相等 D.若一个数小于它的绝对值,则这个数是负数 7.若︱2a ︱=-2a,则a 一定是( ) A.正数 B.负数 C. 非正数 D. 非负数 8.(第16届“希望杯”邀请赛“)如果∣a ∣=3,∣b ∣=5,那么a= ,b= , ∣a+b ∣-∣a-b ∣的绝对值等于 .

9.已知∣x ∣=5,∣y ∣=1,那么∣∣x-y ∣-∣x+y ∣∣= . 10.数轴上有A 、B 两点,如果点A 对应的数是-2,且A,B 两点的距离为3,那么 点B 对应的数是 。 11.在数轴上表示数a 的点到原点的距离为3,则a-3= . 12.已知a 、b 为有理数,且a >0,b <0,a+b <0,将四个数a,b,-a,-b 按小到大的顺序排列是 。 13.有理数a 、b 、c 在数轴上的位置如图,化简b c b a --+的结果为( ) A.a B.-a-2b+c C.a+2b-c D.-a-c 14.在数轴上和有理数a 、b 、c 对应的点的位置如图所示, 有下面四个结论:①abc <0 ②c a c b b a -=-+- ③ (a-b)(b-c)(c-a)>0④a <1-bc.其中,正确的结论有( ) 个 A.4 B.3 C.2 D.1 14.计算:214131412131---+-= 。 15.(广东省中考题)设a 是有理数,则a -a 的值( ) A.可以是负数 B.不可能是负数 C.必是正数 D.可以是正数,也可以是负数 16.若1++b a 与(a-b+1)2互为相反数,则a 与b 的大小的关系是( ) A.a >b B. a=b C. a <b D. a ≥b 17.已知︱m ︱=-m,化简︱m-1︱-︱m-2︱所得的结果是( ) A.-1 B.1 C.2m-3 D.3-2m 18.若x <-2,则∣1-∣1+x ∣∣等于( ) A.2+x B.-2-x C.x D.-x 19.有理数a 、b 、c 的大小关系如图,则下列式子中一定成立的 是( ) A.a+b+c >0 B.b a +<c C.c a c a +=- D. a c c b -- 20.321-+-++x x x 的最小值是 c

七年级上学期数学竞赛选拔试题(含答案)

初一数学竞赛选拔考试题 班级___________________姓名__________________得分_________ 一、填空题:(4分×15=60分) 1、某人上山速度是4,下山速度是6,那么全程的平均速度是________. 2、()()_______________154 1957.0154329417.0=-?+?+-?+?. 3、甲、乙两同学从400 m 环形跑道上的某一点背向出发,分别以每秒2 m 和每秒3 m 的速度慢跑.6 s 后,一只小狗从甲处以每秒6 m 的速度向乙跑,遇到乙后,又从乙处以每秒6 m 的速度向甲跑,如此往返直至甲、乙第一次相遇.那么小狗共跑了 m . 4、定义a *b =ab+a+b,若3*x =27,则x 的值是 . 5、三个相邻偶数,其乘积是六位数,该六位数的首位是8,个位是2,这三个偶数分别是_______. 6、三艘客轮4月1日从上海港开出,它们在上海与目的地之间往返航行,每往返一趟各需要2天、3天、 5天.三艘客轮下一次汇聚上海港是_____月_____日. 7、设m 和n 为大于0的整数,且3m +2n =225,如果m 和n 的最大公约数为15,m+n =_____. 8、a 与b 互为相反数,且|a -b |=54,那么1 2+++-ab a b ab a = . 9、已知3,2,a b b c -=-=则2()313a c a c -++-=___________. 10、若正整数x ,y 满足2004x =105y ,则x+y 的最小值是___________. 11、数列1,1,2,3,5,8,13,21,34,55,…的排列规律:前两个数是1,从第3个数开始,每一个 数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列中,前2010个数中共有___________个偶数. 12、若200420032002,,200320022001 a b c =-=-=-,则,,a b c 的大小关系是___________. 13、任意改变7175624的末四位数字顺序得到的所有七位数中,能被3整除的数的有____个. 14、有一个两位数,被9除余7,被7除余5,被3除余1,这个两位数是 . 15、在自然数1,2,3,…,100中,能被2整除但不能被3整除的数有_______个. 二、解答题:(8分×5=40分) 1、计算:1111 (24466820042006) ++++???? 2、甲、乙两人分别从A 、B 两地同时出发相向而行,两人相遇在距离A 地10千米处.相遇后,两人继续前 进,分别到达B 、A 后,立即返回,又在距离B 地3千米处相遇,求A 、B 两地的距离. 3、设 3 个互不相等的有理数,既可以表示成为1,a+b,a 的形式,又可以表示为0, ,a b b 的形式,求

初中七年级数学竞赛培优讲义全套专题07 整式的加减

专题07 整式的加减 阅读与思考 整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点: 1.透彻理解“三式”和“四数”的概念 “三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数. 2.熟练掌握“两种排列”和“三个法则” “两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则. 物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项. 例题与求解 [例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______. (江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手. [例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( ) A.a+b B.a-b C.a+b2D.a2+b (“希望杯”初赛试题) 解题思路:采用赋值法,令a=1 2 ,b=- 1 2 ,计算四个式子的值,从中找出值最大的 式子. [例3]已知x=2,y=-4时,代数式ax2+1 2 by+5=1997,求当x=-4,y=- 1 2 时, 代数式3ax-24by3+4986的值. (北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值. (北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式. [例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?

(新)浙教版七年级下册数学基础竞赛试卷(最新整理)

武康中学七(下)第一次数学基础知识竞赛 班级 姓名 学号 一、选一选(每小题 4 分,共 32 分) 1.下列各式从左到右的变形中,是因式分解的为( ) (A ) x (a - b ) = ax - bx (B ) ax + bx + c = x (a + b ) + c (C ) x 2 - 2x +1 = (x -1)2 (D ) x 2 -1+ y 2 = (x -1)(x +1) + y 2 2. 已知某种植物花粉的直径为 0.00035 米,用科学记数法表示 该种花粉的直径是( ) (A )3.5×10 4 米 (B )3.5×10 -4 米 (C )3.5×10 -5 米 (D )3.5×10 -6 米 3. 如图,由△ABC 平移得到的三角形有几个 ( ) (A )3 (B )5 (C )7 (D )15 4.小马虎在下面的计算中做对的题目是( ) (A ) a 7 + a 6 = a 13 (B ) a 7 ? a 6 = a 42 (C ) (a 7 )6 = a 42 (D ) a 7 ÷ a 6 = 7 6 5. 下列图形中,∠1 与∠2 不是同位角的是( ) ( A ) ( B ) ( C ) ( D ) 1

7.方程组? 6. 下列多项式中,不能运用平方差公式因式分解的是( ) (A ) -m 2 + 4 (B ) -x 2 - y 2 ( C ) x 2 y 2 -1 (D ) (m - a )2 - (m + a ) 2 ?2x - y = 3 ? 4x + 3y = 1 的解是( ) (A ) ??x = 1 (B ) ??x = -1 (C ) ??x = 2 (D ) ?x = -2 ? y = -7 ? y = -1 ? y = -1 ? y = 1 8. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不 同袋数的货物,每袋货物都是一样重的。驴子抱怨负担太重, 骡子说:“你抱怨干嘛,如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!” 那么驴子原来所驮货物的袋数是( ) (A )5 (B )6 (C )7 (D )8 二、填一填(每小题 4 分,共 28 分) 9. 当 x = 时,分式 3x - 9 的值为零. x - 2 10. 如图,请添一个使 EB//AC 的条件 。 11.分解因式:16a 2 - 9b 2 = . 12.计算: (- 1)0 ? 3-2 = . 3 13. 如图,直线 AB ,CD 被 EF 所截,且 AB ∥ CD , 如 果 ∠ 1=125° , 那 么 ∠ 2= . 14. 若 非 零 实 数 a , b 满 足 2 a 2 - ab + 1 b 2 = 0 , 则 b 4 a =

七年级数学竞赛试题精选(七)

七年级数学竞赛试题精选(七) 一、拆分法及应用 例1、 计算: 991 63135115131+ +++。(第三届华杯赛) 练习:(1)208 1 130170128141+ +++。 (2) ) 2(1641531421311+?+??????+?+?+?+?n n 。(60年上海) (3)2003减去它的 21,再减去(第一次)余下的3 1 ,再减去(第二次)余下的41,、、、、、、,依次类推,一直到减去(第2001次)余下的2003 1,问最后余下的是多少?(第六届华杯赛) (4)计算20022002200320003200032002?-?。(第四届迎春杯) 二、错位相减法 例2、比较1234248162 n n n S = ++++??????+(n 为任意自然数)与2的大小。 练习:(1) 1231001121311001 2222----+++??????+ 。 (2)2 1 512412562561451212102411++??????+++。 三、观察归纳法 例 3 计算:?? ? ??-???????? ??-??? ??-???? ??+???????? ??+???? ??+???? ? ?+9115113111011611411211 (第六届华杯赛) 例4 计算:355 133******** 1-- - - - 练习:90 1177211556113421113019201712156131++++++++。(第四届华杯赛) 五、放缩法 例5、已知1991 1 198311982119811198011 +???++++= S ,求 S 的整数部分。

2015年秋七年级上数学竞赛试题含答案

2015年七年级上学期 数学竞赛试题 一、填空题(每小题4分,共40分) 1. 甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4 彼比相等,则四个数中的最大的一个数比最小的一个数大__ 2.计算(-21 24+ 7 113÷ 24 113- 3 8)÷1 5 12=___。 3. 已知与是同类项,则=__。 4. 有理数在数轴上的位置如图1所示,化简 5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____. 6. 小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。 7. 学校开运动会,班长想分批买汽水给全班50名师生喝,喝完的空瓶根据商店规定每5个 空瓶又可换一瓶汽水,则至少要买瓶汽水,才能保证每人喝上一瓶汽水. 8. 有这样一个衡量体重是否正常的简单算法。一个男生的标准体重(以公斤为单位)是其 身高(以厘米为单位)减去110。正常体重在标准体重减标准体重的10%和加标准体重的10之间。已知甲同学身高161厘米,体重为W,如果他的体重正常,则W的公斤数的取值范围是_____. 9. m、n、l都是二位的正整楼,已知它们的最小公倍数是385,则m+n+l的最大值是__。

10. 已知x =5时,代数式ax 3+bx -5的值是10,当x =-5时,代数式ax 3+bx +5=__。 二、选择题(每小题5分,共30分) 1.-|-3|的相反数的负倒数是( ) (A )-13 (B )13 (C )-3 (D )3 2. 如图2所示,在矩形ABCD 中,AE =B =BF =21AD =3 1AB =2, E 、H 、G 在同一条直线上,则阴影部分的面积等于( ) (A)8. (B)12. (C)16. (D)20. 3. 十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日 也是这些人相聚,那么两年前相聚时大家的平均年龄是( )岁。 (A )38 (B )37 (C )36 (D )35 4.探险队要达到目的地需要坐船逆流而上,途中不小心把地图掉入水中,当有人发现后, 船立即掉头追这张地图,已知,船从掉头到追上地图共用了5分钟,那么,这个人发现地图掉到水中是 ( ). (A )4分钟后 (B )5分钟后 (C )6分钟后 (D )7分钟后 5. 秋季运动会上,七年级(1)班的萌萌、路佳、王玉三人一起进行百米赛跑(假定三人 均为匀速直线运动).如果当萌萌到达终点时,路佳距终点还有10米,王玉距终点还有20 米.那么当路佳到达终点时,王玉距终点还有( ) A.10米 B.889米 C.1119 米 D.无法确定 6.已知a ≤2,b ≥-3,c ≤5,且a -b +c =10,则a +b +c 的值等于( )。 (A )10 (B )8 (C )6 (D )4 三、解答题(每小题10分,共30分)

年七年级数学竞赛

七年级“希望杯”竞赛试卷 (考试时间90分钟,满分100分) 一、选择题(每小题只有一个正确选项,每小题3分,共10题,总共30分) 1.是任意有理数,则 的值( ). A .大于零 B . 不大于零 C .小于零 D .不小于零 2.某超市为了促销,先将彩电按原价提高了40%,然后在广告中写上“××节大酬宾,八折优惠”,结果每台彩电比原价多赚了270元,那么每台彩电的原价为( ) A. 2150元 B.2200元 C.2250元 D. 2300元 3.设, >,则 的值是( ) A . B. C. D. 4.把14个棱长为1的正方体,在地面上堆叠成如图(1)所示的立 方体,然后将露出的表面部分染成红色.那么红色部分的面积为 ( ). A .21 B.24 C.33 D.37 5.某动物园有老虎和狮子,老虎的数量是狮子的2倍。如果每只老虎每天吃肉 4.5千克,每只狮子每天吃肉3.5千克,那么该动物园的虎、狮平均每天吃肉 ( ) A. 千克 B. 千克 C. 千克 D. 千克 6.假设有2016名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1…… 的规律报数,那么第2010名学生所报的数是 ( ) A.1 B.2 C.3 D.4 7.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A 、-1 B 、0 C 、1 D 、不存在 8. 适合的整数的值的个数有 ………………( ) A .5 B .4 C .3 D .2 9. 碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米=10-9米,则0.5纳米用科学记数法表示为( ) A 、0.5×10-9米 B 、5×10-8米 C 、5×10-9米 D 、5×10-10米 10、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 3个 B 4个 C 5个 D 无数个 二、填空题(每题4分,共24分) 11.计算: = 。 12.平时我们常说的“刹那间……”,在梵文书《僧袛律》里有这样一段文字:“一刹那者为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜(24小时)有三十须臾。”那 么,一刹那...是秒。 13. 当x=﹣2时,的值为9,则当x=2时,的值是。 14.对于任意有理数 我们规定 ,如果 ,那 么的取值范围是 。 15.为正整数,已知二元一次方程组 有整数解,即 均为 (1 A B C D E

七年级数学竞赛题精选

七年级数学竞赛题精选训练 姓名_______ 一.填空题 1.一辆汽车车牌在地面积水中的倒影为 ,请写出该车牌号码 2.已知:|x+3|+|x -2|=5,y=-4x+5,则 y 的最大值是 。 3.已知a 、b 为△ABC 的两边,且满足ab b a 222=+,你认为△ABC 是 三角形。 4.在一个5×5 的方格盘中共有 个正方形。 5.已知ab x b a x b x a x +++=++)())((2,观察等式,试分解因式: =+-232x x 。 6.若a 3m =3 b 3n =2,则(a 2m )3+(b n )3-b n b 2n = 7.如图,把⊿ABC 绕点C 顺时针旋转o 25,得到⊿C B A '', B A ''交AC 于D ,已知∠DC A '=o 90,则∠A 的度数是 ; 8.已知012=-+x x ,则200422 3++x x = ; 一、选择题: 1.下列属平移现象的是( ) A ,山水倒映。 B.时钟的时针运转。 C.扩充照片的底片为不同尺寸的照片。 D .人乘电梯上楼。 2.如图,在边长为a 的正方形中挖去一个边长为b 的小正方形,把余下的部分剪拼成一个矩形,通过计算两个阴影部分的面积,验证了一个等式,此等式是( ) A. a 2-b 2=(a +b)(a -b) B.(a +b)2=a 2+2a b+b 2 C.(a -b)2=a 2-2a b+b 2 D .(a +2b)(a -b)=a 2+a b -b 2 3.已知实数a 、b 满足:1=ab 且b a M +++= 1111, b b a a N +++=11,则M 、N 的关系为( ) (A )N M > (B )N M < (C )N M = (D )M 、N 的大小不能确定 4.若x 2-2(m -3)x +9是一个多项式的平方,则m =( ) A 6 B 12 C 6或0 D 0或

七年级数学下册 竞赛辅导资料(4)经验归纳法

初中数学竞赛辅导资料(14)经验归纳法 甲内容提要 1.通常我们把“从特殊到一般”的推理方法、研究问题的方法叫做归纳法。 通过有限的几个特例,观察其一般规律,得出结论,它是一种不完全的归 纳法,也叫做经验归纳法。例如 ①由 ( - 1)2= 1 ,(- 1 )3=- 1 ,(- 1 )4= 1 ,……, 归纳出- 1 的奇次幂是- 1,而- 1 的偶次幂是 1 。 ②由两位数从10 到 99共 90 个( 9 × 10 ), 三位数从 100 到 999 共900个(9×102), 四位数有9×103=9000个(9×103), ………… 归纳出n 位数共有9×10n-1 (个) ③由1+3=22, 1+3+5=32, 1+3+5+7=42…… 推断出从1开始的n个連续奇数的和等于n2等。 可以看出经验归纳法是获取新知识的重要手段,是知识攀缘前进的阶梯。 2. 经验归纳法是通过少数特例的试验,发现规律,猜想结论,要使规律明 朗化,必须进行足夠次数的试验。 由于观察产生的片面性,所猜想的结论,有可能是错误的,所以肯定或 否定猜想的结论,都必须进行严格地证明。(到高中,大都是用数学归 纳法证明) 乙例题 例1 平面内n条直线,每两条直线都相交,问最多有几个交点? 解:两条直线只有一个交点, 1 2 第3条直线和前两条直线都相交,增加了2个交点,得1+2 3 第4条直线和前3条直线都相交,增加了3个交点,得1+2+3 第5条直线和前4条直线都相交,增加了4个交点,得1+2+3+4 ……… 第n条直线和前n-1条直线都相交,增加了n-1个交点 由此断定n 条直线两两相交,最多有交点1+2+3+……n-1(个), 这里n≥2,其和可表示为[1+(n+1)]× 21 + n , 即 2)1 (- n n 个交点。

七年级数数学绝对值化简专题训练试题

绝对值的知识是初中代数的重要内容, 在中考和各类竞赛中经常出现, 含有绝对值符号的数 学问题又是学生遇到的难点之一, 解决这类问题的方法通常是利用绝对值的意义, 将绝对值 符号化去,将问题转化为不含绝对值符号的问题, 确定绝对值符号内部分的正负, 借以去掉 绝对值符号的方法大致有三种类型。 一、根据题设条件 例 1 设二’「[化简二二 TT 的结果是( )。 思路分析 由八? 一「-可知工一;吒< -可化去第一层绝对值符号,第二次绝对值 符号待合并整理后再用同样方法化去. 2-|2-|x-2||=2-|2-(2-z)|=2-|x| = 2-(-x)=2-Fx ???应选(B ). 归纳点评 只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺 利去掉绝对值符号,这是解答这类问题的常规思路. 二、借助数轴 例2 实数a 、b 、c 在数轴上的位置如图所示, 则代数式的 值等于( ) 思路分析 由数轴上容易看出,这就为 去掉绝对值符号扫清了障碍. 解 原式 [’」 ;■- . ■; 二 - 应选(C ) (A ) __二 (B )-_?; (C ) 一 丄+ ': (A ) — * (D )

归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一 定弄清: 1.零点的左边都是负数,右边都是正数. 2.右边点表示的数总大于左边点表示的数. 3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了. 三、采用零点分段讨论法 例3化简■ HI - 1 思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论, 可采用零点分段讨论法,本例的难点在于’■' ' ■的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况一一讨论. 解令"-■-=-得零点:丁二I ; 令讥I丨_」得零点:?一 ', 把数轴上的数分为三个部分(如图) 丄 _____________________ 1___________ I _____ k -4 0 2 ①当X工2时兀一220」+蚪>0 ???原式:'■' ②当-4K2时,x亠处1卄4工0 , ? 原式打 ,:|. ; ③当葢工一4时A-2 <0^+4 <0

七年级上册数学竞赛试题

学校 班级 姓名 …………………………密……………………………封………………………线………………………………… 2018-2019学年七年级(上)趣味数学竞赛试题 满分:100分 考试时间:100分钟 一、选择题(共10小题,每题3分,共30分) 1.下列方程中,是一元一次方程的是( ) (A )2332 =-+x x (B ) 1124=-x (C) 1=+y x (D)01 =+y y 2.在解方程 21x --3 3 2x +=1时,去分母正确的是 A 、3(x -1)-2(2+3x )=1 B 、3(x -1)-2(2x +3)=6 C 、3x -1-4x +3=1 D 、3x -1-4x +3=6 3.关于x 的方程2(1)0x a --=的解是3,则a 的值是( ) A .4 B .—4 C .5 D .—5 4. 某工厂计划每天烧煤a 吨,实际每天少烧b 吨,则m 吨煤可多烧( )天. A .m m a b - B .m a b - C .m m a a b -- D .m m a b a - - 5. 若a =b ,则下列式子正确的有( ) ①a -2=b -2 ②1 3 a =12 b ③-34 a =-34 b ④5a -1=5b -1. A. 1个 B. 2个 C. 3个 D. 4个 6.数学竞赛共有10道题,每答对一道题得5分,不答或答错一道题倒扣3分,要得到34分必须答对的题数是( ) A. 6 B. 7 C. 8 D. 9 7.方程2x+1=3与2-3 x a -=0的解相同,则a 的值是( ) A.7 B.0 C.3 D.5 8.下面是一个被墨水污染过的方程: +=-x x 32 1 2,答案显示此方程的解是x=-1, 被墨水遮盖的是一个常数,则这个常数是( ) A .1 B .-1 C 9.某个体户在一次买卖中同时卖出两件上衣,售价都是165元,若按成本价计算,其中一件盈利25%,另一件亏损25%,在这次买卖中他 ( ) A 、赚22元 B 、赚36元 C 、亏22元 D 、不赚不亏. 10.有m 辆客车及n 个人,若每辆乘40人,则还有10人不能上车,若每辆客车乘43 人,则只有1人不能上车,有下列四个等式: ①1431040-=+m m ;②4314010+=+n n ;③43 1 4010-= -n n ;④1431040+=+m m , 其中正确的是( ). A .①② B .②④ C .①③ D .③④ 二、填空题(共8小题,每题3分,共24分) 11.当x= 时,式子5x+2与3x ﹣4的值相等. 12. 若5 a b = ,则_________=5,根据是______________. 13.若式子 14x -的值比式子24 x -的值少5,那么x =__________. 14.若 m 1x 5m -=()是一元一次方程,则m 的值是 _____________. 15.若2x y +=,8x =,则y 的取值为_____________. 16.小丽在解关于x 的方程-x+5a=13时,误将-x 看作x ,得到方程的解为x=-2,则 原方程的解是_____________. 17.刘俊问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”问王老师今年__________岁. 18.一项机械加工作业,用4台A 型车床,5天可以完成:用4台A 型车床和2台B 型车床,3天可以完成;用3台B 型车床和9台C 型车床,2天可以完成。若A 型、B 型和C 型车床各一台一起工作6天后,只余下一台A 型车床继续工作,则再用

2019-2020年七年级数学下册竞赛试题北师大版

2019-2020年七年级数学下册竞赛试题北师大版 一、选择题: 1、已知数轴上三点A、B、C分别表示有理数、1、-1,那么表示() (A)A、B两点的距离(B)A、C两点的距离 (C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和 2、王老伯在集市上先买回5只羊,平均每只元,稍后又买回3只羊,平均每只元,后来他以每只的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是() (A)(B)(C)(D)与、的大小无关 3、两个正数的和是60,它们的最小公倍数是273,则它们的乘积是() (A)273 (B)819 (C)1199 (D)1911 4、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐 5 人,租金24元,则该班至少要花租金() (A)188元(B)192元(C)232元(D)240元 5、已知三角形的周长是,其中一边是另一边2倍,则三角形的最小边的范围是()(A)与之间(B)与之间(C)与之间(D)与之间 6、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的容积之比为 :1,另一个瓶子中酒 精与水的容积之比是 :1,把两瓶溶液混在一起,混合液中酒精与水的容积之比是( )(A)(B) (C)(D) 二、填空题: 7、已知,,,且>>,则=; 8、设多项式,已知当=0时,;当时,, 则当时,=; 9、将正偶数按下表排列成5列: 第1列第2列第3列第4列第5列 第一行 2 4 6 8 第二行 16 14 12 10 第三行 18 20 22 24 第四行 32 30 28 26 ………………  根据表中的规律,偶数2004应排在第行,第列; 10、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已 知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是 __________米; 11、有人问李老师:“你班里有多少学生?”,李老师说:“我班现在有一半学生在参加数 学竞赛,四分之一的学生在参加音乐兴趣小组,七分之一的学生在阅览室,还剩三个女同学在看电视”。则李老师班里学生的人数是; 12、如图,B、C、D依次是线段AE上三点,已知AE=8.9cm,BD=3cm,则图中以A、B、C、 D、E这五个点为端点的所有线段长度之和等于。 13、某个体服装经销商先以每3件160元的价钱购进一批童装,又以每4件210元的价钱购进比上一次多一倍的童装. 他想把这两批童装全部转手,并从中获利20%,那么,他需要以每3件______元出手。

七年级数学竞赛试题精选(一)(含答案)

七年级(上)数学竞赛试题 姓名 班级 得分 一、 耐心填一填(每题5分) 1.()()_______________154 19 57.0154 329 417.0=-?+?+-?+?。 2. 定义a *b=ab+a+b,若3*x=27,则x 的值是________。 3.有一个正方体,在它的各个面上分别标上字母A 、B 、C 、D 、E 、F ,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。问:F 的对面是 。 4.A 、B 、C 、D 、E 、F 六足球队进行单循环比赛,当比赛到某一天时,统计出A 、B 、C 、D 、E 、五队已分别比赛了5、4、3、2、1场球,则还没与B 队比赛的球队是 。 5. 用 1、2、3、4、5这五个数组成一个数字不重复的五位数中抽到的数是15的倍数的概率是 。 6.某商场经销一种商品,由于进货价格比原来预计的价格降低了6.4%,使得销售利润增加了8个百分点,那么原来预计的利润率是 。 二、 细心选一选(每题5分) 1.如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是( ) A 、1 B 、2 C 、3 D 、4 2. 某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现

金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打()销售。 A、9折B、8.5折C、8折D、7.5折 3.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ等于 A、1 B、2 C、3 D、4 4.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数)。 A、30 B、33 C、38 D、40 5.小学生小明问爷爷今年多大年龄,爷爷回答说;“我今年的岁数是你的岁数的7倍多,过几年变成你的6倍,又过几年变成你的5倍,再过若干年变成你的4倍。”你说,小明的爷爷今年是()岁。 A、60 B、68 C、69 D、72 6.观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),…… 。问2005在第()组。 A、44 B、45 C、46 D、无法确定 三、解答题(每题20分) 1.小明、小颖比赛登楼梯,他们从一幢高楼的地面(一楼)出发,到达28楼后返回地面。当小明到达4楼时,小颖刚到3楼。如果他们保持固定的速度,那么小明到达28楼后返回地面途中,将与小颖在几楼相遇。(注:一楼与二楼之间的楼梯均属于一楼,以下类推)

北师大版七年级上学期数学竞赛题(含答案)

初一年数学竞赛 一、反复比较,择优录取:(每题4分,共36分) 1.(-1)2002是( ) A 、最大的负数 B 、最小的非负数 C 、最小的正整数 D 、绝对值最小的整数 2、式子去括号后是( ) A 、 B 、 C 、 D 、 3、x 是任意有理数,则2|x |+x 的值( ). A 、大于零 B 、 不大于零 C 、 小于零 D 、不小于零 4、若 1 4 +x 表示一个整数,则整数x 可取值共有( ). A 、3个 B 、 4个 C 、5个 D 、 6个 5、下面哪个平面图形不能围成正方体( ) 6、 若火车票上的车次号有两个意义, 一是数字越小表示车速越快,1~98次为特快列车,101~198 次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A 、 20 B 、119 C 、 120 D 、 319 7、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另 一台亏本20%,则本次出售中商场…………………………………………( ) A 、不赔不赚 B 、赚160元 C 、赚80元 D 、赔80元 8、若a =19991998,b =20001999,c =2001 2000 则下列不等关系中正确的是………………( ) A 、a <b <c B 、 a <c <b C 、 b <c <a D 、 c <b <a 9、已知:abc ≠0,且M= abc abc c c b b a a + + + ,当a 、b 、c 取不同的值时,M 有( ) A 、惟一确定的值 B 、3种不同的取值 C 、4种不同的取值 D 、8种不同的取值 二、认真思考,对号入座(每题4分,共52分) 1、计算:1-2+3-4+5-6+7-8+……+4999-5000= 。 2、计算:+++222321……+)12()1(6 1 2+?+= n n n n ,按以上式子, 那么+++222642……+502= 。 3、如图2所示,以点A 、B 、C 、D 、E 、O 为端点的线段共有 条。 4、生活中,将一个宽度相等的纸条按图3所示折叠一下, 如果∠1=140o,那么∠2=__ ___ 。 5、如图4,OM 平分∠AOB ,ON 平分∠COD 。若∠MON=50°,∠BOC=10°, 则∠AOD= 度。 6、某同学步行前往学校时的行进速度是6千米/小时,从学校返回时的行进速度是4千米/小时, 那么该同学往返学校的平均速度是 千米/小时。 7、若-4x 32 y m -与 n y x 2733 2-是同类项,则n m 22+= 。 8、在一只底面直径为30 cm ,高为8 cm 的圆柱形容器中倒满水,然后将水倒另一只底面直径为10 cm 的圆柱形容器里,圆柱形容器中的水高_____ __. 9、已知 都是整数,且 。 10、若四位数a 987能被3整除,那么 a=_______________. 11、若d c b a ,,,是互不相等的整数,且169=abcd ,则d c b a +++= 12、有17个连续整数的和为306,那么紧接在这17个整数后的那17个连续整数的和 等于 . 13、将99个玻璃球装进两种规格的盒子中,每一个大盒装12个球,每一个小盒装5个球,而且所 用的盒子多于10个,那么大盒用了 个,小盒用了 个。 A 图2 O

相关文档
最新文档