聚类研究现状

聚类研究现状

1963 年,由Robert Sokal 和Peter Sneath 合著的《Principles of Numerical Taxonomy)) 一书

对聚类的研究起了很大的推动和促进作用。在很多年前,统计学的一个分支称作聚类分析,

这个时候的聚类主要是基于距离的聚类,AutoClass就是这类方法的代表,它是以统计分析为

基础的。模式识别中的聚类分析人们称它为非监督的学习或概念聚类,它要求同类的对象具有某种共同内涵,而不仅仅考虑对象间的距离。从这个意义上看,聚类分析可以这样定义:将数据划分成不同的组,目标是使得各个组之间的差异较大,而同一组的相似性则较高。聚类分析不仅是数据挖掘中的重要方法同时也是知识发现的重要手段,目前在前人的努力之下我们己经有了一些聚类算法,能够帮助我们解决一些问题,然而这些算法都有着各自的局限性[3]。

空间聚类的研究现状及其应用_戴晓燕

空间聚类的研究现状及其应用* 戴晓燕1 过仲阳1 李勤奋2 吴健平1 (1华东师范大学教育部地球信息科学实验室 上海 200062) (2上海市地质调查研究院 上海 200072) 摘 要 作为空间数据挖掘的一种重要手段,空间聚类目前已在许多领域得到了应用。文章在对已有空间聚类分析方法概括和总结的基础上,结合国家卫星气象中心高分辨率有限区域分析预报系统产品中的数值格点预报(HLAFS)值,运用K-均值法对影响青藏高原上中尺度对流系统(MCS)移动的散度场进行了研究,得到了一些有意义的结论。 关键词 空间聚类 K-均值法 散度 1 前言 随着GPS、GI S和遥感技术的应用和发展,大量的与空间有关的数据正在快速增长。然而,尽管数据库技术可以实现对空间数据的输入、编辑、统计分析以及查询处理,但是无法发现隐藏在这些大型数据库中有价值的模式和模型。而空间数据挖掘可以提取空间数据库中隐含的知识、空间关系或其他有意义的模式等[1]。这些模式的挖掘主要包括特征规则、差异规则、关联规则、分类规则及聚类规则等,特别是聚类规则,在空间数据的特征提取中起到了极其重要的作用。 空间聚类是指将数据对象集分组成为由类似的对象组成的簇,这样在同一簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大,即相异度较大。作为一种非监督学习方法,空间聚类不依赖于预先定义的类和带类标号的训练实例。由于空间数据库中包含了大量与空间有关的数据,这些数据来自不同的应用领域。例如,土地利用、居住类型的空间分布、商业区位分布等。因此,根据数据库中的数据,运用空间聚类来提取不同领域的分布特征,是空间数据挖掘的一个重要部分。 空间聚类方法通常可以分为四大类:划分法、层次法、基于密度的方法和基于网格的方法。算法的选择取决于应用目的,例如商业区位分析要求距离总和最小,通常用K-均值法或K-中心点法;而对于栅格数据分析和图像识别,基于密度的算法更合适。此外,算法的速度、聚类质量以及数据的特征,包括数据的维数、噪声的数量等因素都影响到算法的选择[2]。 本文在对已有空间聚类分析方法概括和总结的基础上,结合国家卫星气象中心高分辨率有限区域分析预报系统产品中的数值格点预报(HLAFS)值,运用K-均值法对影响青藏高原上中尺度对流系统(MCS)移动的散度场进行了研究,得到了一些有意义的结论。 2 划分法 设在d维空间中,给定n个数据对象的集合D 和参数K,运用划分法进行聚类时,首先将数据对象分成K个簇,使得每个对象对于簇中心或簇分布的偏离总和最小[2]。聚类过程中,通常用相似度函数来计算某个点的偏离。常用的划分方法有K-均值(K-means)法和K-中心(K-medoids)法,但它们仅适合中、小型数据库的情形。为了获取大型数据库中数据的聚类体,人们对上述方法进行了改进,提出了K-原型法(K-prototypes method)、期望最大法EM(Expectation Maximization)、基于随机搜索的方法(ClAR ANS)等。 K-均值法[3]根据簇中数据对象的平均值来计算 ——————————————— *基金项目:国家自然科学基金资助。(资助号: 40371080) 收稿日期:2003-7-11 第一作者简介:戴晓燕,女,1979年生,华东师范大学 地理系硕士研究生,主要从事空间数 据挖掘的研究。 · 41 · 2003年第4期 上海地质 Shanghai Geology

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

数据流挖掘算法研究综述

-1130- 1引言 所谓数据流就是大量连续到达的、潜在无限的数据的有序序列,这些数据或其摘要信息只能按照顺序存取并被读取一次或有限次。在网络监控、入侵检测、情报分析、金融服务、股票交易、电子商务、电信、卫星遥感(气象、环境资源监控等)、Web 页面访问和科学研究等众多领域中,数据以流的形式出现。由于数据流的特殊性,短时间内有大量数据连续到达,这些数据具有随时间动态变化的趋势,往往又是高维的,怎样对这些流数据使用有限存储空间进行快速处理以获取有用信息,为数据挖掘及其应用研究带来了新的机遇和挑战,也具有非常重要的意义。由于众多应用领域的需求,近几年数据流处理问题,特别是数据流挖掘问题已受到越来越多的研究人员关注。国外在数据流挖掘方面有两个比较有影响的研究小组:一个是Stanford 大学的R.Motwani 教授领导的研究小组,另一个是UIUC 的C.Aggarwal 和J.Han 教授领导的研究小组。前者的研究侧重在数据流管理、数据流的连续查询和数据流的聚类方面 [1-4] ,提出了不同于传统DBMS 的DSMS (Data Stream Management System )概念,他们的研究得到了美国国家自然科学基金的资助。后者的研究侧重在数据流分析方面,对于数据流的在线分析,从聚类、分类、频繁项集挖掘以 及可视化等角度做了大量研究工作[5-8],提出了倾斜时间窗口(tilted-time window )策略,采用不同时间粒度保存数据流的信息,他们的研究得到了美国军方和国家自然科学基金的资助。目前鲜见国内在数据流挖掘方面公开发表的研究文献。本文拟对数据流挖掘的研究现状进行总结,并对存在的问题和未来的研究方向提出我们的观点。 2数据流挖掘研究现状 目前数据流挖掘方面的研究成果主要集中在数据流的聚 类、分类和频繁模式挖掘方面。 2.1数据流聚类算法研究 尽管聚类问题在数据库、数据挖掘和统计等领域得到了 广泛研究,流数据的分析仍为聚类算法提出了前所未有的挑战,由于完整甚至部分地存储过去数据的方法不可行,需要能够只使用新数据就能够追踪聚类变化的算法,这就要求算法必须是增量式的,对聚类表示要简洁,对新数据的处理要快速,对噪音和异常数据是稳健的。因为数据流可看成是随时间不断变化的无限过程,其隐含的聚类可能随时间动态地变化而导致聚类质量降低。近年来,有学者提出了应用于大规模数据集的一趟聚类算法,如Squeezer 算法[9]和BIRCH [11]算法,它们可以应用于某些数据流问题,也有学者提出了针对流数 收稿日期:2004-06-12。基金项目:国家自然科学基金项目(60273075)。 作者简介:蒋盛益(1963-),男,湖南隆回人,副教授,博士生,研究方向为数据挖掘和网络安全;李庆华,教授,博士生导师,研究方向为并行计算、网格计算和网络安全;李新,硕士生,研究方向为数据挖掘和并行计算。 2005年5月计算机工程与设计 May.2005 第26卷第5期Vol.26 No.5 数据流挖掘算法研究综述 蒋盛益1,2 ,李庆华1,李 新1 (1.华中科技大学计算机学院,湖北武汉430074;2.衡阳师范学院计算机系,湖南衡阳421008) 摘 要:流数据挖掘是数据挖掘的一个新的研究方向,已逐渐成为许多领域的有用工具。在介绍数据流的基本特点以及数据流挖掘的意义的基础上,对现有数据流挖掘算法的主要思想方法进行了总结,并指出了这些方法的局限性。最后对数据流挖掘的发展方向进行了展望。 关键词:数据流;数据流挖掘;聚类;分类;频繁模式中图法分类号:TP3ll 文献标识码:A 文章编号:1000-7024(2005)05-1130-03 Survey on data stream mining JIANG Sheng-yi 1,2, LI Qing-hua 1, LI Xin 1 (https://www.360docs.net/doc/6c9809910.html,puter School,Huazhong University of Science and Technology,Wuhan 430074,China;https://www.360docs.net/doc/6c9809910.html,puter Department, Hengyang Normal University,Hengyang 421008,China ) Abstract :Data stream mining is a new research aspect of data mining.It has be come a useful tool for many fields.The essential characteristic of data stream and the significance of data stream mining are introduced.The main ideal of existing data stream mining algorithms is summarized,and the limitation of the algorithms is pointed out.Some research directions about data stream mining in future work are put forward. Key words :data stream;data stream mining;clustering,classification;frequent pattern Computer Engineering and Design

[VIP专享]聚类分析案例研究

聚类分析案例—我国各地区普通高等教育发展状况分析 聚类分析又称群分析,是对多个样本(或指标)进行定量分类的一种多元统计分析 方法。对样本进行分类称为Q型聚类分析,对指标进行分类称为R型聚类分析。本案例 运用Q型和R型聚类分析方法对我国各地区普通高等教育的发展状况进行分析。 1.案例研究背景 近年来,我国普通高等教育得到了迅速发展,为国家培养了大批人才。但由于我国 各地区经济发展水平不均衡,加之高等院校原有布局使各地区高等教育发展的起点不一致,因而各地区普通高等教育的发展水平存在一定的差异,不同的地区具有不同的特点。对我国各地区普通高等教育的发展状况进行聚类分析,明确各类地区普通高等教育发展 状况的差异与特点,有利于管理和决策部门从宏观上把握我国普通高等教育的整体发展 现状,分类制定相关政策,更好的指导和规划我国高教事业的整体健康发展。 -592- 2.案例研究过程 (1)建立综合评价指标体系 高等教育是依赖高等院校进行的,高等教育的发展状况主要体现在高等院校的相 关方面。遵循可比性原则,从高等教育的五个方面选取十项评价指标,具体如图4。(2)数据资料 指标的原始数据取自《中国统计年鉴,1995》和《中国教育统计年鉴,1995》除以 各地区相应的人口数得到十项指标值见表6。其中: 1 x 为每百万人口高等院校数; 2 x 为 每十万人口高等院校毕业生数; 3 x 为每十万人口高等院校招生数; 4 x 为每十万人口高等院校在校生数; 5 x 为每十万人口高等院校教职工数; 6 x 为每十万人口高等院校专职教师数;7 x 为高级职称占专职教师的比例;8 x 为平均每所高等院校的在校生数;9 x 为 国家财政预算内普通高教经费占国内生产总值的比重;10 x 为生均教育经费。 图4 高等教育的十项评价指标

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

1基于网格的数据流聚类算法

3)国家自然科学基金(60172012)。刘青宝 博士生,副教授,主要研究方向为数据仓库技术和数据挖掘;戴超凡 博士,副教授,主要研究方向为数据仓库技术和数据挖掘;邓 苏 博士,教授,主要研究方向指挥自动化、信息综合处理与辅助决策;张维明 博士生导师,教授,主要研究方向为军事信息系统、信息综合处理与辅助决策。 计算机科学2007Vol 134№13   基于网格的数据流聚类算法3) 刘青宝 戴超凡 邓 苏 张维明 (国防科学技术大学信息系统与管理学院 长沙410073)   摘 要 本文提出的基于网格的数据流聚类算法,克服了算法CluStream 对非球形的聚类效果不好等缺陷,不仅能在 噪声干扰下发现任意形状的类,而且有效地解决了聚类算法参数敏感和聚类结果无法区分密度差异等问题。关键词 聚类,数据流,聚类参数,相对密度  G rid 2based Data Stream Clustering Algorithm L IU Qing 2Bao DA I Chao 2Fan DEN G Su ZHAN G Wei 2Ming (College of Information System and Management ,National University of Defense Technology ,Changsha 410073)   Abstract With strong ability for discovering arbitrary shape clusters and handling noise ,grid 2based data stream cluste 2ring algorithm efficiently resolves these problem of being very sensitive to the user 2defined parameters and difficult to distinguish the density distinction of clusters.K eyw ords Clustering ,Data stream ,Clustering parameter ,Relative density 随着计算机和传感器技术的发展和应用,数据流挖掘技术在国内外得到广泛研究。它在网络监控、证券交易分析、电信记录分析等方面有着巨大的应用前景。特别在军事应用中,为了获得及时的战场态势信息,大量使用了各种传感器,对这些传感器数据流的分析处理已显得极为重要。针对数据流数据持续到达,且速度快、规模大等特点,数据流挖掘技术的研究重点是设计高效的单遍数据集扫描算法[12]。数据流聚类问题一直是吸引许多研究者关注的热点问题,已提出多种一次性扫描的方法和算法,如文[1~4]等等,但它们的聚类结果通常是球形的,不能支持对任意形状类的聚类[5]。 本文提出的基于网格的数据流聚类算法,在有限内存条件下,以单遍扫描方式,不仅能在噪声干扰下发现任意形状的类,而且有效地解决了基于绝对密度聚类算法所存在的高密度聚类结果被包含在相连的低密度聚类结果中的问题。 本文第1节简要介绍数据流聚类相关研究,并引出基于网格的数据流聚类算法的思路及其与相关研究的异同;第2节给出基于网格的数据流聚类算法所使用到的基本概念;第3节给出一个完整的基于网格的数据流聚类算法,详细解析算法的执行过程;第4节进行算法性能分析对比;最后总结本文的主要工作和贡献,并指出需要进一步研究和改进的工作。 1 相关研究 在有限内存约束下,一般方法很难对数据流进行任意形状的聚类。第一个增量式聚类挖掘方法是文[6]提出的In 2crementalDBSCAN 算法,它是一个用于数据仓库环境(相对稳定的数据流)的有效聚类算法,可以在有噪声的数据集中发现任意形状的类。但是,它为了形成任意形状的类,必须用类中的所有点来表示,要求获得整个数据流的全局信息,这在内存有限情况下是难以做到的。而且,它采用全局一致的绝对 密度作参数,使得聚类结果对参数值非常敏感,设置的细微不同即可能导致差别很大的聚类结果。 Aggarwal 在2003年提出的一个解决数据流聚类问题的框架CluStream [1]。它使用了两个过程来处理数据流聚类问题:首先,使用一个在线的micro 2cluster 过程对数据流进行初级聚类,并按一定的时间跨度将micro 2cluster 的结果按一种称为pyramid time f rame 的结构储存下来。同时,使用另一个离线的macro 2cluster 过程,根据用户的具体要求对micro 2cluster 聚类的结果进行再分析。但它采用距离作为度量参数,聚类结果通常是球形的,不能支持对任意形状类的聚类。而且,它维护的是micro 2cluster 的聚类特征向量(CF 2x ;CF 1x ;CF 2t ;CF 1t ;n ),这在噪声情况下,会产生干扰误差。 2006年,Feng Cao 等人在文[5]中提出了针对动态进化数据流的DenStream 算法。它相对CluStream 有很大的改进,继承了IncrementalDBSCAN 基于密度的优点,能够支持对有噪声的动态进化(非稳定)的数据流进行任意形状的聚类。但由于采用全局一致的绝对密度作参数,使得聚类结果对参数值非常敏感。同时,与CluStream 算法相比,它只能提供对当前数据流的一种描述,不能反映用户指定时间窗内的流数据的变化情况。 朱蔚恒等在文[13]中提出的基于密度与空间的ACluS 2tream 聚类算法,通过引入有严格空间的意义聚类块,在对数据流进行初步聚类的同时,尽量保留数据的空间特性,有效克服了CluStream 算法不能支持对任意形状聚类的缺陷。但它在处理不属于已有聚类块的新数据点时,使用一种类似“抛硬币”的方法来猜测是否为该点创建一个新的聚类块,误差较大。而且它以绝对密度做参考,所以在聚类结果中无法区分密度等级不同的簇[7]。 本文提出的基于网格的数据流聚类算法GClustream

数据聚类实验报告(附代码)

数据聚类实验报告(附代码)

实验题目:数据聚类实验 1 实验目的 (1)了解常用聚类算法及其优缺点; (2)掌握k-means聚类算法对数据进行聚类分析的基本原理和划分方法。 (3)利用k-means聚类算法对“ch7 iris.txt”数据集进行聚类实验。 (4)熟悉使用matlab进行算法的实现。 2 实验步骤 2.1 算法原理 聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。 k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。 k-means算法以k为参数,把n个对象分成

k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。 通常,采用平方误差准则,其定义如下: ∑∑=?- = k i C p i i m p E 1 2,这里E是数据集中所有对象的平方 误差的总和,p是空间中的点, i m是簇i C的平均值。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。 本实验便采用k-means聚类方法对样本数据对象进行聚类。该方法易实现,对不存在极大值的数据有很好的聚类效果,并且对大数据集有很好的伸缩性。 2.2 算法流程 本实验采用的是k-means聚类算法,类中心

文本聚类的现状研究

1 文本聚类研究现状 1 文本聚类研究现状 Internet 已经发展为当今世界上最大的信息库和全球范围内传播信息最主要的渠道。随着Internet 的大规模普及和企业信息化程度的提高,各种资源呈爆炸式增长。在中国互联网络信息中心(CNNIC)2007 年 1 月最新公布的中国互联网络发展状况统计报告中显示,70.2% 的网络信息均以文本形式体现。对于这种半结构或无结构化数据,如何从中获取特定内容的信息和知识成为摆在人们面前的一道难题。近年来,文本挖掘、信息过滤和信息检索等方面的研究出现了前所未有的高潮。 作为一种无监督的机器学习方法,聚类技术可以将大量文本信息组成少数有意义的簇,并提供导航或浏览机制。 文本聚类的主要应用点包括: (1) 文本聚类可以作为多文档自动文摘等自然语言处理应用的预处理步骤。其中比较典型的例子是哥伦比亚大学开发的多文档自动文摘系统Newsblaster[1] 。该系统将新闻进行 聚类处理,并对同主题文档进行冗余消除、信息融合、文本生成等处理,从而生成一篇简明扼要的摘要文档。 (2) 对搜索引擎返回的结果进行聚类,使用户迅速定位到所需要的信息。比较典型的系统有Infonetware Real Term Search 。Infonetware 具有强大的对搜索结果进行主题分类的功能。另外,由Carrot Search 开发的基于Java 的开源Carrot2 搜索结果聚合聚类引擎2.0 版也是这方面的利用,Carrot2 可以自动把自然的搜索结果归类( 聚合聚类) 到相应的语义类别中,提供基于层级的、同义的以及标签过滤的功能。 (3) 改善文本分类的结果,如俄亥俄州立大学的Y.C.Fang 等人的工作[2] 。 (4) 文档集合的自动整理。如Scatter/Gather[3] ,它是一个基于聚类的文档浏览系统。 2 文本聚类过程 文本聚类主要依据聚类假设:同类的文档相似度较大,非同类的文档相似度较小。作为一种无监督的机器学习方法,聚类由于不需要训练过程、以及不需要预先对文档手工标注类别,因此具有较高的灵活性和自动化处理能力,成为对文本信息进行有效组织、摘要和导航的重要手段。文本聚类的具体过程如图 1 所示。 图 1 文本聚类过程 2.1 文本信息的预处理 文本聚类的首要问题是如何将文本内容表示成为数学上可分析处理的形式,即建立文本特

数据流聚类算法D-Stream

Density-Based Clustering for Real-Time Stream Data 基于密度的实时数据流聚类(D-Stream) 翻译by muyefei E-mail: muyefei@https://www.360docs.net/doc/6c9809910.html, 注释:版权归作者所有,文档仅用于交流学习,可以用大纲视图查看文档结构 摘要:现有的聚类算法比如CluStream是基于k-means算法的。这些算法不能够发现任意形状的簇以及不能处理离群点。而且,它需要预先知道k值和用户指定的时间窗口。为了解决上述问题,本文提出了D-Stream算法,它是基于密度的算法。这个算法用一个在线部分将数据映射到一个网格,在离线部分计算网格的密度然后基于密度形成簇。算法采用了密度衰减技术来捕获数据流的动态变化。为了探索衰减因子、数据密度以及簇结构之间的关系,我们的算法能够有效的并且有效率地实时调整簇。而且,我们用理论证明了移除那些属于离群点的稀疏网格是合理的,从而提高了系统的时间和空间效率。该技术能聚类高速的数据流而不损失聚类质量。实验结果表明我们的算法在聚类质量和效率是有独特的优势,并且能够发现任意形状的簇,以及能准确地识别实时数据流的演化行为。 关键词 流数据挖掘基于密度的聚类D-Stream 分散的网格 1 介绍 实时聚类高维数据流是困难的但很重要。因为它在各个领域应用到。比如... 聚类是一项关键的数据挖掘任务。挖掘数据流有几项关键的挑战: (1)单遍扫描 (2)将数据流视为数据一个很长的向量在很多应用中捉襟见肘,用户更加关注簇的演化行为。 近来,出现了许多数据流聚类方法。比如STREAM、CluStream以及扩展(在多数据流,分布式数据流,并行数据流上的扩展)等。 CluStream以及扩展的算法有以下一些缺陷: 1、只能发现球形簇,不能发现任意形状的簇。 2、不能够识别噪声和离群点。 3、基于k-means的算法需要多次扫描数据(其实CluStream利用两阶段方法和微簇解决了该问题)。 基于密度的聚类算法介绍。基于密度的方法可以发现任意形状的簇,可以处理噪声,对原始数据集只需一次扫描。而且,它不需要像k-means算法那样预先设定k值。 文本提出了D-Stream,一种基于密度的数据流聚类框架。它不是简单用基于密度的算法替代k-means的数据流算法。它有两项主要的技术挑战: 首先,我们不大愿意将数据流视为静态数据很长的一个序列,因为我们对数据流演化的时间特征更加感兴趣。为了捕获簇的动态变化,我们提出了一个新颖的方案,它可以将衰减

聚类分析案例.doc

SPSS软件操作实例——某移动公司客户细分模型 数据准备:数据来源于telco.sav,如图1所示,Customer_ID表示客户编号,Peak_mins表示工作日上班时期电话时长,OffPeak_mins表示工作日下班时期电话时长等。 图1 telco.sav数据 分析目的:对移动手机用户进行细分,了解不同用户群体的消费习惯,以更好的对其进行定制性的业务推销,所以需要运用聚类分析。 操作步骤: 1,从菜单中选择【文件】——【打开】——【数据】,在打开数据窗口中选择数据位置以及文件类型,将数据telco.sav导入SPSS软件中,如图2所示。 图2 打开数据菜单选项 2,从菜单中选择【分析】——【描述统计】——【描述】,然后在描述性窗口中,将需要标准化的变量选到右边的“变量列表”,勾选“将标准化得分另存为变量”,点确定,如图3所示。

图3 数据标准化 3,从菜单中选择【分析】——【分类】——【K-均值聚类】,在K-均值聚类分析窗口中将标准化之后的结果选入右边“变量列表”,客户编号选入“个案标记依据”,聚类数改为5。点击迭代按钮,在迭代窗口将最大迭代次数改为100,点击继续。点击保存按钮,在保存窗口勾选“聚类成员”、“与聚类中心的距离”,点击继续。点击选项按钮,在选项窗口勾选“ANOV A表”、“每个个案的聚类信息”,点击继续。点击确定按钮,运行聚类分析,如图4所示。 图4 聚类分析操作

由最终聚类中心表可得最终分成的5个类它们各自的均值。 第一类:依据总通话时间长,上班通话时间长,国际通话时间长等特征,将第一类命名为高端商用客户。 第二类:依据其在各项指标中均较低,将第二类命名为不常使用客户。 第三类:依据总通话和上班通话时间居中等特征,将第三类命名为中端商用客户。第四类:依据下班通话时间最长等特征,将第四类命名为日常客户。 第五类:依据平均每次通话时间最长等特征,将第五类命名为长聊客户。 由ANOVA表可根据F值大小近似得到哪些变量对聚类有贡献,本例题中重要程度排序为:总通话时长>工作日上班时期电话时长>工作日下班时期电话时

软件学报 2008 聚类算法研究

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/6c9809910.html, Journal of Software, Vol.19, No.1, January 2008, pp.48?61 https://www.360docs.net/doc/6c9809910.html, DOI: 10.3724/SP.J.1001.2008.00048 Tel/Fax: +86-10-62562563 ? 2008 by Journal of Software. All rights reserved. ? 聚类算法研究 孙吉贵1,2, 刘杰1,2+, 赵连宇1,2 1(吉林大学计算机科学与技术学院,吉林长春 130012) 2(符号计算与知识工程教育部重点实验室,吉林长春 130012) Clustering Algorithms Research SUN Ji-Gui1,2, LIU Jie1,2+, ZHAO Lian-Yu1,2 1(College of Computer Science and Technology, Jilin University, Changchun 130012, China) 2(Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Changchun 130012, China) + Corresponding author: Phn: +86-431-85166478, E-mail: liu_jie@https://www.360docs.net/doc/6c9809910.html, Sun JG, Liu J, Zhao LY. Clustering algorithms research. Journal of Software, 2008,19(1):48?61. https://www.360docs.net/doc/6c9809910.html,/ 1000-9825/19/48.htm Abstract: The research actuality and new progress in clustering algorithm in recent years are summarized in this paper. First, the analysis and induction of some representative clustering algorithms have been made from several aspects, such as the ideas of algorithm, key technology, advantage and disadvantage. On the other hand, several typical clustering algorithms and known data sets are selected, simulation experiments are implemented from both sides of accuracy and running efficiency, and clustering condition of one algorithm with different data sets is analyzed by comparing with the same clustering of the data set under different algorithms. Finally, the research hotspot, difficulty, shortage of the data clustering and some pending problems are addressed by the integration of the aforementioned two aspects information. The above work can give a valuable reference for data clustering and data mining. Key words: clustering; algorithm; experiment 摘要: 对近年来聚类算法的研究现状与新进展进行归纳总结.一方面对近年来提出的较有代表性的聚类算法, 从算法思想、关键技术和优缺点等方面进行分析概括;另一方面选择一些典型的聚类算法和一些知名的数据集,主 要从正确率和运行效率两个方面进行模拟实验,并分别就同一种聚类算法、不同的数据集以及同一个数据集、不同 的聚类算法的聚类情况进行对比分析.最后通过综合上述两方面信息给出聚类分析的研究热点、难点、不足和有待 解决的一些问题.上述工作将为聚类分析和数据挖掘等研究提供有益的参考. 关键词: 聚类;算法;实验 中图法分类号: TP18文献标识码: A 聚类分析研究有很长的历史,几十年来,其重要性及与其他研究方向的交叉特性得到人们的肯定.聚类是数 ? Supported by the National Natural Science Foundation of China under Grant Nos.60473003, 60573073 (国家自然科学基金); the Major Research Program of National Natural Science Foundation of China under Grant No.60496321 (国家自然科学基金重大项目) Received 2007-04-24; Accepted 2007-08-03

数据挖掘层次聚类算法研究综述

数据挖掘层次聚类算法研究综述 摘要聚类问题是数据挖掘中的重要问题之一,是一种非监督的学习方法。分层聚类技 术在图像处理、入侵检测和生物信息学等方面有着极为重要的应用,是数据挖掘领域的研究热点之一。本文总结了分层聚类算法技术的研究现状,分析算法性能的主要差异,并指出其今后的发展趋势。 关键词层次聚类,数据挖掘,聚类算法 Review of hierarchical clustering algorithm in Data Mining Abstract Clustering problem of data mining is one of important issues, it is a kind of unsupervised learning methods. Stratified cluster technology in image processing, intrusion detection and bioinformatics has extremely important application and is data mining area of research one of the hotspots. This paper summarizes the layered clustering algorithm technology research, analyzes the main difference arithmetic performance, and pointed out the future development trend. Keywords Hierarchical clustering,Data mining,Clustering algorithm 1引言 随着计算机技术的发展,信息数据越来越多,如何从海量数据中提取对人们有价值的信息已经成为一个非常迫切的问题。由此产生了数据挖掘技术,它是一门新兴的交叉学科,汇集了来自机器学习、模式识别、数据库、统计学、人工智能等各领域的研究成果。聚类分析是数据挖掘中的一个重要研究领域。它在图像处理、入侵检测和生物信息学等方面有着极为重要的应用。数据挖掘是从大量数据中提取出可信、新颖、有效并能被人理解的模式的高级处理过程。其目标是从数据库中发现隐含的、有意义的知识。聚类分析作为一个独立的工具来获得数据分布的情况,是数据挖掘的一个重要研究分支。 在数据挖掘领域,研究工作己经集中在为大型数据库的有效和实际的聚类分析寻找适当的方法。活跃的主题集中在聚类方法的可伸缩性,方法对聚类复杂形状和类型的数据的有效性,高维聚类分析技术,以及针对大型数据库中混合数值和分类数据的聚类方法。迄今为止,人们己经提出了很多聚类算法,它们可以分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法,这些算法对于不同的研究对象各有优缺点。在聚类算法当中,划分方法和层次方法是最常见的两类聚类技术,其中划分方法具有较高的执行效率,而层次方法在算法上比较符合数据的特性,所以相对于划分方法聚类的效果比较好。[1] 层次聚类算法和基于划分的K-Means聚类算法是实际应用中聚类分析的支柱,算法简单、快速而且能有效地处理大数据集。层次聚类方法是通过将数据组织为若干组并形成一个相应的树来进行聚类的。根据层是自底而上还是自顶而下形成。一个完全层次聚类的质量由于无法对己经做的合并或分解进行调整而受到影响。但是层次聚类算法没有使用准则函数,它所潜含的对数据结构的假设更少,所以它的通用性更强。 2 基于层次的聚类算法 2.1 凝聚的和分裂的层次聚类 层次聚类是聚类问题研究中一个重要的组成部分。分层聚类的基本原则可以表述为:如

相关文档
最新文档