如何提高余热发电发电量

如何提高余热发电发电量
如何提高余热发电发电量

如何提高预热发电发电量

现有2×5000t/d熟料生产线,配套2×9MW两炉一机余热发电系统,生产线投产以来,通过加强现场管理、优化工艺操作,实施技改技措,从大系统平衡角度将窑系统与余热发电系统结合起来,保证系统稳定运行,最大限度挖掘潜能,在熟料标准煤耗逐年下降前提下,余热发电量不断提升,收到了明显管理成效。本文对在发电运行管理上一些好的做法和有益尝试进行总结,以促进行业间技术交流。

1.合理控制省煤器出口温度,提高蒸汽量与温度

1.1 省煤器出口温度锅炉水焓值的关系

1.2 提高省煤出口温度的必要性

在发电锅炉系统运行中,我们把省煤器出口温度偏高控制,控制在185℃左右,不超过188℃。理论上(见上图)省煤器焓值利用率会下降,但实际证明,

这样不仅不会影响锅炉安全运行,而且提高蒸发器与过热器焓值的利用,较好的提高了锅炉蒸发量与蒸汽温度。

实际运行过程中,锅炉给水泵出口压力正常运行时一般在2—2.3Mpa之间,为保证锅炉安全运行,必须保证补给水省煤器出口温度低于其相应压力下的饱和温度,以防止汽塞。在2Mpa时水的饱和温度为212.42℃。余热发电窑头锅炉省煤器属于非沸腾式的省煤器,其出口温度有上限控制(即要低于饱和温度20度即212.4220-20=192.42℃),没有下限规定。因此当省煤器温度不超过192℃时,锅炉运行是完全安全的。

1.3 提高省煤器出口温度的实际效果

控高省煤器出口温度有利于汽包补给水焓值利用率的提高,较好的提升了汽包与蒸发器中饱和蒸汽的产生,在同等工况下产生更多的过热蒸汽,从而使得单位时间内更多的蒸汽进入汽轮机做工。

根据实际运行指标统计分析得出结论:在锅炉废气入口风温、风量和出、入口负压相同的情况下,省煤器出口温度在175℃-185℃时,每增加1℃,AQC 锅炉蒸发量增加0.01t/h左右,PH锅炉蒸发量增加0.02t/h左右。按汽轮机耗气量为0.005t/kwh,省煤器出口温度控制在182℃时比170℃时,每小时可多发120kwh,日发电量可增加2880kwh。

2.调节模式的选择与主蒸汽压力的控制

2.1 控制模式的选择与依据

选择控制方式为阀位闭环控制模式,目的是避开因锅炉负荷大浮度波动时高调门的PID调节过程与动作制后,主汽压短时间内的过高或过低影响大系统的效能发挥与锅炉补水的平衡难度,制约最大限度的利用好余热做功。

2.2 采用阀位闭环控制模式的实效

采用阀位闭环控制的控制模式,也就是通常说的人工调节发电机输出功率。通过实际测算,本控制方法在窑运行不稳定或锅炉出力不足时,能减少发电机波动,在同等外部工况下,日增加发电量约2000度;在外部工况同等运行条件下,通过班组与班组间发电量比较,可以分析出各当班操作员履职情况,当大窑出现突然止料或减产引起的锅炉水位失真及负荷大幅度波动时,通过手动调节机组入口高调门开度,解决了因电控系统中PID调节相对滞后造成的机组系统运行不受控,杜绝了锅炉超压或干烧故障的发生,最大限度确保了机组的安全经济运行。

3.蒸汽管道互通应用

为减少机组非正常停机次数和时间,提高发电运行效率,我公司在两套机组主蒸汽管道之间增设一根“并联管道”,利用蒸汽管道的互通,不仅对两机组运行时的发电量进行平衡,而且当某机组出现短暂因窑故障需要解列时,可利用蒸汽互通来维持机组低负荷运行避免机组解列。所以蒸汽管道的并联互通,为一、二期机组的高效、稳定运行提供了保障。

3.1 蒸汽管道互通简介及前提条件

蒸汽管道互通主要应用于相邻的两台机组,通过蒸汽互通可以有效平衡两台机组运行负荷,提高蒸汽利用率和减少机组因窑短时间故障而造成解列停机。蒸汽管道互通技改应具备以下条件:一是蒸汽管道距离较近,建议100米范围内;二是实施蒸汽互通时,必须一并考虑到纯水互通,满足系统汽水平衡;三是根据两台机组运行实际情况,决定是否有必要互通,蒸汽互通有一定风险。

3.2 蒸汽管道互通方式及施工注意事项

设计:实施互通技改要有设计部门进行专业设计,主要是考虑到管道支架、疏水、自然补偿等因素;

尺寸:根据蒸汽互通量的大小,互通管道管径选择应适当,我公司管道直径80-100mm,用三通做接口,不能在蒸汽管道上直接开孔焊接;

阀门:不安装蒸汽互通旁路阀,在互通管道上安装两个手动截止阀或安装一个电动调节阀和前后手动截止阀;

检测:在互通管道两端增加压力表,便于现场查看运行压差,管道中部安装温度计;

3.3 蒸汽管道互通优缺点

优点:机组正常运行中可以合理平衡两台机组发电量;当某台机组因窑故障临停降负荷时,可以利用另一台机组蒸汽互通来维持该机组低负荷运行,避免机组解列;当某台机组因辅机设备故障须强制性降负荷时,可利用蒸汽互通将蒸汽导入到另一台机组,提高蒸汽利用率减少甩炉。例如:当一线机组冷却风扇故障须降负荷时,可将蒸汽导入到另一台机组,故障辅机的机组可以不必甩炉或小幅度甩炉;当两台机组都计划停机检修结束,机组开机时间间隔不长时,可利用先开机组的蒸汽来对后开机机组进行暖管(不可用来暖机和冲转),减少后开机机组暖管时间。

缺点:蒸汽互通后,单台机组系统水消耗量无法准确计算;蒸汽互通后,若压差控制不当易产生水击,冲向压力低一侧机组(互通管道越长越容易发生);蒸汽互通运行后,若某台机组突发跳停故障,大量高压蒸汽将通过互通管道冲入到另一台机组,引起机组超负荷。

3.4 蒸汽管道互通运行注意事项

(1)互通管道投入前中控与现场及中控两操作员之间必须保持好联系,然后充分暖管,将管道内积水全部排出,暖管结束后开启互通阀初期应缓慢,同时中控操作员应严密观察汽轮机各参数,如主汽压力、负荷、振动、轴向位移及推力瓦温度等;

(2)蒸汽管道互通运行时,必须始终保持两台机组主蒸汽之间存在压差,建议压差控制在0.02-0.03之间或更高。当机组因窑工况发生变化,主蒸汽压力降低或升高时,操作员要及时作出调整,不允许出现两端主蒸汽压力持平现象;

(3)为平衡两台机组发电机负荷为目的而投入蒸汽互通管道的,建议互通阀适当开小,若开度过大,当某台机组发生跳停故障时大量蒸汽会涌入到另一台机组,有可能会发生机组过负荷跳停;

(4)当某台机组锅炉发生满水造成蒸汽带水或主蒸汽参数不合格时严禁投入蒸汽互通管道,已经投入的必须及时关闭互通阀;

(5)蒸汽互通投入运行后,还应关注机组汽水平衡情况,若机组供汽量过大,可能会造成凝汽器补水困难和凝汽器满水故障;

(6)当蒸汽互通投入运行后,若某台机组因窑临停须解列时,可以利用蒸汽互通来短时间维持机组的低负荷运行,不可长时间维持机组低负荷运行,防止窑恢复正常运行后,带锅炉时不合格蒸汽冲入汽轮机,造成设备损坏;

(7)蒸汽互通投入运行后,为了能够准确计算出两台机组纯水消耗量,建议定期关闭蒸汽互通阀,然后单独计算机组纯水消耗量;

(8)互通管道退出不用时,必须将互通阀关死,否则管道内积水将会冲击到压力低一侧机组,发生水击。

4 .操作与现场管理

(1)发电操作员积极与窑、磨操作员协调沟通,坚持“四操一体化”操作思路

窑系统正常运行时,窑尾锅炉较为稳定,而窑头锅炉由于设置有篦冷机系统操作,可协调性较大。窑系统操作中,篦冷机厚料层控制,提高一段篦速、增大一段冷却风量,减少二段或三段风量,不仅有助于提高出窑熟料急剧冷却效果,且进入AQC锅炉的风温也得到提高,从而提高热风的利用率。

AQC锅炉温度过低时,采取小开度开旁路挡板提高锅炉废气入口风温,达到提高锅炉蒸发量的目的。例如:篦冷机平稳操作前提下,AQC锅炉入口风温小于330℃时,开5%旁路可提高入口风温10℃左右,蒸汽量提高1t/h。维持较高的汽轮机入口蒸汽温度有利于保证机组运行效率,当汽轮机入口温度330℃时比320℃,每千克蒸汽的热焓增加20.82KJ ,按100t/h的蒸汽量计算,每小时可多发200kwh左右。

(2)重视AQC锅炉运行管理,提高主蒸汽流量、温度,从而提高发电量

从余热发电两台锅炉运行统计看,AQC锅炉能否正常出力或超负荷运行,对发电系统出力至关重要。为此要加强窑头冷却机工艺和发电的联动操作,提高入口废气温度到合理区间,并保持其稳定,尤其是要避免温度低而甩炉的现象出现;

(3)优化工艺操作,减少机组暖管、暖机时间

发电机组暖机操作采用结合电厂“滑参数启动”的操作方式,大大缩短了系统的升温、升压过程。通过实践证明,此项优化操作,既节约了机组的启动时间也为设备的安全运行创造了良好的条件。机组启动时间的缩短,直接提高了机组的运转率和发电量。

(4)治理系统漏风,提高锅炉辅机设备运行效果,提升锅炉换热效率

现采取了内漏和外漏同步整治措施,内漏方面主要做好了,锅炉挡板漏风,治理,对所有锅炉挡板进行三对应检查,防止挡板开、关不到位;外漏方面主要做风管、法兰、锅炉本体以及人孔门密封处理。今年利用系统检修机会,对PH 锅炉旁路漏风进行整治,治理后PH锅炉运行效率明显上升,锅炉蒸发量由检修前的16.8t/h上升到21.7t/h左右,锅炉入口温度也较检修前304.9℃上升了

4.9℃;

(5)加强真空管理,提高发电量

注重冷却水系统的水质管理,通过严格控制各项水质指标,避免系统管道结垢,确保凝汽器的换热效率;增设凝汽器胶球清洗装置,确保凝汽器端差维持在5-8℃最佳范畴内,提高凝汽器真空度;加强对凝汽器及管道漏点的检查,确保凝汽器及管道密闭可靠;

(6)规范发电日常检修管理,利用每次检修机会全面对真空系统进行漏点排查

对于直接影响到汽轮机做功效率的关键设备—凝汽器,除了关注冷却水结垢影响外,还要注重对凝汽器的密闭性进行重点检查。对于凝汽器密闭性的检查主要通过机组检修时,对凝汽器进行满水试验来检验凝汽器系统是否有泄漏,并且对每次检验结果进行记录。如果在检验过程中发现系统有漏点,必须立即给予治理,确保凝汽器密闭可靠;

(7)加强水质管理,保证锅炉安全运行

加强化水、凝结水、炉水指标的控制和管理,确保在线检测仪表能正常检测,做到定期取样、化验比对,防止锅炉水质不达标而引起的化学腐蚀,导致锅炉受

热面爆管。主要做法是:制定具有实际操作性的水质指标控制标准和药品管理办法,明确各级管理人员的工作职责和水质控制目标;工艺技术人员定期对手测水质仪表进行校验,确保水质仪表工作稳定;电气专业人员定期对在线检测仪表进行维护和校验,并对现场巡检人员是否对仪表参数随意设定或随意操作进行检查,杜绝仪表操作随意性;工艺管理人员定期或不定期对现场人员巡检质量进行检查,主要包括对现场锅炉连排量、试样水温控制以及加药泵运行等情况进行检查,确保水质系统运行控制稳定;按照水质管控流程,每日对系统各项水质指标进行监控,对异常情况及时进行调节和处理,确保系统水质指标稳定受控。

饱和蒸汽发电项目余热发电项目技术方案.doc

饱和蒸汽发电项目 技术方案编制单位:

目录 第一章目概况????????????????? 1 第二章目有条件?????????????? 1 2.1 现有余热 2.2 蒸汽利用情况 第三章余方案定?????????????? 2 3.1 汽轮机部分 3.2 发电机及配电保护部分 3.3 工艺流程图 3.4 方案特点 第四章循水系????????????????? 5 第五章气系????????????????? 5 5.1 电气主接线 5.2 系统组成 5.3 控制保护系统 5.4 站用电配电 5.5 直流配电系统 5.6 过电压保护和电力装置的接地 5.7 主要电气设备选型 第六章平面布置方案?????????????? 6 6.1 场址选择 6.2 总平面设计主要技术指标 6.3 建筑设计方案 第七章目内容及投算?????????????? 7 7.1 建设内容 7.2 项目投资预算 第八章目主要技指及建周期????????10 8.1 项目营运主要经济指标 8.2 项目建设周期 ???????????????????????10

第一章项目概况 现有两台饱和蒸汽锅炉,蒸汽产汽量分别为 6.0T/H 和 5.3T/H ,锅炉工作制度为 330 天/ 年、 24H/天。目前所产蒸汽全部排空,为实现节能减排, 有效利用能源,要求利用现有余热条件,制定发电方案。 第二章项目现有发电条件 2.1 现有余热 根据现场考察及甲方提供的条件,现有余热锅炉产汽情况如下表: 序号蒸汽源 蒸汽压蒸汽温锅炉工作 蒸汽量 (t/h) 备注力(Mpa)度( ℃) 时间(天) 1 锅炉 A 2.8 230 330 5.3 2 锅炉 B 2.8 230 330 6 合计 2.8 230 330 11.3 2.2 蒸汽利用情况 经向甲方了解,目前业主生产工艺没有利用蒸汽的负荷,生产所产生的饱和蒸汽经过管网后直接排空,没有任何利用。详见下表: 序号项目蒸汽 (t/h) 压力( Mpa) 1 余热锅炉产汽11.3 2.8 2 热负荷0 0.6 3 回热抽汽0.9 0.6 4 补汽 1.0 2.8 5 热平衡+11.4 2.8

风电场综合统计指标计算公式

风电综合统计指标计算公式 1、平均风速 平均风速是指统计周期内风机轮毂高度处瞬时风速的平均值。取统计周期内全场风机或场内代表性测风塔的风速平均值,即 1 1n i i V V n ==∑ 单位:米/秒(/m s ) 式中: V —统计周期内的风电场平均风速,/m s ; n —统计周期内的全场风机的台数或代表性测风塔的个数; i V —统计周期内的单台风机或单个代表性测风塔的平均风速,/m s 。 2、平均温度 平均温度是指统计周期内风机轮毂高度处环境温度的平均值,即 1 1n i i T T n ==∑ 单位:摄氏度(o C ) 式中: T —统计周期内的风电场平均温度,o C ; n —统计周期内的记录次数; i T —统计周期内的第i 次记录的温度值,o C 。 3、平均空气密度 平均空气密度是指统计周期内风电场所处区域空气密度的平均值,即 P RT ρ= 单位:千克/立方米(3 /kg m ) 式中: ρ—统计周期内的风电场平均空气密度,3 /kg m ; P —统计周期内的风电场平均大气压强,a P ; R —气体常数,取287/J kg K ?;

T —统计周期内的风电场开氏温标平均绝对温度,K 。 4、 平均风功率密度 平均风功率密度是指统计周期内风机轮毂高度处风能在单位面积上所产生的平均功率,即 3 1 12n i wp i D V n ρ==∑()() 单位:瓦特/平方米(2 /W m ) 式中: wp D —统计周期内的风电场平均风功率密度,2 /W m ; n —统计周期内的记录次数; ρ—统计周期内的风电场平均空气密度,3/kg m ; 3 i V —统计周期内的第i 次记录平均风速值的立方。 5、有效风速小时数 有效风速小时数是指统计周期内风机轮毂高度处介于切入风速与切出风速之间的风速累计小时数,简称有效风时数,即 n i i V V V V T T == ∑有效风时数 单位:小时(h ) 式中: T 有效风时数 —统计周期内的风电场有效风时数,h ; 0V —风机的切入风速,/m s ; n V —风机的切出风速,/m s ; i V T —统计周期内出现介于切入风速(0V )和切出风速(n V ) 之间的风速小时数,h 。 6、风机可利用率 风机可利用率是指统计周期内除去风机因定期维护或故障时数后剩余时数与总时数除去非设备自身责任停机时数后剩余时数的百分比,即 (1)100%A B T B η-=- ?-可利用率 式中: η可利用率—统计周期内的风电场风机可利用率;

光伏电站发电量计算方法

光伏电站平均发电量计算方法小结 一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目就是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算 /估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6 6条:发电量计算中规 疋: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置与环境条件等各种因素后计算确定。 2、光伏发电站年平均发电量 Ep计算如下: Ep=HA< PAZX K 式中: HA为水平面太阳能年总辐照量(kW? h/m2); Ep——为上网发电量(kW?h); PAZ ――系统安装容量(kW); K ――为综合效率系数。 综合效率系数K就是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数 3)光伏发电系统可用率 ;

4)光照利用率; 5)逆变器效率 ; 6)集电线路、升压变压器损耗 ; 7)光伏组件表面污染修正系数 ; 8)光伏组件转换效率修正系数。 这种计算方法就是最全面一种 ,但就是对于综合效率系数的把握 , 对非资深光伏从业人员来讲 ,就是一个考验 ,总的来讲 ,K2 的取值在 75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA< SX K1X K2 式中: HA为倾斜面太阳能总辐照量(kW? h/m2); S――为组件面积总与(m2) K1 ——组件转换效率 ; K2 ——为系统综合效率。 综合效率系数K2就是考虑了各种因素影响后的修正系数,其中包括: 1)厂用电、线损等能量折减 交直流配电房与输电线路损失约占总发电量的3%,相应折减修正系数取为 97%。 2)逆变器折减 逆变器效率为 95%~98%。 3)工作温度损耗折减光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时 , 光伏组件发电效率会呈降低趋势。一般而言 , 工作温度损耗平均值为在 2、5%左右。 其她因素折减

余热发电设计方案

水泥有限公司 2000t/d水泥窑余热发电工程(5MW)项目技术方案

目录 1 项目申报基本概况 (1) 1.1项目名称 (1) 1.2项目地址 (1) 1.3项目建设规模及产品 (1) 1.4项目主要技术经济指标 (1) 2 拟建项目情况 (3) 2.1建设内容与范围 (3) 2.2建设条件 (3) 2.3装机方案 (4) 2.4电站循环冷却水 (11) 2.5化学水处理 (12) 2.6电气及自动化 (13) 2.7给水排水 (16) 2.8通风与空调 (16) 2.9建筑结构 (16) 2.10项目实施进度设想 (18) 2.11组织机构及劳动定员 (19) 3 资源利用与节约能源 (21) 3.1资源利用 (21) 3.2节约能源 (21)

附:原则性热力系统图

1 项目申报基本概况 1.1 项目名称 项目名称:水泥有限公司2000t/d水泥窑余热发电工程(5MW)1.2 项目地址 ,与现有水泥生产线建在同一厂区内。 1.3 项目建设规模及产品 根据2000t/d水泥窑的设计参数和实际运行情况,建设规模拟定为:在不影响水泥熟料生产、不增加水泥熟料烧成能耗的前提下,充分利用水泥生产过程中排出的废气余热建设一座装机容量为5MW纯低温余热电站。 产品为10.5kV电力。 1.4 项目主要技术经济指标 主要技术经济指标一览表

2 拟建项目情况 2.1 建设内容与范围 本项目根据2000t/d水泥生产线的实际运行情况、机构管理和辅助设施,建设一座5MW纯低温余热电站。本项目的建设内容与范围如下:电站总平面布置; 窑头冷却机废气余热锅炉(AQC炉); 窑尾预热器废气余热锅炉(SP炉); 窑头冷却机废气余热过热器(简称AQC-SH); 锅炉给水处理系统; 汽轮机及发电机系统; 电站循环冷却水系统; 站用电系统; 电站自动控制系统; 电站室外汽水系统; 电站室外给、排水管网及相关配套的土建、通讯、给排水、照明、环保、劳动安全与卫生、消防、节能等辅助系统。 2.2 建设条件 2.2.1 区域概况 2.2.2 余热条件 根据公司提供的水泥窑正常生产15天连续运行记录,废气余热条件如下。 (1)窑头冷却机可利用的废气余热量为: 废气量(标况):140000Nm3/h 废气温度: 310℃ 含尘量: 20g/Nm3 为了充分利用上述废气余热用于发电,通过调整废气取热方式,将废

风电场发电量计算方法

发电量计算梳理 发电量计算部分,我们所要做的工作是这样的: 当拿到标书(可研报告)等资料后,我们首先要提澄清(向业主索要详细发电量计算所需的资料);然后选择机型(确定该风电场适合用什么类型的风机);最后进行发电量计算。 一、澄清 下面列出了发电量计算需要的所有内容,提澄清的时候,缺什么就列出来。 风电场详细发电量计算所需资料汇总 (1)请业主提供风电场的可研报告; (2)请业主提供风电场内的测风塔各高度处完整一年实测风速、风向、风速标准偏差数据,以及测风塔的地理位置坐标; (3)请业主提供测风塔测风数据的密码; (4)风电场是否已确定风机布置位置,若已确定风机位置,请提供相应的固定风机点位坐标; (5)请业主提供风电场的边界拐点坐标; (6)请业主提供风电场内预装轮毂高度处的50年一遇最大风速; (7)请业主提供风电场场址处的空气密度; (8)请业主提供预装轮毂高度处15m/s湍流强度特征值; (9)请业主提供风电场的海拔高度以及累年极端最低温度; (10)请业主提供风电场内测风塔处的综合风切变指数; (11)请业主提供风电场影响发电量结果的各项因素的折减系数。

https://www.360docs.net/doc/6c9282049.html,/SELECTION/inputCoord.asp 第二步:打开Global Mapper软件,将.dxf和.zip地形文件拖入。 设置“投影”:Gauss Krueger(3 degree zones)\Gauss Krueger(6 degree zones); 设置“基准”:XIAN 1980(CHINA)\BEIJING 1954; 设置“地区”:Zone x(xxE-xxE)。 1 将.dxf拖入Global Mapper并设置好投影及基准后,将鼠标放于地图任意位置,软件右下角会显示点位坐标。完整坐标表示应该为横坐标8位,纵坐标7位。而横坐标的前两位经常被省去,如果你看到的是横坐标6位,纵坐标7位,那么横坐标的前两位就是被省略的。此时要人为对地图进行整体偏移。偏移量为“地区”Zone后的数值,见下图。

光伏电站发电量的计算方法

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积 1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往 达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0.8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太 阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.9 3的影响系数。

发动机余热发电系统设计方案

发动机余热发电系统设计方案 1.1 课题研究的背景 我国建设节约型社会的现状不容乐观,进入21世纪以来,我国经济社会继续保持了快速发展的势头,取得了有目共睹的伟大成就,也遭遇前所未曾有过的资源约束和环境制约。针对这些情况,中央适时地提出了建设资源节约型、环境友好性社会等一系列新的观念和决策。节约型社会目的是通过“加快建设资源节约型社会,推动循环经济发展。解决全面建设小康社会面临的资源约束和环境压力问题。保障国民经济持续快速协调健康发展(国办发(2004330号文件),强调在经济活动中节约资源和保护环境的同等重要性,要求经济效率和环境保护并驾齐驱。要求人类发展生态经济,追求以节约资源、能源和减少污染为前提的生念经济效率,要求人类在经济活动中实现经济与环境的协凋统一。目前,建没节约型社会多从节能技术、绿色技术、循环经济等方面展开,这有利于节约型社会建设的深入发展。在现在这个飞速发展的社会通无疑是很重要的一块,而汽车、飞机、船舶等交通运输工具又是不可或缺的,而发动机是汽车、飞机、船舶等交通运输工具的核心部件,其应用围非常广泛。随着人类社会的发展,发动机的数量急速增加。以汽车为例,2005年汽车保有量达3300万台,预计2010年将超过7000万台。与之相对应的是发动机数量的剧增和废热的大量排放。调查研究表明,发动机燃料燃烧所发出的能量只有34%~38%(柴油机)或25%~28%(汽油机)被有效利用。其它的能量被排放到发动机体外,仅由排气带走的热量就占进入发动机中的燃料所产生热量的30%~45%。这一方面造成了较大的能源浪费,另一方面使周边环境温度升高,带来了城市的热岛效应等不良影响。热污染首当其冲的受害者是水生物,由于水温升高使水中溶解氧减少,水体处于缺氧状态,同时又使水生生物代率增高而需要更多的氧,造成一些水生生物在热效力作用下发育受阻或死亡,从而影响环境和生态平衡。此外,河水水温上升给一些致病微生物造成一个人工温床,使它们得以滋生、泛滥,引起疾病流行,危害

光伏发电年发电量计算

以1MW装机容量为例(300KW即0.3MW),你可以自己换算下。 电力系统的装机容量是指该系统实际安装的发电机组额定有效功率的总和。 由于光伏发电必然有损耗,所以实际发电量是无法达到理论值的。 1、1MW光伏电站理论年发电量: =年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ =6771263.8*0.28 KWH =1895953.86 KWH =189.6万度 2、实际发电效率 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件, 当光伏组件内部的温度达到50-75℃时,它的输出功率降为额定时的89%,在分析太阳电池板输出功率时要考虑到0.89的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%

的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。 另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.9 计算。 并网光伏电站考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.9 5 * 0.8 9 * 0.9 3*0.9 5 *0.8 8 =65.7%。 3、系统实际年发电量: =理论年发电量*实际发电效率 =189.6*0.9 5 * 0.8 9 *0.9 3*0.9 5 * 0.8 8 =189.6*65.7% =124.56万度

玻璃余热发电方案..

玻璃有限责任公司余热发电项目 技术方案

二零一一年一月

玻璃余热综合利用发电项目技术方案 目录 一、玻璃余热回收概况 (1) 二、本厂窑炉尾气状况 (3) 三、装机方案及主机参数 (4) 1、烟气状况 (4) 2、装机方案 (4) 3、主机参数 (4) 四、工程设想 (5) 1、厂区规划及交通运输 (5) 2、热力系统及主厂房布置 (5) 3、供排水系统 (8) 4、电气系统 (9) 5、给排水系统 (9) 6、消防系统 (9) 7、热力控制系统 (10) 8、土建部分 (10) 五、项目实施计划 (11) 1、项目实施条件 (11) 2、项目实施进度 (12) 六、经济效益分析 (13) 1、技术技经指标 (13) 2、经济效益评估 (13)

一、玻璃余热回收概况 我国目前160余条浮法玻璃熔炉大量排放的400~500℃高温烟气,所携带的热能相当于总输入热量的35~50%,因此多数玻璃企业都会安装热管式余热锅炉来回收部分烟气热能,产生蒸汽,用于重油燃料加热和北方地区冬季供暖。即便如此,烟气余热的利用率也只有20%左右,仍有大量的高温烟气直排烟囱,烟气所带走的热损失非常惊人,既污染了环境,又浪费了宝贵的烟气余热资源,尤其是在南方地区或以天然气为燃料的玻璃生产企业这种现象就更为突出。 利用玻璃熔炉高温烟气余热进行发电的设想:为进一步提高余热利用率,可通过设置高效的发电用立式水管余热锅炉来充分回收玻璃熔炉的高温烟气余热资源,将其转换成过热低压蒸汽,通入汽轮发电机发电,产生使用方便、输送灵活的清洁电能,扩大余热利用途径。 玻璃熔炉余热发电工程设计应遵循的原则:不影响玻璃的正常生产,整个热力发电系统应以稳定可靠为前题,不改变常年运行的玻璃生产企业的生产工艺和参数,不因余热发电而影响玻璃产品质量。树立“玻璃生产是主业,发电是副业,副业不能影响主业,主业应兼顾副业”的工作指导思想。无论项目施工,还是发电运行,都不能停止重油加热所需蒸汽的供应。 发电效益最大化:对于中低温余热利用,关键在于工艺和设备允许范围内充分利用余热,并使设备的使用效率最高,使余热发电最大化。对于低参数汽轮发电机组而言,影响其发电量的是三个主要参数:过热蒸汽流量、压力和温度,其中流量对发电量起决定性影响,压力和温度对单位质量蒸汽的焓和汽轮机的内效率(热能转化为机械能的效率)有影响,但其

气烧辊道窑余热发电技术方案

气烧辊道窑余热发电技术方案 一、辊道窑余热发电概述 余热发电技术是利用企业的高品位热量进行回收,并集中转化为电力供企业自用的技术。我国从上世纪“八五”期开始,对余热发电技术和装置进行系统的研制开发,经过十多年的开发、研究和若干实际工程投产运行,余热发电技术和国产化设备都已成熟可靠,总体上的技术水平已经赶上国际先进工业国家。国家也把利用余热发电,作为节能降耗,实现循环发展的重要措施之一,给予大力支持和发展,使我国的余热发电技术应用领域不断扩大。但在建筑陶瓷、卫生陶瓷行业生产领域,辊道窑余热发电方面是个空白。 根据国家发展改革委节能中长期专项规划[发改环资[2004]2505号]精神,在“十一五”期间,辊道窑是陶瓷行业推广的技术。由于国内对辊道窑余热利用技术的研究起步较晚,余热利用率较低,除部份企业把余热用于原料烘干外,大部份企业是把高品位的辊道窑排烟热量(温度400~800℃)和产品冷却热量(温度950~1200℃)直接废弃,从而造成大量的能源浪费和热源污染。 陶瓷企业的余热利用,国内外先进企业主要是将辊道窑烟气和产品冷却产生的热风,通过风机送到原料干燥塔,对陶瓷原料进行干燥,以减少干燥塔一次能源消耗量,使陶瓷企业获得一定的经济效益。由于陶瓷原料的干燥主要是蒸发原料中的水份,利用辊道窑100~400℃的余热足够干燥所需热量;若直接利用辊道窑高品位余热(排烟温度400~800℃和产品冷却温度650~1200℃)用于干燥,则会导致干燥塔热量过剩,同时大大地降低余热的利用价值,使辊道窑的能源浪费转移到干燥塔,干燥塔能源损失量大,而能量品位又低,散失了余热再利用的价值。陶瓷企业的余热利用除原料干燥以外,其它方式的余热利用量很小,利用价值很低(如加热浴室用热水等),相当多的企业根本就不利用而直接废弃。根据陶瓷企业余热利用的现状,如何有效地提高余热的利用效率和利用价值,是本项目研究的目的。 电力作为二次能源,价值高且使用方便。如果将陶瓷企业辊道窑高品位余热(400~800℃的排烟余热和650~1200℃的产品冷却余热)收集转化为价值更高的电力能源,而品位较低、余热锅炉难以利用的余热(100~400℃)再用于原料干燥,既可满足陶瓷生产的需求,并充分利用好现有干燥设备,提高陶瓷企业辊道窑余热利用的价值和效率,解决陶瓷企业余热过剩的问题,将大大地降低企业的生产成本,并节约资源,从而推动陶瓷企业的循环经济发展。 辊道窑消耗的一次能源(煤、油或天然气),除炉窑散热、产品水份蒸发、烧结等必须消耗的能量外,约70%的能量是随排烟热损失和产品冷却热损失而浪费。在这些浪费的热量(简称余热)中,采用余热干燥原料的方式,可利用余热的20%,20%因品位低无法利用,另有60%左右的余热还没有得到充分利用。以一条每小时耗标准煤1400Kg的气烧辊道窑为例,进入炉窑总的热量为41×106KJ/h,有12.3×106KJ/h热量直接用于陶瓷生产,有28.7×106KJ/h余热;其中5.74×106KJ/h热量可用于原料干燥,有17.22×106KJ/h热量没有得到充分利用,5.74×106KJ/h热量不能利用。若将17.22×106KJ/h热量通过余热锅炉转化为蒸汽的热量,余热锅炉效率为85%,则可产生2.5MPa、400℃的蒸汽(蒸汽焓为3214KJ/Kg)2380Kg/h,利用凝汽式汽轮发电机发电,其汽耗率为5.6Kg/KWh,则这条炉窑的余热可发电370KW。按平均电价0.55元/度计算,这条炉窑每小时可额外回收203.5元的电,经济效益显著。若

单机计算法修正风电场发电量计算

2009年8月 第4期 * 收稿日期:2009-06-31 作者简介:牟磊(1981-),男,四川涪陵人,硕士。 《风电场风能资源评估方法》规范了对风电场的风资源评估方法和内容,其中对风电场风速频率的模拟提出了运用Weibull 模型进行模拟,由于该模型是一个单峰类似正态分布的模型,因此对于特殊地区的风速频率双峰的状态不能够很好模拟,造成发电量计算的有偏差,使经济评价缺少了可信度,造成业主投资没有依据,经济效益不明显。 本文提出运用单机计算方法对频率分布不均的风电场进行修正,修正后能够满足风电场风资源评估的需求。 1 Weibull分布 威布尔分布是一种单峰的,两参数的分布 函数法。其概率密度函数可表达为: f (V ) = —— —— K-1 e - — K 式中:k 和c 为威布尔分布的两个参数,k 称作形 状参数,c 称作尺度参数。当c =1时,称为标准威布尔分布。 2 单机计算的具体方法 单机计算法基本思想:通过风资源评估软件计算出测风塔位置的发电量;利用测风塔位置各个风速时间段和所对应的风机功率曲线相乘的方法计算出测风塔位置准确发电量,通过同一位置不同方法计算出发电量相比,计算出 K C V C V C 76

2009年8月 第4期 测风塔数据 功率与风速时间相乘 功率与风速时间相乘 单点计算出测风塔位置发电量 计算出修正系数 计算出发电量测风塔位置风机发电量Wasp 、windfarm 软件 修正风场内发电机电量 weibull 分布的修正系数,从而修正了风场的发电量。 2.1 单机计算具体方法 风电场设计一个必要条件就是需要进行一年的测风,测风塔数据经过数据插补和订正后具有代表性,因此假定在此处建设风机,用此处各个风速段的时间和所选机型各个风速段下功率曲线相乘的方法计算出此处理论发电量,此发电量是较为准确的;根据wasp 软件或其他软件对风场风机进行排布,为了下一步修正,在测风塔位放置一台参考机组,通过软件计算出整个风场内各个风机布置位的理论发电量;将wasp 软件计算出测风塔位置的风机发电量与根据风速段和功率曲线相乘计算出的发电量相除得出修正系数,将此修正系数用于风电场发电量计算的折减中,计算出风电场的年发电量。 2.2 单机计算方法实现的技术路线 风资源软件计算初步发电量、测风塔位置单点发电量计算、对整个风电场发电量修正等过程。实现单点计算修正风频分布模型的技术路线见图1。 图1 技术路线图 图2 风电场甲风机排布图 表1 测风塔50m高度风速频率分布 图中右下角位置为测风塔位置,在测风塔位置立一台风力发电机组为参考风机位,用两种算法计算参考风机位的发电量。 风电场测风塔50m 高度的风速频率分布见表1和图3 。 3 实例计算 3.1 风速分布频率比较符合weibull分布情况 某风电场甲地势平坦,场区内有一座测风 77 塔,选取测风塔2007年4月27日至2008年4月28日一个完成的测风周期数据,经过插补和订正数据具有代表性。 利用WasP 软件进行风机布置和发电量计算。风机排布如图2。

余热发电热控施工方案.pdf

水泥余热发电项目 热控设备安装施工方案 审 核: 批 准: 编 制: 目 录 1、工程概述 4 2、编制依据 4 3、施工准备 4 3.1施工员要对图纸进行详尽的研究4 3.2施工工具及附属设备4 3.3设备材料质量验收4 3.4施工环境4

4、主要施工内容:4 5、主要施工方法5 5.1盘柜基础槽钢制作安装5 5.2控制室内盘柜、操作台安装5 5.3接地系统安装5 5.4电气线路安装6 5.5仪表供电系统安装6 5.6取源部件安装7 5.7流量取源部件7 5.8物位取源部件7 5.9分析取源部件8 6、仪表设备安装8 7、仪表管路安装8 8、质量保证措施9 8.1文件控制9 8.2材料设备的管理9 8.3计量设备管理9 8.4过程控制9 8.5熟悉、理解图纸9 8.6认真做好自检9 8.7质量证体系9 9、安全措施10 10、现场文明施工10 11、竣工验收10

工程概述 本工程建设规模为2000t/d水泥窑余热发电工程(5.0MW),利用水泥生 产线产生的高温烟气,使余热锅炉产生蒸汽推动汽轮机发电,本工程由 水泥有限公司筹建,由 监理有限公司负责建设期间的监理工作, 由 电力安装公司负责安装全厂热控设备安装。 编制依据 2.1 设计图纸和相关设备厂家技术资料 2.2《工业自动化仪表工程及验收规范》GB50093-2002 2.3《自动化仪表安装工程质量检验评定标准》GBJI31-90 2.4《建筑工程施工现场供用电安全规范》GB50194-93 施工准备 3.1施工员要对图纸进行详尽的研究

施工员要对图纸进行详尽的研究,在现场施工前发现图纸设计存在的缺陷和错误,在图纸会审时把问题提出并尽快解 决。对参加施工的人员要进行施工技术交底和安全技术交底。 3.2施工工具及附属设备 施工中需用的主要施工机具、试验设备、标准表准备齐全。 3.3设备材料质量验收 设备材料到货后,检查其包装及密封状况是否良好,开箱进行外观检查,清点数量与清单是否相符,规格型号与设 计要求是否一致,附件及备件是否齐全,有无说明书及技术 文件。 3.4施工环境 室内土建工程包括地面、屋内、墙面、门窗及装饰工程等施工完毕。工艺设备基本安装就位,管架安装完毕。对施 工有影响的模板、脚手架拆除、杂物清除干净。 4、主要施工内容: (1)中央控制室内盘柜、操作台基础槽钢制作及安装 (2)中央控制室内盘柜、操作台安装 (3)接地系统安装 (4)电气线路安装 (5)供电系统安装 (6)取源部件安装 (7)仪表单体调试 (8)仪表设备安装 (9)仪表管路安装

风电场电量计算公式

风电场电量计算公式 单位:MWh 1.关口表计量电量 1)上网电量 251正向A总(A+) 2)用网电量 251反向A总(A-) 3)送网无功 251正向R总(R+) 4)用网无功 251反向R总(R-) 2.发电量:是指每台风力发电机发电量的总和。 1)表底读数 (312A+)+(313A+)+(314A+)+(315A+)+(316A+)+(317A+) 2)日用量 (今日表底读数-昨天表底读数)*350*60*0.001(即*21) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 3.上网电量:风电场与电网的关口表计计量的风电场向电网输送的电能。 1)表底读数 251A+ 2)日用量 (今251A+)-(昨251A+) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 4.用网电量:风电场与电网的关口表计计量的电网向风电场输送————————————————————————————————————————————————————— 的电能。 1)表底读数 251A- 2)日用量 (今251A-)-(昨251A-)

3)月累计今日日用量+昨天月用量 4)年累计今日日用量+昨天年累计 5.站用电量 1)表底读数 361A+ 2)日用量 (今日表底读数-昨天表底读数)*350*20*0.001(即*7) 3)月累计今日日累计+昨天月累计 4)年累计今日日累计+昨天年累计 注意:现在算出的单位是Mwh,运行日志上的单位是万kWh,要将算出的数小数点前移一位(如:427Mwh=42.7万kWh) *厂用电率:风电场生产和生活用电占全场发电量的百分比。 厂用电率=(厂用电量日值?发电量日值)×100 =(0.161?20.02)×100 *风电场的容量系数:是指在给定时间内该风电场发电量和风电场装机总容量的比值 容量系数=发电量日值?(50×2×24) 等效利用小时数也称作等效满负荷发电小时数。 *风电机等效利用小时数(等效满负荷发电小时数):是指某台风电机发电量折算到该风电机满负荷的运行小时数。 ————————————————————————————————————————————————————— 公式为:风电机等效利用小时数,发电量,额定功率 *风电场等效利用小时数(等效满负荷发电小时数):是指某风电场发电量折算到该场满负荷的运行小时数。

低温余热发电系统设计方案

低温余热发电系统设计方案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

低温余热发电系统设计方案 1. 需考虑的问题 低温余热发电系统的窑尾余热锅炉(SP炉)和篦冷机余热锅炉(AQC炉)串联于熟料生产线上,两锅炉阻力均小于1000Pa。设计时,必须考虑下列问题:(1)窑尾主排风机和窑头、窑尾电除尘器及其风机的能力是否适应增设窑尾余热锅炉和篦冷机余热锅炉的条件; (2) 原料磨的热风系统能否满足工艺要求; (3) 该两台锅炉系统的安装是否不破坏原生产厂房。 经对窑系统设计资料认真复核,确认增设两台锅炉系统后所涉及的上述设备能力可以满足要求,不须作任何改造;两台锅炉系统的布置可以不破坏原生产厂房;出窑尾锅炉废气被送至生料原系统作为烘干热源,经核算,只要控制出窑尾锅炉废气温度≥240℃~℃260就可满足入磨原料综合水份≤5%的烘干要求。 双压纯低温余热发电技术介绍 双压余热发电技术就是按照能量梯级利用的原理,在同一台余热锅炉中设置2个不同压力等级的汽水系统,分别进行汽水循环,产生高压和低压两种过热蒸汽;高压过热蒸汽作为主蒸汽、低压过热蒸汽作为补汽分别进入补汽凝汽式汽轮机,推动汽轮机做功发电,双压余热发电系统使能量得到合理利用,热回收效率高。 余热资源参数不同,余热锅炉的低压受热面与高压受热面有不同的布置方式。根据辽源金刚水泥厂窑头(AQC)和窑尾(SP)的余热特点和工艺要求,经过余热利用后,要使AQC余热锅炉排烟温度降到100℃左右。使窑尾SP余热锅炉排烟温度降低到220℃左右后进入原料磨烘干原料,其设置的双压余热发电系统简图如图1。

光伏发电量计算及综合效率影响因素

光伏发电量计算及综合效率影响因素 Hessen was revised in January 2021

光伏发电量计算及综合效率影响因素 一、光伏电站理论发电量计算 1.太阳电池效率n的计算 在太阳电池受到光照时,输出电功率和入射光功率之比就称为太阳电池的效率,也称为光电转换效率。 厂巴一AX—〃仏匕 A几A几A几 其中,At为太阳电池总而积(包括栅线图形面积)。考虑到栅线并不产生光电,所以可以把At换成有效面积Aa (也称为活性面积),即扣除了栅线图形面积后的而积,同时计算得到的转换效率要高一些。Pin为单位而积的入射光功率。实际测量时是在标准条件下得到的:Pin取标准光强:AM 条件,即在25°C下,Pin 二1000W / nA 2.光伏系统综合效率(PR) n 总=HIX n 2X n 3 光伏阵列效率Hl:是光伏阵列在1000 W/m2太阳辐射强度下实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:灰尘/污渍,组件功率衰减,组件串联失配损失、温升损失、方阵相互遮挡损失、反射损失、光谱偏离损失、最大功率点跟踪精度及直流线路损失等,目前取效率86%计算。 逆变器转换效率112:是逆变器输岀的交流电功率与直流输入功率之比,取逆变器效率97%计算。 交流并网效率A3:是从逆变器输出,至交流配电柜,再至用户配电室变压器10 KV高压端,主要是升压变压器和交流线缆损失,按96%计算。

3. 理论发电量计算

太阳电池的名牌功率是在标准测试条件下测得的,也就是说在入射功率为 1000W/m:的光照条件下,lOOOWp太阳电池1小时才能发一度电。而实际上,同一天不同的时间光照条件不同,因此不能用系统的容量乘以日照时间来预测发电量。计算日发电量时,近似计算: 理论日发电量二系统峰值功率(kw) x等效日照小时数(h) x系统效率 等效峰值日照小时数h/d二(日太阳辐照量m7d) /lkW/m: (H照时数:辐射强度^120W/m2的时间长度) 二、影响发电量的因素 的发电量由三个因素决定:装机容量、峰值小时数、系统效率。当电站的 地点和规模确定以后,前两个因素基木己经定了,要想提高发电量,只能提高 此图:来源于王斯成老师的ppi 灿观

风电理论发电功率及受阻电量计算方法

风电理论发电功率及受阻电量计算方法 第一章总则 第一条为进一步完善电网实时平衡能力监视功能,规范日内市场环境下风电理论发电功率及受阻电量等指标的统计分析,依据《风电场理论可发电量与弃风电量评估导则》(NB/T 31055-2014)、《风电场弃风电量计算办法(试行)》(办输电〔2012〕154号)、《风电受阻电量计算办法》(调水〔2012〕297号)的有关要求,制定本方法。 第二条本方法适用于国家电网公司各级电力调度机构和调管范围内并网风电场开展理论发电功率及受阻电量统计计算工作。 第二章术语与定义 第三条风电场发电功率指标包括理论发电功率和可用发电功率。风电场理论发电功率指在当前风况下场内所有风机均可正常运行时能够发出的功率,其积分电量为理论发电量;风电场可用发电功率指考虑场内设备故障、缺陷或检修等原因引起受阻后能够发出的功率,其积分电量为可用发电量。 第四条风电场受阻电力分为场内受阻电力和场外受阻电力两部分:场内受阻电力指风电场理论发电功率与可用发电功率之差,其积分电量为场内受阻电量;场外受阻电力指

风电场可用发电功率与实发功率之差,其积分电量为场外受阻电量。 第五条全网理论发电功率指所有风电场理论发电功率之和;全网可用发电功率指风电场总可用发电功率与考虑断面约束的风电总受阻电力之差;可参与市场交易的风电富余电力指全网可用发电功率与实发功率之差。 第六条全网场内受阻电力指所有风电场场内受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的风电受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第七条计算风电场理论发电功率和受阻电力需准备的数据有:样板机型号及其数量、全场风机型号及其数量、样板机实时出力、全场风机状态信息、风机轮毂高度、风轮直径、风机经纬度坐标、风机风速-功率曲线、风电场区域地形地貌数据、测风塔经纬度坐标及其层高、实时测量风速和风向、机舱风速等。 第四章风电场理论功率计算方法 第八条风电场理论功率及受阻电量计算主要有三种方法:样板机法、测风塔外推法和机舱风速法。风电场可根据具体情况,采用一种或多种计算方法。

钢铁企业烧结余热发电技术推广实施方案

钢铁企业烧结余热发电技术推广 实施方案 二〇〇九年十二月 前言 钢铁工业是国民经济重要基础产业,能源消耗量约占全国工业总能耗的15%,废水和固体废弃物排放量分别占工业排放总量的14%和17%,是节能减排的重点行业。当前,钢铁行业发展面临严峻挑战和新的发展机遇,传统的粗放型发展模式已难以为继,迫切要求行业企业以节能减排为抓手,积极转变发展方式,利用高新技术改造、提升行业技术管理水平,走科技含量高、经济效益好、资源消耗低、环境污染少的新型工业化道路。 在钢铁企业中,烧结工序能耗仅次于炼铁工序,占总能耗的9%~12%,节能潜力很大。烧结余热发电是一项将烧结废气余热资源转变为电力的节能技术。该技术不产生额外的废气、废渣、粉尘和其它有害气体,能够有效提高烧结工序的能源利用效率,平均每吨烧结矿产生的烟气余热回收可发电20kWh,折合吨钢综合能耗可降低约8千克标准煤,从而促进钢铁企业实现节能降耗目标。本方案计划用3年时间(2010~2012年),在重点大中型钢铁企业中有针对性地推广烧结余热发电技术,预期在钢铁行业的推广比例达到20%,形成万吨标准煤的节能能力,为钢铁企业在日益激烈的市场竞争中进一步降低生产成本、实现节能降耗发挥积极作用。 目录 一、技术发展及应用现状 (2)

(一)烧结余热发电技术概况 (2) (二)应用现状 (3) (三)存在的问题 (3) 二、指导思想、原则和目标 (4) (一)指导思想 (4) (二)基本原则 (4) (三)建设目标 (5) 三、主要内容............................................................................ ..5 (一)范围和条件 (5) (二)建设内容 (6) (三)实施进

光伏电站平均发电量计算方法小结

光伏电站平均发电量计算方法小结 【大比特导读】一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出和计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6.6条:发电量计算中规定: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置和环境条件等各种因素后计算确定。 2 、光伏发电站年平均发电量Ep计算如下: Ep=HA×PAZ×K 式中: HA——为水平面太阳能年总辐照量(kW·h/m2); Ep——为上网发电量(kW·h); PAZ ——系统安装容量(kW); K ——为综合效率系数。 综合效率系数K是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数;

3)光伏发电系统可用率; 4)光照利用率; 5)逆变器效率; 6)集电线路、升压变压器损耗; 7)光伏组件表面污染修正系数; 8)光伏组件转换效率修正系数。 这种计算方法是最全面一种,但是对于综合效率系数的把握,对非资深光伏从业人员来讲,是一个考验,总的来讲,K2的取值在75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA×S×K1×K2 式中: HA——为倾斜面太阳能总辐照量(kW·h/m2); S——为组件面积总和(m2) K1 ——组件转换效率; K2 ——为系统综合效率。 综合效率系数K2是考虑了各种因素影响后的修正系数,其中包括: 1) 厂用电、线损等能量折减 交直流配电房和输电线路损失约占总发电量的3%,相应折减修正系数取为97%。 2) 逆变器折减 逆变器效率为95%~98%。 3) 工作温度损耗折减

余热发电方案

郴州金贵银业股份有限公司4台余热锅炉+1×7.5MW 余热发电工程 初步方案 长沙有色冶金设计研究院有限公司 2012年10月

编写:刘国雄何强 阳卫伟 校对:黄生龙 审核:李晓 审定:匡社颖 长沙有色冶金设计研究院有限公司2012年10月

目录 1.概述 2.余热资源概况 3.余热资源利用方案 4.余热锅炉本体设计方案5.余热发电机组选型及热力系统6.循环水系统 7.化学水系统 8.电气系统 9. 热工控制与仪表 10. 主要技术经济指标 11. 设备及投资估算

1.概述 郴州市金贵银业股份有限公司是一家以生产经营高纯银及银深加工产品为主的高新技术企业,是我国白银生产出口的重要基地之一。公司拥有全国领先的白银冶炼和深加工技术,白银年产量居全国同类企业前列,是郴州市产值、利税及创汇大户、湖南省工业百强和民营三十强企业。 公司以白银冶炼及其深加工产品为核心,综合回收其它贵重金属。拥有600t/a高纯银精炼、10万t高纯铅、300t/a高纯硝酸银、1000t/a “AT纳米抗菌剂”和银基触点材料等银深加工生产线。年综合回收锌20000t、高纯铋800t及铟、铜、锑、锡等多种贵重金属。 公司是湖南省首批高新技术企业,拥有自主研发中心,先后承担多项国家级科研课题,累计申请国家专利57件,其中发明专利37件,被湖南省知识产权局列为“湖南省知识产权优势培育企业”。 目前,公司的白银生产技术、工艺水平、产品质量、资源综合利用率处于同行业先进水平,白银回收率可达99.5%,资源综合利用率达95%,白银质量稳定在国家1#银标准,纯度达99.995%。公司通过ISO9001:2008质量管理体系、ISO14001:2004环境管理体系认证和湖南省质量信用3A企业认定,大力推行品牌战略,提升公司国际知名度,“金贵”牌银锭获“湖南省出口名牌”、“湖南省国际知名品牌”称号,

相关文档
最新文档