(2)判别模型、生成模型与朴素贝叶斯方法

(2)判别模型、生成模型与朴素贝叶斯方法
(2)判别模型、生成模型与朴素贝叶斯方法

判别模型、生成模型与朴素贝叶斯方法

JerryLead

csxulijie@https://www.360docs.net/doc/6d10503821.html,

2011年3月5日星期六1判别模型与生成模型

上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为p(y|x;θ),在参数θ确定的情况下,求解条件概率p(y|x)。通俗的解释为在给定特征后预测结果出现的概率。

比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。换一种思路,我们可以根据山羊的特征首先学习出一个山羊模型,然后根据绵羊的特征学习出一个绵羊模型。然后从这只羊中提取特征,放到山羊模型中看概率是多少,再放到绵羊模型中看概率是多少,哪个大就是哪个。形式化表示为求p(x|y)(也包括p(y)),y是模型结果,x是特征。

利用贝叶斯公式发现两个模型的统一性:

由于我们关注的是y的离散值结果中哪个概率大(比如山羊概率和绵羊概率哪个大),而并不是关心具体的概率,因此上式改写为:

其中p(x|y)称为后验概率,p(y)称为先验概率。

由p(x|y)? p(y)=p(x,y),因此有时称判别模型求的是条件概率,生成模型求的是联合概率。

常见的判别模型有线性回归、对数回归、线性判别分析、支持向量机、boosting、条件随机场、神经网络等。

常见的生产模型有隐马尔科夫模型、朴素贝叶斯模型、高斯混合模型、LDA、Restricted Boltzmann Machine等。

这篇博客较为详细地介绍了两个模型:

https://www.360docs.net/doc/6d10503821.html,/home.php?mod=space&uid=248173&do=blog&id=227964

2高斯判别分析(Gaussian discriminant analysis)

1)多值正态分布

多变量正态分布描述的是n维随机变量的分布情况,这里的μ变成了向量,σ也变成了矩阵Σ。写作Ν(μ,Σ)。假设有n个随机变量X1, X2,…,X n。μ的第i个分量是E(X i),而

Σii=Var(X i),Σij=Cov(X i,X j)。

概率密度函数如下:

其中|Σ|是Σ的行列式,Σ是协方差矩阵,而且是对称半正定的。

当μ是二维的时候可以如下图表示:

其中μ决定中心位置,Σ决定投影椭圆的朝向和大小。

如下图:

对应的Σ都不同。

2)模型分析与应用

如果输入特征x是连续型随机变量,那么可以使用高斯判别分析模型来确定p(x|y)。

模型如下:

输出结果服从伯努利分布,在给定模型下特征符合多值高斯分布。通俗地讲,在山羊模型下,它的胡须长度,角大小,毛长度等连续型变量符合高斯分布,他们组成的特征向量符合多值高斯分布。

这样,可以给出概率密度函数:

最大似然估计如下:

注意这里的参数有两个μ,表示在不同的结果模型下,特征均值不同,但我们假设协方差相同。反映在图上就是不同模型中心位置不同,但形状相同。这样就可以用直线来进行分隔判别。

求导后,得到参数估计公式:

Φ是训练样本中结果y=1占有的比例。

μ0是y=0的样本中特征均值。

μ1是y=1的样本中特征均值。

Σ是样本特征方差均值。

如前面所述,在图上表示为:

直线两边的y值不同,但协方差矩阵相同,因此形状相同。μ不同,因此位置不同。

3)高斯判别分析(GDA)与logistic回归的关系

将GDA用条件概率方式来表述的话,如下:

y是x的函数,其中都是参数。

进一步推导出

这里的θ是的函数。

这个形式就是logistic回归的形式。

也就是说如果p(x|y)符合多元高斯分布,那么p(y|x)符合logistic回归模型。反之,不成立。为什么反过来不成立呢?因为GDA有着更强的假设条件和约束。

如果认定训练数据满足多元高斯分布,那么GDA能够在训练集上是最好的模型。然而,我们往往事先不知道训练数据满足什么样的分布,不能做很强的假设。Logistic 回归的条件假设要弱于GDA,因此更多的时候采用logistic回归的方法。

例如,训练数据满足泊松分布,

,那么p(y|x)也是logistic回归的。这个时候如果采用GDA,那么效果会比较差,因为训练数据特征的分布不是多元高斯分布,而是泊松分布。

这也是logistic回归用的更多的原因。

3朴素贝叶斯模型

在GDA中,我们要求特征向量x是连续实数向量。如果x是离散值的话,可以考虑采用朴素贝叶斯的分类方法。

假如要分类垃圾邮件和正常邮件。分类邮件是文本分类的一种应用。

假设采用最简单的特征描述方法,首先找一部英语词典,将里面的单词全部列出来。然后将每封邮件表示成一个向量,向量中每一维都是字典中的一个词的0/1值,1表示该词在邮件中出现,0表示未出现。

比如一封邮件中出现了“a”和“buy”,没有出现“aardvark”、“aardwolf”和“zygmurgy”,那么可以形式化表示为:

假设字典中总共有5000个词,那么x是5000维的。这时候如果要建立多项式分布模型(二项分布的扩展)。

多项式分布(multinomial distribution)

某随机实验如果有k个可能结局A1,A2,…,Ak,它们的概率分布分别是p1,p2,…,pk,那么在N次采样的总结果中,A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率P有下面公式:(Xi代表出现ni次)

对应到上面的问题上来,把每封邮件当做一次随机试验,那么结果的可能性有2种。意味着pi有25000个,参数太多,不可能用来建模。

换种思路,我们要求的是p(y|x),根据生成模型定义我们可以求p(x|y)和p(y)。假设x 中的特征是条件独立的。这个称作朴素贝叶斯假设。如果一封邮件是垃圾邮件(y=1),且这封邮件出现词“buy”与这封邮件是否出现“price”无关,那么“buy”和“price”之间是条件独立的。

形式化表示为,(如果给定Z的情况下,X和Y条件独立):

P(X|Z)= P(X|Y,Z)

也可以表示为:

P(X,Y|Z)= P(X|Z)P(Y|Z)

回到问题中

这个与NLP中的n元语法模型有点类似,这里相当于unigram。

这里我们发现朴素贝叶斯假设是约束性很强的假设,“buy”从通常上讲与“price”是有关系,我们这里假设的是条件独立。(注意条件独立和独立是不一样的)

建立形式化的模型表示:

?i|y=1=p(x i=1|y=1)

?i|y=0=p(x i=0|y=1)

?y=p(y=1)

那么我们想要的是模型在训练数据上概率积能够最大,即最大似然估计如下:

注意这里是联合概率分布积最大,说明朴素贝叶斯是生成模型。

求解得:

最后一个式子是表示y=1的样本数占全部样本数的比例,前两个表示在y=1或0的样本中,特征Xj=1的比例。

然而我们要求的是

实际是求出分子即可,分母对y=1和y=0都一样。

当然,朴素贝叶斯方法可以扩展到x和y都有多个离散值的情况。对于特征是连续值的情况,我们也可以采用分段的方法来将连续值转化为离散值。具体怎么转化能够最优,我们可以采用信息增益的度量方法来确定(参见Mitchell的《机器学习》决策树那一章)。

比如房子大小可以如下划分成离散值:

4拉普拉斯平滑

朴素贝叶斯方法有个致命的缺点就是对数据稀疏问题过于敏感。

比如前面提到的邮件分类,现在新来了一封邮件,邮件标题是“NIPS call for papers”。我们使用更大的网络词典(词的数目由5000变为35000)来分类,假设NIPS这个词在字典中的位置是35000。然而NIPS这个词没有在训练数据中出现过,这封邮件第一次出现了NIPS。那我们算概率的时候如下:

由于NIPS在以前的不管是垃圾邮件还是正常邮件都没出现过,那么结果只能是0了。

显然最终的条件概率也是0。

原因就是我们的特征概率条件独立,使用的是相乘的方式来得到结果。

为了解决这个问题,我们打算给未出现特征值,赋予一个“小”的值而不是0。

具体平滑方法如下:

假设离散型随机变量z有{1,2,…,k}个值,我们用Φi=p(z=i)来表示每个值的概率。假设有m个训练样本中,z的观察值是其中每一个观察值对应k个值中的一个。那么根据原来的估计方法可以得到

说白了就是z=j出现的比例。

拉普拉斯平滑法将每个k值出现次数事先都加1,通俗讲就是假设他们都出现过一次。

那么修改后的表达式为:

每个z=j的分子都加1,分母加k。可见。

这个有点像NLP里面的加一平滑法,当然还有n多平滑法了,这里不再详述。

回到邮件分类的问题,修改后的公式为:

5文本分类的事件模型

回想一下我们刚刚使用的用于文本分类的朴素贝叶斯模型,这个模型称作多值伯努利事件模型(multi-variate Bernoulli event model)。在这个模型中,我们首先随机选定了邮件的类型(垃圾或者普通邮件,也就是p(y)),然后一个人翻阅词典,从第一个词到最后一个词,随机决定一个词是否要在邮件中出现,出现标示为1,否则标示为0。然后将出现的词组成一封邮件。决定一个词是否出现依照概率p(xi|y)。那么这封邮件的概率可以标示为

让我们换一个思路,这次我们不先从词典入手,而是选择从邮件入手。让i表示邮件中的第i个词,xi表示这个词在字典中的位置,那么xi取值范围为{1,2,…|V|},|V|是字典中词

的数目。这样一封邮件可以表示成,n可以变化,因为每封邮件的词的个数不同。然后我们对于每个xi随机从|V|个值中取一个,这样就形成了一封邮件。这相当于重复投掷|V|面的骰子,将观察值记录下来就形成了一封邮件。当然每个面的概率服从

p(xi|y),而且每次试验条件独立。这样我们得到的邮件概率是。居然跟上面的一样,那么不同点在哪呢?注意第一个的n是字典中的全部的词,下面这个n是邮件中的词个数。上面xi表示一个词是否出现,只有0和1两个值,两者概率和为1。下面的xi表示|V|中的一个值,|V|个p(xi|y)相加和为1。是多值二项分布模型。上面的x向量都是0/1值,下面的x的向量都是字典中的位置。

形式化表示为:

m个训练样本表示为:

表示第i个样本中,共有ni个词,每个词在字典中的编号为。

那么我们仍然按照朴素贝叶斯的方法求得最大似然估计概率为

解得,

与以前的式子相比,分母多了个ni,分子由0/1变成了k。

,b,c这三词,他们在词典的位置分别是1,2,3,前两封邮件都只有2个词,后两封有3个词。

Y=1是垃圾邮件。

那么,

Φ1|y=1=1+0

2+3

=

1

5,Φ2|y=1

=

1

5,Φ3|y=1

=

3

5

Φ1|y=0=2+0

=

2

,Φ2|y=0=

2

,Φ3|y=0=

1

Φy=1=1

,Φy=0=

1

假如新来一封邮件为b,c那么特征表示为{2,3}。那么

P(y=1|x)=p(x,y=1)

()

=

p(x=*2,3+|y=1)p(y=1)

(*+)

=

Φ2|y=1Φ3|y=1Φy=1

2|y=13|y=1y=12|y=03|y=0y=0 =

0.2?0.6?0.5

0.2?0.6?0.5+0.4?0.2?0.5

=0.6

那么该邮件是垃圾邮件概率是0.6。

注意这个公式与朴素贝叶斯的不同在于这里针对整体样本求的Φk|y=1,而朴素贝叶斯里面针对每个特征求的Φxj=1|y=1,而且这里的特征值维度是参差不齐的。

这里如果假如拉普拉斯平滑,得到公式为:

表示每个k值至少发生过一次。

另外朴素贝叶斯虽然有时候不是最好的分类方法,但它简单有效,而且速度快。

基于朴素贝叶斯模型的两类问题分类

基于朴素贝叶斯模型的两类问题分类 一、实验目的 通过实验,加深对统计判决与概率密度估计基本思想、方法的认识,了解影响Bayes分类器性能的因素,掌握基于Bayes决策理论的随机模式分类的原理和方法,并理解ROC曲线的意义 二、实验内容 通过Bayes决策理论的分类器,从给定样本集选择训练集以及测试集进行训练并分类,用matlab实现,绘制ROC曲线,得到最优的分类阈值 三、实验原理 Bayes分类器的基本思想是依据类的概率、概密,按照某种准则使分类结果从统计上讲是最佳的。换言之,根据类的概率、概密将模式空间划分成若干个子空间,在此基础上形成模式分类的判决规则。准则函数不同,所导出的判决规则就不同,分类结果也不同。使用哪种准则或方法应根据具体问题来确定 朴素贝叶斯的一个基本假设是所有特征在类别已知的条件下是相互独立的,即 p(x│w_i )=p(x_1,x_2,...,x_d│w_i )=∏_(j=1)^d?〖p(x_j│w_i ) 〗 在构建分类器时,只需要逐个估计出每个类别的训练样本在每一维上的分布形式,就可以得到每个类别的条件概率密度,大大减少了需要估计的参数的数量。朴素贝叶斯分类器可以根据具体问题确定样本在每一维特征上的分布形式,最常用的一种假设是每一个类别的样本都服从各维特征之间相互独立的高斯分布,即 p(x│w_i )=∏_(j=1)^d?〖p(x_j│w_i )=∏_(j=1)^d?{1/(√2πσ_ij ) exp[-(x_j-μ_ij )^2/(2σ_ij )] } 〗 式中u_ij--第i类样本在第j维特征上的均值 σ_ij--相应的方差 可以得到对数判别函数: 〖g〗_i (x)=ln?〖p(x│w_i )〗+ln?P(w_i ) =∑_(j=1)^d?[-1/2 ln?2π-ln?〖σ_ij 〗-(x_j-μ_ij )^2/(2σ_ij )] +ln?P(w_i )=-d/2 ln?2π-∑_(j=1)^d?ln?〖σ_ij-∑_(j=1)^d?〖(x_j-μ_ij )^2/(2σ_ij )+〗〗ln?P(w_i ) 其中的第1项与类别无关,可以忽略,由此得到判别函数: 〖g〗_i (x)=ln?P(w_i )-∑_(j=1)^d?ln?〖σ_ij-∑_(j=1)^d?(x_j-μ_ij )^2/(2σ_ij )〗 四、实验步骤 1、用给定的两类样本集,各选取前400个作为训练样本,通过调用MATLAB工具箱的NaiveBayes类的fit函数训练分类器 2、通过1得到的训练器,选取样本集后100个样本作为测试样本,得到分类结果。 3、对测试集的分类结果进行统计,计算正确率。 4、绘制相应的ROC曲线 五、实验代码 function [Train,TrainLabel] = getTrain(c1,c2) %UNTITLED 得到训练样本 % 根据给定两类样本集各选取前400行样本作为训练样本 c1 = c1(1:400,:);

朴素贝叶斯分类算法及其MapReduce实现

最近发现很多公司招聘数据挖掘的职位都提到贝叶斯分类,其实我不太清楚他们是要求理解贝叶斯分类算法,还是要求只需要通过工具(SPSS,SAS,Mahout)使用贝叶斯分类算法进行分类。 反正不管是需求什么都最好是了解其原理,才能知其然,还知其所以然。我尽量简单的描述贝叶斯定义和分类算法,复杂而有全面的描述参考“数据挖掘:概念与技术”。贝叶斯是一个人,叫(Thomas Bayes),下面这哥们就是。 本文介绍了贝叶斯定理,朴素贝叶斯分类算法及其使用MapReduce实现。 贝叶斯定理 首先了解下贝叶斯定理 P X H P(H) P H X= 是不是有感觉都是符号看起来真复杂,我们根据下图理解贝叶斯定理。 这里D是所有顾客(全集),H是购买H商品的顾客,X是购买X商品的顾客。自然X∩H是即购买X又购买H的顾客。 P(X) 指先验概率,指所有顾客中购买X的概率。同理P(H)指的是所有顾客中购买H 的概率,见下式。

X P X= H P H= P(H|X) 指后验概率,在购买X商品的顾客,购买H的概率。同理P(X|H)指的是购买H商品的顾客购买X的概率,见下式。 X∩H P H|X= X∩H P X|H= 将这些公式带入上面贝叶斯定理自然就成立了。 朴素贝叶斯分类 分类算法有很多,基本上决策树,贝叶斯分类和神经网络是齐名的。朴素贝叶斯分类假定一个属性值对给定分类的影响独立于其他属性值。 描述: 这里有个例子假定我们有一个顾客X(age = middle,income=high,sex =man):?年龄(age)取值可以是:小(young),中(middle),大(old) ?收入(income)取值可以是:低(low),中(average),高(high) ?性别(sex)取值可以是:男(man),女(woman) 其选择电脑颜色的分类标号H:白色(white),蓝色(blue),粉色(pink) 问题: 用朴素贝叶斯分类法预测顾客X,选择哪个颜色的分类标号,也就是预测X属于具有最高后验概率的分类。 解答: Step 1 也就是说我们要分别计算X选择分类标号为白色(white),蓝色(blue),粉色(pink)的后验概率,然后进行比较取其中最大值。 根据贝叶斯定理

朴素贝叶斯算法

朴素贝叶斯算法 1.算法简介 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。 2.算法定义 朴素贝叶斯分类的正式定义如下: 1)设为一个待分类项,而每个a为x的一个特征属性; 2)有类别集合; 3)计算。 4)如果,则。 其中关键是如何计算步骤3)中的各个条件概率。计算过程如下: (1)找到一个已知分类的待分类项集合,该集合称为训练样本集。 (2)统计得到在各类别下各个特征属性的条件概率估计。即 (3)如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导: 因为分母对于所有类别为常数,因此只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有: 可以看到,整个朴素贝叶斯分类分为三个阶段: 第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分及训练样本质量决定。 第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条

件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。 第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。 3.估计类别下特征属性划分的条件概率及Laplace校准 ?估计类别下特征属性划分的条件概率 计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。 当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即: 而 因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。 ?Laplace校准 当某个类别下某个特征项划分没有出现时,会产生P(a|y)=0的现象,这会令分类器质量大大降低。为了解决这个问题,引入Laplace校准,就是对每个类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。 ●Laplace校准详解 假设离散型随机变量z有{1,2,…,k}共k个值,用 j (),{1,2,,} p z j j k Φ=== 来表示每个值的概率。假设在m个训练样本中,z的观察值是其中每一个观察值对应k个值中的一个。那么z=j出现的概率为: Laplace校准将每个特征值出现次数事先都加1,通俗讲就是假设它们都出现过一次。那么修改后的表达式为:

第五章贝叶斯估计

第五章贝叶斯统计 5.1 简介 到目前为止,我们已经知道了大量的不同的概率模型,并且我们前面已经讨论了如何用它们去拟合数据等等。前面我们讨论了如何利用各种先验知识,计算MAP参数来估计θ=argmax p(θ|D)。同样的,对于某种特定的请况,我们讨论了如何计算后验的全概率p(θ|D)和后验的预测概率密度p(x|D)。当然在以后的章节我们会讨论一般请况下的算法。 5.2 总结后验分布 后验分布总结关于未知变量θ的一切数值。在这一部分,我们讨论简单的数,这些数是可以通过一个概率分布得到的,比如通过一个后验概率分布得到的数。与全面联接相比,这些统计汇总常常是比较容易理解和可视化。 5.2.1最大后验估计 通过计算后验的均值、中值、或者模型可以轻松地得到未知参数的点估计。在5.7节,我们将讨 论如何利用决策理论从这些模型中做出选择。典型的后验概率均值或者中值是估计真实值的恰当选择,并且后验边缘分布向量最适合离散数值。然而,由于简化了优化问题,算法更加高效,后验概率模型,又名最大后验概率估计成为最受欢迎的模型。另外,通过对先验知识的取对数来正 则化后,最大后验概率可能被非贝叶斯方法解释(详情参考6.5节)。 最大后验概率估计模型在计算方面该方法虽然很诱人,但是他有很多缺点,下面简答介绍一下。在这一章我们将更加全面的学习贝叶斯方法。 图5.1(a)由双峰演示得到的非典型分布的双峰分布,其中瘦高蓝色竖线代表均值,因为他接近 大概率,所以对分布有个比较好的概括。(b)由伽马绘图演示生成偏态分布,它与均值模型完全不同。 5.2.1.1 无法衡量不确定性 最大后验估计的最大的缺点是对后验分布的均值或者中值的任何点估计都不能够提供一个不确定性的衡量方法。在许多应用中,知道给定估计值的置信度非常重要。我们在5.22节将讨论给出后验估计置信度的衡量方法。 5.2.1.2 深耕最大后验估计可能产生过拟合

贝叶斯分类

朴素贝叶斯分类 先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数 据:sunny,cool,high,TRUE,判断一下会不会去打球。 这个问题可以用决策树的方法来求解,当然我们今天讲的是朴素贝叶斯法。这个一”打球“还是“不打球”是个两类分类问题,实际上朴素贝叶斯可以没有任何改变地解决多类分类问题。决策树也一样,它们都是有导师的分类方法。 朴素贝叶斯模型有两个假设:所有变量对分类均是有用的,即输出依赖于所有的属性;这些变量是相互独立的,即不相关的。之所以称为“朴素”,就是因为这些假设从未被证实过。 注意上面每项属性(或称指标)的取值都是离散的,称为“标称变量”。 step1.对每项指标分别统计:在不同的取值下打球和不打球的次数。

step2.分别计算在给定“证据”下打球和不打球的概率。 这里我们的“证据”就是sunny,cool,high,TRUE,记为E, E1=sunny,E2=cool,E3=high,E4=TRUE。 A、B相互独立时,由: 得贝叶斯定理: 得: 又因为4个指标是相互独立的,所以 我们只需要比较P(yes|E)和P(no|E)的大小,就可以决定打不打球了。所以分母P(E)实际上是不需要计算的。 P(yes|E)*P(E)=2/9×3/9×3/9×3/9×9/14=0.0053 P(no|E)*P(E)=3/5×1/5×4/5×3/5×5/14=0.0206 所以不打球的概率更大。 零频问题 注意table 2中有一个数据为0,这意味着在outlook为overcast的情况下,不打球和概率为0,即只要为overcast就一定打球,这违背了朴素贝叶斯的基本假设:输出依赖于所有的属性。 数据平滑的方法很多,最简单最古老的是拉普拉斯估计(Laplace estimator)--即为table2中的每个计数都加1。它的一种演变是每个计数都u(0

贝叶斯决策模型及实例分析

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下内容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之内。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果的概

率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

朴素贝叶斯多项式模型

朴素贝叶斯分类--多项式模型 1.多项式模型简介 朴素贝叶斯分类器是一种有监督学习,针对文本分类常见有两种模型,多项式模型(词频型)和伯努利模型(文档型)。多项式模型以单词为粒度,伯努利模型以文件为粒度。对于一个文档A,多项式模型中,只有在A中出现过的单词,才会参与后验概率计算。 2.多项式模型基本原理及实例 2.1基本原理 已知类别C={C1,C2,C3,?,C k}与文档集合 D={D1,D2,?,D n} 设某一文档D j的词向量为D j={d j1,d j2,?d j l j }(可重复)设训练文档中出现的单词(单词出现多次,只算一次)即语料库为V 对于待分类文档A={A1,A2,?A m},则有: 1)计算文档类别的先验概率 P C i= D j D j∈C i D j n j=1 P(C i)则可以认为是类别C i在整体上占多大比例(有多大可能性)。

2)某单词d j l j 在类别C i下的条件概率 P d j l j C i= d j l j +1 D j+V D j∈C i P d j l j C i可以看作是单词d j l j 在证明D j属于类C i上提供了 多大的证据。 3)对于待分类文档A被判为类C i的概率 假设文档A中的词即A1,A2,?A m相互独立,则有 P C i A=P C i∩A = P C i P A C i =P C i P A1,A2,?A m C i P A =P C i P A1C i P A2C i?P A m C i P A 对于同一文档P A一定,因此只需计算分子的值。 多项式模型基于以上三步,最终以第三步中计算出的后验概率最大者为文档A所属类别。 2.2 实例 给定一组分好类的文本训练数据,如下:

贝叶斯预测模型

贝叶斯预测模型 贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测.贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 [编辑] Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中m t = m t? 1 + A t e t,C t = A T v t,A t = R t / Q t,e t = y t? f t 由于Rt=Ct-1+Wt=Ct-1/δ,故有W? t = C t? 1(δ? 1? 1) 其计算步骤为: (1)R t = C? t/ δ;(2)Q t = R t + V; (3)A t = R t / Q t;(4)f t? 1 = m t? 1; (5)e t? y t? f t? 1;(6)C t = A t V; (7)m t? m t? 1 + A t e t [编辑] 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0.Ol,δ=0.8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。

基于朴素贝叶斯的文本分类算法

基于朴素贝叶斯的文本分类算法 摘要:常用的文本分类方法有支持向量机、K-近邻算法和朴素贝叶斯。其中朴素贝叶斯具有容易实现,运行速度快的特点,被广泛使用。本文详细介绍了朴素贝叶斯的基本原理,讨论了两种常见模型:多项式模型(MM)和伯努利模型(BM),实现了可运行的代码,并进行了一些数据测试。 关键字:朴素贝叶斯;文本分类 Text Classification Algorithm Based on Naive Bayes Author: soulmachine Email:soulmachine@https://www.360docs.net/doc/6d10503821.html, Blog:https://www.360docs.net/doc/6d10503821.html, Abstract:Usually there are three methods for text classification: SVM、KNN and Na?ve Bayes. Na?ve Bayes is easy to implement and fast, so it is widely used. This article introduced the theory of Na?ve Bayes and discussed two popular models: multinomial model(MM) and Bernoulli model(BM) in details, implemented runnable code and performed some data tests. Keywords: na?ve bayes; text classification 第1章贝叶斯原理 1.1 贝叶斯公式 设A、B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。 乘法公式P(XYZ)=P(Z|XY)P(Y|X)P(X) 全概率公式P(X)=P(X|Y 1)+ P(X|Y 2 )+…+ P(X|Y n ) 贝叶斯公式 在此处,贝叶斯公式,我们要用到的是

贝叶斯分类多实例分析总结

用于运动识别的聚类特征融合方法和装置 提供了一种用于运动识别的聚类特征融合方法和装置,所述方法包括:将从被采集者的加速度信号 中提取的时频域特征集的子集内的时频域特征表示成以聚类中心为基向量的线性方程组;通过求解线性方程组来确定每组聚类中心基向量的系数;使用聚类中心基向量的系数计算聚类中心基向量对子集的方差贡献率;基于方差贡献率计算子集的聚类中心的融合权重;以及基于融合权重来获得融合后的时频域特征集。 加速度信号 →时频域特征 →以聚类中心为基向量的线性方程组 →基向量的系数 →方差贡献率 →融合权重 基于特征组合的步态行为识别方法 本发明公开了一种基于特征组合的步态行为识别方法,包括以下步骤:通过加速度传感器获取用户在行为状态下身体的运动加速度信息;从上述运动加速度信息中计算各轴的峰值、频率、步态周期和四分位差及不同轴之间的互相关系数;采用聚合法选取参数组成特征向量;以样本集和步态加速度信号的特征向量作为训练集,对分类器进行训练,使的分类器具有分类步态行为的能力;将待识别的步态加速度信号的所有特征向量输入到训练后的分类器中,并分别赋予所属类别,统计所有特征向量的所属类别,并将出现次数最多的类别赋予待识别的步态加速度信号。实现简化计算过程,降低特征向量的维数并具有良好的有效性的目的。 传感器 →样本及和步态加速度信号的特征向量作为训练集 →分类器具有分类步态行为的能力 基于贝叶斯网络的核心网故障诊断方法及系统 本发明公开了一种基于贝叶斯网络的核心网故障诊断方法及系统,该方法从核心网的故障受理中心采集包含有告警信息和故障类型的原始数据并生成样本数据,之后存储到后备训练数据集中进行积累,达到设定的阈值后放入训练数据集中;运用贝叶斯网络算法对训练数据集中的样本数据进行计算,构造贝叶斯网络分类器;从核心网的网络管理系统采集含有告警信息的原始数据,经贝叶斯网络分类器计算获得告警信息对应的故障类型。本发明,利用贝叶斯网络分类器构建故障诊断系统,实现了对错综复杂的核心网故障进行智能化的系统诊断功能,提高了诊断的准确性和灵活性,并且该系统构建于网络管理系统之上,易于实施,对核心网综合信息处理具有广泛的适应性。 告警信息和故障类型 →训练集 —>贝叶斯网络分类器

朴素贝叶斯分类器应用

朴素贝叶斯分类器的应用 作者:阮一峰 日期:2013年12月16日 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法。 一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状职业疾病 打喷嚏护士感冒 打喷嚏农夫过敏 头痛建筑工人脑震荡 头痛建筑工人感冒 打喷嚏教师感冒 头痛教师脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B)

可得 P(感冒|打喷嚏x建筑工人) = P(打喷嚏x建筑工人|感冒) x P(感冒) / P(打喷嚏x建筑工人) 假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了 P(感冒|打喷嚏x建筑工人) = P(打喷嚏|感冒) x P(建筑工人|感冒) x P(感冒) / P(打喷嚏) x P(建筑工人) 这是可以计算的。 P(感冒|打喷嚏x建筑工人) = 0.66 x 0.33 x 0.5 / 0.5 x 0.33 = 0.66 因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。 这就是贝叶斯分类器的基本方法:在统计资料的基础上,依据某些特征,计算各个类别的概率,从而实现分类。 二、朴素贝叶斯分类器的公式 假设某个体有n项特征(Feature),分别为F1、F2、...、F n。现有m个类别(Category),分别为C1、C2、...、C m。贝叶斯分类器就是计算出概率最大的那个分类,也就是求下面这个算式的最大值: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C) / P(F1F2...Fn) 由于 P(F1F2...Fn) 对于所有的类别都是相同的,可以省略,问题就变成了求 P(F1F2...Fn|C)P(C) 的最大值。

朴素贝叶斯分类模型

两种最广泛的分类模型——决策树模型和朴素贝叶斯模型。该模型是由贝叶斯公式延伸而来。讲到贝叶斯公式先要看条件概率公式 该公式说明了如何计算已知B发生的前提下A还要发生的概率。A和B是随机事件,是否独立事件都适合这个公式。举个例子比喻就是你宿舍哥们在北师找了个女朋友,之后分手了,那么在他已经在北师成功一次的条件下再次去北师找女朋友成功的概率。如果是独立事件呢,那就是问在他分手之后,你去北师找女朋友成功的概率(在他不参与指导的前提下)跟他找女朋友是两码子事。 回正题,之后出场了贝叶斯公式 公式很简单,但是该公式真的超级有用,它揭示了在某种未发生条件下和已发生条件下概率的计算关系,即根据B发生条件下A发生的概率可以推理出A发生下B发生的概率。在真实生活中我们很难获得P(B|A)的概率,但是根据我们已知的P(A|B)就可以获得它,所以该定理的用途十分广大,可以用作数据的预测分类等。 贝叶斯分类算法有很多如朴素贝叶斯算法,TAN算法等 朴素贝叶斯是一种很简单的分类思想,对于给出的带分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大就认为该待分类项属于哪个类别。简单点说,就是你在学院路上发现一个学生摸样的美女,让你猜这美女是哪的。大家十有八九会猜是北师的,因为北师有美女的概率更高,在没有其他更多信息的条件下,我们就将这个美女分类到了北师里。这就是朴素贝叶斯的思想。 朴素贝叶斯分类的正式定义如下: 1、设为一个待分类项,而每个a为x的一个特征属性。 2、有类别集合。 3、计算。 4、如果,则。 对于贝叶斯的分类步骤说明如下,那病毒检测分类,对于一个病毒的定义可能会是包含多个向量的一个病毒的特征就是一个X,它包含N个特征向量,而对于学习集即N++个各种病

朴素贝叶斯分类器

朴素贝叶斯分类器 Naive Bayesian Classifier C语言实现 信息电气工程学院 计算本1102班 20112212465 马振磊

1.贝叶斯公式 通过贝叶斯公式,我们可以的知在属性F1-Fn成立的情况下,该样本属于分类C的概率。 而概率越大,说明样本属于分类C的可能性越大。 若某样本可以分为2种分类A,B。 要比较P(A | F1,F2......) 与P(B | F1,F2......)的大小只需比较,P(A)P(F1,F2......| A) ,与P(B)P(F1,F2......| B) 。因为两式分母一致。 而P(A)P(F1,F2......| A)可以采用缩放为P(A)P(F1|A)P(F2|A).......(Fn|A) 因此,在分类时,只需比较每个属性在分类下的概率累乘,再乘该分类的概率即可。 分类属性outlook 属性temperature 属性humidity 属性wind no sunny hot high weak no sunny hot high strong yes overcast hot high weak yes rain mild high weak yes rain cool normal weak no rain cool normal strong yes overcast cool normal strong no sunny mild high weak yes sunny cool normal weak yes rain mild normal weak yes sunny mild normal strong yes overcast mild high strong yes overcast hot normal weak no rain mild high strong 以上是根据天气的4种属性,某人外出活动的记录。 若要根据以上信息判断 (Outlook = sunny,Temprature = cool,Humidity = high,Wind = strong) 所属分类。 P(yes| sunny ,cool ,high ,strong )=P(yes)P(sunny|yes)P(cool |yes)P(high|yes)P(strong|yes)/K P(no| sunny ,cool ,high ,strong )=P(no)P(sunny|no)P(cool |no)P(high|no)P(strong|no)/K K为缩放因子,我们只需要知道两个概率哪个大,所以可以忽略K。 P(yes)=9/14 P(no)=5/14 P(sunny|yes)=2/9 P(cool|yes)=1/3 P(high|yes)=1/3 P(strong|yes)=1/3 P(sunny|no)=3/5 P(cool|no)=1/5 P(high|no)=4/5 P(strong|no)=3/5 P(yes| sunny ,cool ,high ,strong)=9/14*2/9*1/3*1/3*1/3=0.00529 P(no| sunny ,cool ,high ,strong )=5/14*3/5*1/5*4/5*3/5=0.20571 No的概率大,所以该样本实例属于no分类。

朴素贝叶斯算法详细总结

朴素贝叶斯算法详细总结 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。朴素贝叶斯原理简单,却有着坚实的数学理论基础,对于刚开始学习算法或者数学基础差的同学们来说,还是会遇到一些困难,花费一定的时间。比如小编刚准备学习的时候,看到贝叶斯公式还是有点小害怕的,也不知道自己能不能搞定。至此,人工智能头条特别为大家寻找并推荐一些文章,希望大家在看过学习后,不仅能消除心里的小恐惧,还能高效、容易理解的get到这个方法,从中获得启发没准还能追到一个女朋友,脱单我们是有技术的。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。 ▌分类问题综述 对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、”之类的话,其实这就是一种分类操作。 既然是贝叶斯分类算法,那么分类的数学描述又是什么呢? 从数学角度来说,分类问题可做如下定义: 已知集合C=y1,y2,……,yn 和I=x1,x2,……,xn确定映射规则y=f(),使得任意xi∈I有且仅有一个yi∈C,使得yi∈f(xi)成立。 其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。那么如何由指定特征,得到我们最终的类别,也是我们下面要讲的,每一个不同的分类算法,对

贝叶斯预测方法

贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测。贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中f t = m t? 1,Q t = R t + V。 由于Rt=Ct-1+Wt=Ct-1/δ,故有W?t = C t? 1(δ? 1? 1) W 其计算步骤为: (1)R t = C?t / δ; (2)Q t = R t + V; (3)A t = R t / Q t; (4)f t? 1 = m t? 1; (5)e t?y t?f t? 1; (6)C t = A t V; (7)m t?m t? 1 + A t e t 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0。Ol,δ=0。8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。 通过The SAS System for Windows 9.0软件回归分析得到抛物线预测方程: 表示年份见表3给出了1980-2006年的预测信息。 计算结果分析 对预测结果的准确度采用平均绝对百分误差(MAPE)分析。公式如下: 根据表l和表2对1980-2005年出口额的预测结果可知,常均值折扣模型所得结果的平均绝对百分误差MAPE=8。1745%,而由抛物线回归模型所得结果的平均绝对百分误差为9。5077%。由此可见这组数据中,使用贝叶斯模型预测的结果更为精确。

贝叶斯分类算法

最近在面试中,除了基础& 算法& 项目之外,经常被问到或被要求介绍和描述下自己所知道的几种分类或聚类算法,而我向来恨对一个东西只知其皮毛而不得深入,故写一个有关聚类& 分类算法的系列文章以作为自己备试之用(尽管貌似已无多大必要,但还是觉得应该写下以备将来常常回顾思考)。行文杂乱,但侥幸若能对读者也起到一定帮助,则幸甚至哉。 本分类& 聚类算法系列借鉴和参考了两本书,一本是Tom M.Mitchhell所著的机器学习,一本是数据挖掘导论,这两本书皆分别是机器学习& 数据挖掘领域的开山or杠鼎之作,读者有继续深入下去的兴趣的话,不妨在阅读本文之后,课后细细研读这两本书。除此之外,还参考了网上不少牛人的作品(文末已注明参考文献或链接),在此,皆一一表示感谢。 本分类& 聚类算法系列暂称之为Top 10 Algorithms in Data Mining,其中,各篇分别有以下具体内容: 1. 开篇:决策树学习Decision Tree,与贝叶斯分类算法(含隐马可夫模型HMM); 2. 第二篇:支持向量机SVM(support vector machine),与神经网络ANN; 3. 第三篇:待定... 说白了,一年多以前,我在本blog内写过一篇文章,叫做:数据挖掘领域十大经典算法初探(题外话:最初有个出版社的朋友便是因此文找到的我,尽管现在看来,我离出书日期仍是遥遥无期)。现在,我抽取其中几个最值得一写的几个算法每一个都写一遍,以期对其有个大致通透的了解。 OK,全系列任何一篇文章若有任何错误,漏洞,或不妥之处,还请读者们一定要随时不吝赐教& 指正,谢谢各位。 基础储备:分类与聚类 在讲具体的分类和聚类算法之前,有必要讲一下什么是分类,什么是聚类,都包含哪些具体算法或问题。 常见的分类与聚类算法 简单来说,自然语言处理中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:朴素的贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,k-最近邻法(k-nearest neighbor,

(2)判别模型、生成模型与朴素贝叶斯方法

判别模型、生成模型与朴素贝叶斯方法 JerryLead csxulijie@https://www.360docs.net/doc/6d10503821.html, 2011年3月5日星期六1判别模型与生成模型 上篇报告中提到的回归模型是判别模型,也就是根据特征值来求结果的概率。形式化表示为p(y|x;θ),在参数θ确定的情况下,求解条件概率p(y|x)。通俗的解释为在给定特征后预测结果出现的概率。 比如说要确定一只羊是山羊还是绵羊,用判别模型的方法是先从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。换一种思路,我们可以根据山羊的特征首先学习出一个山羊模型,然后根据绵羊的特征学习出一个绵羊模型。然后从这只羊中提取特征,放到山羊模型中看概率是多少,再放到绵羊模型中看概率是多少,哪个大就是哪个。形式化表示为求p(x|y)(也包括p(y)),y是模型结果,x是特征。 利用贝叶斯公式发现两个模型的统一性: 由于我们关注的是y的离散值结果中哪个概率大(比如山羊概率和绵羊概率哪个大),而并不是关心具体的概率,因此上式改写为: 其中p(x|y)称为后验概率,p(y)称为先验概率。 由p(x|y)? p(y)=p(x,y),因此有时称判别模型求的是条件概率,生成模型求的是联合概率。 常见的判别模型有线性回归、对数回归、线性判别分析、支持向量机、boosting、条件随机场、神经网络等。 常见的生产模型有隐马尔科夫模型、朴素贝叶斯模型、高斯混合模型、LDA、Restricted Boltzmann Machine等。 这篇博客较为详细地介绍了两个模型: https://www.360docs.net/doc/6d10503821.html,/home.php?mod=space&uid=248173&do=blog&id=227964

相关文档
最新文档