模板支架受力检算

模板支架受力检算
模板支架受力检算

模板及支架受力检算书

1、侧模检算

模板采用15mm 竹胶板,外贴100×100mm 方木横向间距为30cm ,纵向间距60cm 双排Φ48mm ×3.5mm 钢管,纵向间距60cm 、横向间距90cm Φ16钢筋蝴蝶扣对拉,钢管斜撑辅助纵向间距1.2m ,横向间距1.8m ,侧墙钢管面附加剪刀撑加固。 1.1、混凝土侧压力

浇注混凝土容重取γ=24kN/m ;混凝土温度取C ?15,则320

152000=+=

T t

浇注速度取1m/h 。β1取1.2;β2取1.0。

22

/12

1021/24.4213200.12.12422.022.0m kN v t F c =??

???==ββγ

2/192824m kN H F c =?==γ

F ——新浇筑混凝土对模板的最大侧压力(kN/m 2); γc ——混凝土的密度(kN/m 3); t 0——新浇筑混凝土的初凝时间(h ); T ——混凝土的温度(℃);

V ——混凝土的浇筑速度取值为1m/h;

H ——混凝土面侧压力计算位置到新浇筑混凝土面的高度;

β1——外加剂影响修正系数,不掺外加剂时取 1.0,掺具有缓凝作用的外加剂时取1.2;

β2——混凝土坍落度影响修正系数,取1.0。 两者比较取较小值2/24.42m kN ,均布于侧面模板。 1.2、外模胶合板计算

侧模面板采用15mm 厚竹编胶合模板,直接搁置于方木上,按连续梁考虑,取单位长度(1.0m )板宽进行计算,振捣混凝土对模板的侧面压力:4.0

kPa 。

1.2.1荷载组合

强度检算:q 1=42.24+4=46.24kN/m 刚度检算:q 2=42.24+4=46.24kN/m 1.2.2截面参数及材料力学性能指标 W=bh 2/6=1000×152/6=3.75×104mm 3 I= bh 3/12=1000×153/12=2.81×105mm 4

竹胶模板的有关力学性能指标按《竹编胶合板》(GB13123)规定的Ⅱ类一等品的下限值取:[σ]=90 MPa, E=6×103 MPa

框架桥侧面竖向方木间距30cm ,考虑此处荷载较大,取L=0.3m ,计算跨距0.2m 。

荷载q 平均荷载取值q=46.24kN/m

(1)强度

kPa

l q M 185.010

2.024.461021max 2=?==

[]MPa MPa W M 9093.410

75.310851.04

6

max =≤=??σσ==, 合格。 (2)刚度

m kN q /24.46=

[]mm f mm EI l q f 5.0400

200

43.01081.210612820024.4612853442==≤=?????==

则 []f f ≤ ,合格。 所以木胶合板满足要求。 1.3、方木检算

方木搁置于间距为0.6m 的双排Φ48mm 钢管,方木规格为100×100mm ,方木按简支梁考虑。

1.3.1荷载组合

强度:q 1=46.24×0.3=13.87kN/m 刚度:q 2=46.24×0.3=13.87kN/m 1.3.2截面参数及材料力学性能指标

33

53

100W 1.671066a mm ==?= 44

64

1008.33101212a I mm ===?

方木的力学性能指标按《路桥施工计算手册》中的A -3类木材并按湿材乘0.9的折减系数取值,则:

[]a MP 8.109.012==?σ, MPa E 33101.89.0109?=??=

1.3.3承载力检算 (1)强度

kPa

l q M 50.010

6.08

7.131021max 2=?==

[]MPa MPa W M 8.10994.210

67.11050.05

6

max =≤=??σσ==,合格。 (2)刚度

[]mm f mm EI l q f 5.1400

600

347.01033.8101.812860087.131286

3442==≤=?????== , 合格。 1.4、拉杆计算

方木采用Φ16mm 钢筋对拉,横向对拉间距90cm,纵向对拉间距为60cm 。 对拉杆受力P=F ×A=46.24×0.9×0.6=24.97kN

对拉杆的允许受力为[N]=[δ]×A=170×3.14×162/4=34163N=34.163kN [N]= 34.163kN> P=24.97kN ,合格 拉杆满足要求。 2、内模检算

内模采用满堂式钢管支架,钢管支架立杆横向间距为60cm ,立杆纵向间距为90cm ,步距为120cm 。纵向方木间距30cm ,横向方木间距60cm ;纵

向断面间距2.7m剪刀撑加固辅助。

2.1、支架钢管截面特性

2.2、模板

箱梁底模、侧模和均采用δ=15 mm的竹胶板。

竹胶板容许应力[σ0]=90MPa,

弹性模量E=6×103MPa。

截面参数及材料力学性能指标:

W=bh2/6=1000×152/6=3.75×104mm3

I=bh3/12=1000×153/12=2.81×105mm4

2.3、纵横向方木

横、纵向方木截面尺寸为100×100mm。

截面参数和材料力学性能指标:

W= bh2/6=100×1002/6=1.67×105mm3

I= bh3/12=100×1003/12=8.33×106mm4

方木的力学性能木材并按湿材乘0.9的折减系数取值,则:

[σ0]=12×0.9=10.8MPa,

E=9×103×0.9=8.1×103MPa,

容重γ=6kN/m3

2.4、荷载分析

①支架钢管自重,可支架钢管截面特性表查取。

②钢筋砼容重按26kN/m3计算则:

顶板为0.85×26=22.1 kPa

③模板自重不计

④施工人员、施工料具堆放、运输荷载: 2.0kPa

⑤倾倒混凝土时产生的冲击荷载: 2.0kPa

⑥振捣混凝土产2.5kPa

2.5、模板检算

按最不利条件计算δ=15mm的竹胶板,直接搁置于间距L=30cm 的

100×100mm横向方木上,按简支梁考虑,取单位长度(1.0m)板宽进行计算, 取L=0.3m,计算跨距0.2m。

q= 22.1+2.0+2.0+2.5=28.6kN/m

承载力检算:

①强度:

M max=ql2/10=28.6×0.3×0.3/10=0.257kN.m

σmax=M max /W=0.257×103/3.75×10-5=6.9MPa<[σ0]= 90MPa,合格

②刚度:

f=ql4/(128EI)=28.6×103×0.24/(128×6×109×2.81×10-7)=0.21mm<[f]=200/400=0.5mm ,合格

2.5.1纵向方木检算

纵向方木规格为100 mm ×100mm,横向方木亦按简支梁考虑。按30cm 间距布置搁置于间距60cm的横向方木上, 取L=0.6m,计算跨距为0.5m q=(22.1+2.0+2.0+2.5) ×0.3=8.58kN/m

⑴强度:

M max=ql2/10=8.58×0.52/10=0.215kN.m

σmax=M max /W=0.215×103/1.67×10-4=1.29MPa<[σ0]= 10.8MPa,合格

⑵刚度:

f=ql4/(128EI)=8.58×103×0.54/(128×8.1×109×8.33×10-6)=

0.062mm<[f] =500/400=1.25mm,合格

2.5.2横向方木检算

纵向方木规格为100 mm ×100mm,纵向方木亦按简支梁考虑。按60cm 间距布置搁置于立杆上,最不利条件取L=0.9m,计算跨距为0.9cm。

横向方木所传递给纵向方木的集中力为:

P=8.58×0.6=5.15kN

力学模式:

⑴强度

按最大正应力布载模式计算:

支座反力 F=5.15×4/2=30.88kN

最大跨中弯距 M max=P×0.3=5.15×0.3=1.55kN.m

σmax=M max/W=1.55×103/1.67×10-4=9.28MPa<[σ0]=10.8 MPa,合格

⑵刚度

f=6.81PL3/384EI=6.81×5.15×103×0.93/384×8.1×109×8.33×10-6=0.99mm<[f] =900/400=2.25mm,合格

2.5.3立杆计算

每根立杆所承受的坚向力按其所支撑面积内的荷载计算,方木自重不计,则纵向方木传递的集中力(均以跨度0.9m计算):

P1= (22.1+2.0+2.0+2.5) *0.6*0.9 =15.44kN

其单根立杆自重为:

g=8*0.056=0.45 kN

单根立杆所承受的最大竖向力为:

N=15.44+0.45=15.89kN

(1)立杆稳定性:

立杆计算长度为1.2m。

长细比λ=L/i=1200/15.78=76,查表的φ=0.744

[N]= φA[σ]=0.744×489×10-6×215×106=78.2kN

N<[N],合格

(2)强度验算:

σa=N/A=15.89×103/489×10-6=32.49MPa< [σ]=215 MPa,合格

3、人行道悬臂板模板检算

受力情况和荷载等同于框架顶板,按框架内模板和支架布置即可,不需另行检算。

盖梁支架受力计算知识讲解

盖梁支架受力计算 (预埋钢棒上安工字钢横梁法) 一、概况 汨罗江特大桥盖梁除悬浇主墩及28#过渡墩盖梁另外计算外,最重盖梁为 40mT梁盖梁,其尺寸为15.9m(长)×2.3m(宽)×2.1m(高),若经计算该盖 梁支架满足要求,则其他盖梁支架均满足要求。 针对该工程特点设计便易操作的盖梁支架系统。混凝土及模板系统的恒载、 施工操作的活荷载通过型钢直接传递给牛腿,牛腿递给墩柱及桩基础。 二、设计计算依据 (1)《路桥施工计算手册》 (2)《公路桥涵钢结构及木结构设计规范》 (3)《机械设计手册》 三、支架模板的选用 盖梁模板: 1.1、侧模:采用组合钢模拼装。 1.2、底模:方正部分用组合钢模拼装。 1.3、横梁:采用[14#a槽钢,间距40cm。 1.4、主梁:采用I45a工字钢。 1.5、楔块:采用木楔。 1.6、穿心钢棒:采用45号钢,直径10cm。长度每边外露30cm. 四、计算方法 1、总荷载计算 盖梁砼荷载F1:体积71.85立方米,比重2.6吨/立方米,自重:195.9吨, 合F1=185.9*10=1859KN 模板重量F2:盖梁两侧各设置一根I45a工字钢作为施工主梁,长18米(工 字钢荷载),q1=80.4×10×18×2/1000=28.94 KN;主梁上铺设[ 14a槽钢,每 根长3.0米,间距为40cm,墩柱外侧各设置8根,两墩柱之间设置19根。 q2=(19+8×2)×3.0×14.53×10/1000=15.26KN(铺设槽钢的荷载);

槽钢上铺设钢模板,每平方按0.45KN 计算, q3=(15.9×2.1×2+2.3×15.9+2.1×2.3×2)×0.45=50.9 KN (底模和侧模、端头模的荷载); q4=6KN (端头三角支架自重) F2=q1+q2+q3+q4+q4=107.1KN F3:人员0.5吨,合5KN F4:小型施工机具荷载:0.55吨,合5.5KN F5:振捣器产生的振动力及混凝土冲击力;本次施工时采用HZ6X-50型插入式振动器,设置2台,每台振动力为5KN ,施工时混凝土冲击力按5KN 计,则F5=2×5+5=15KN 总荷载: F=F1+F2+F3+F4+F5 =1859+107.1+5+5.5+15=1991.6KN 2、穿心钢棒(45号钢)受力安全分析 共有4个受力点,每点受力:Q max =F/4=1991.6/4≈497.9KN ; 钢棒截面积:S=0.05*0.05*3.14=0.0079m 2 最大剪应力:τmax =Q max /S=497.9/0.0079=63.03Mpa 45号钢钢材的允许剪力: [τ]=125Mpa 则[τ] =125 >τmax =63.03Mpa 结论:穿心钢棒(45号钢)受力安全 3、I45a 工字钢主梁受力安全分析 工字钢均布荷载:q=F/2/15.9=1991.6/2/15.9=62.63KN/m R1=R2=ql/2(a+l/2)=2340.17KN 工字钢横梁AB 段最大弯矩出现在中间处(x=a+l/2=7.95m ),a=3.25m , l=9.4m ;跨中最大弯矩 M max =62.63*9.4*7.95/2*[(1-3.25/7.95) *(1+2*3.25/9.4)-7.95/9.4] =360.98KN ?m 横梁CA 段和BD 段最大弯矩出现在支承点A 、B 两处,最大弯矩 2 12M qa =-=-1/2*62.63*3.252=-330.76 KN ?m

管道支架受力计算

地下三层3-8/D-E轴空调冷却水管道支 架受力计算 管道受力计算步骤如下: 1)对图纸进行支架的深化设计 首先对现有的图纸进行支架的深化设计,确定各个部位支架的间距,并在图纸上标明具体位置。并以洽商或工作联系单的形式经过专业设计人员的签认。 2)支吊架拉力计算 第一步、根据图集《室内管道支架及吊架》(03S402,中国建筑标准设计研究所2003.5.1实行)查出管道(如为保温管道应为带保温的管道)重量。 根据长城金融工程空调冷却水施工设计说明要求(DN450采用螺旋焊接钢管),钢管规格为为Φ478*9。 对于加厚管道,应根据每米钢管质量的计算公式计算出它的每米重量A:1*24.6616*δ*(D —δ)/1000,其中D为外径,δ为壁厚。 冷却水管重量:24.6616×9×(478-9)÷1000=104.6 kg/m 第二步、计算管道满水重量和支架自重 每米管道水重量: T=π*(管内径)2*水密度(kg/m3) 3.14×(0.45÷2)2×1000÷1000=159 kg/m 第三步、根据设计签认的“支吊架”深化图纸及上述计算数据,用下式计算出每个的膨胀螺栓须承受的力B(KN):

槽钢自重(t):2.85m×14.2kg/m=40.47 kg 总重量(t):(104.6+159)×66.4+40.47×7=17786.33 kg 膨胀螺栓承受的力:17786.33÷(8×7)÷100=3.18 KN 第四步、从图集《室内管道支架及吊架》(03S402)中P9关于M16的锚栓抗拉极限荷载为9.22KN,抗剪极限荷载为5.91KN,均大于深化设计荷载,故M16的膨胀螺栓的选取满足本工程需要。

支架受力计算书

光伏支架项目风载、雪载、抗震分析报告书 ------冀电C型钢支架 1.1 自然条件(50年一遇) (1)基本风压W0=0.3kN/m2 (2)基本雪压S0=0.2kN/m2 (3)设计基本地震加速度值为0.05g。 1.2 抗震设防 (1)根据《中国地震烈度表》查知贵州地区基本烈度为6度。 (2)根据周边已建项目的地质勘察情况,本项目所在区域地貌单一,地层岩性均一且层位稳定,对基础无任何不良影响,适于一般性工业及民用建筑。(3)抗震设施方案的选择原则及要求 建筑的平、立面布置宜规划对称、建筑的质量分布和刚度变化均匀,楼层不宜错层,建筑的抗震缝按建筑结构的实际需要设置,结构设计中根据地基土质和结构特点采取抗震措施,增加上部结构及基础的整体刚度,改善其抗震性能,提高整个结构的抗震性。 1.3 荷载确定原则 在作用于光伏组件上的各种荷载中,主要有风、雪荷载、地震作用、结构自重和由环境温度变化引起的作用效应等等,其中风荷载引起的效应最大。 在节点设计中通过预留一定的间隙,消除了由各种构件和饰面材料热胀冷缩引起的作用效应,还比较美观合理。 在进行构件、连接件和预埋件承载力计算时,必须考虑各种荷载和作用效应的分项系数,即采用其设计值。

①风荷载 根据规范,作用于倾斜组件表面上的风荷载标准值,按下列公式(1.1)计算:Wk= βgz .μs.μz.W0 〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃(1.1) 式中: Wk 风荷载标准值( kN /m2 ); βgz 高度z 处的阵风系数;标高地面位置取值1.69。 μs风荷载体型系数,按《建筑结构荷载规范》GB50009-2001 取值。取值为1.3。 μz风压高度变化系数;取值1.25. Wo 基本风压( kN /m2 ): 贵州地区基本风压取值0.3KN/M2,按规范要求,进行构件、连接件和锚固件承载力计算时,风荷载分项系数应取γw = 1.4,即风荷载设计值为: w = γw .wk = 1.4wk 〃〃〃〃〃〃〃〃〃〃〃〃〃(1.2) 该项目取值w = 1.15kN/m2,组件面积约为70.15 m2,故最大推力=1.15×70.15×sin20o=27.59 KN,而最大上拔力=1.15×70.15×cos20o=70.81KN。 ②雪荷载 地面水平投影面上的雪荷载标准值,应下式(2.1)计算: Sk = μr So 〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃(2.1) 式中,Sk 雪荷载标准值(kN / m2); μr 屋面积雪分布系数;根据规范取值0.6; 基本雪压So (kN / m2);依贵州地区50 年一遇最大雪荷载查规范取值0.2 kN / m2;则该项目最大雪荷载参考值为0.12kN / m2。组件面积约为70.15 m2,故最大雪载荷值为8.42KN;

SolidWorks支架受力分析报告

管道支吊架受力分析总结 管道安装在机电安装工程中占较大的比重,而管道支吊架的制安在管道安装中扮演着主要的角色,它直接关系到管道的承重流向及观感。有些支吊架不但影响观感,更存在着安全隐患,为了消除管道支吊架存在的各种隐患,使管道支吊架制安达到较高水平,有必要对管道支吊架进行荷载受力分析,确保支吊架荷载在安全范围以内。 选取宝鸡国金中心-购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 f2=πr2ρ介质l=3.14*0.1062*1000*6kg=211.688kg=2116.88N 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为: F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 分析过程: 1、支架建立 1)在REVIT导出要进行分析的支架剖面,然后打开solidworks软件,打开保存好的CAD支架剖面图;

2)通过草图绘制工具绘制支架轮廓; 3)通过插入-焊件-结构构件选择50*5等边角钢,并在绘制好的轮廓图上依次描图(如果没有需要的型钢号,可以下载国标型钢库放在solidworks指定的文件夹); 绘制型钢轮廓型钢的选择支架建立 4)赋材质:对支架模型赋予普通碳钢材质; 2、支架加载 1)定义受力面:对横担的水管投影区域进行分割,便于为下一步载荷选择指定面(我们等效管道的作用力集中在水平中心截面); 2)边界条件、载荷的定义:对支架的上端进行固定,保证在力的加载过程中不晃动,对支架进行加载,力的大小为2535.85N; 定义受力面力的加载 3、受力分析 从图中可以看出屈服力大小为220.594MPa,而最大应力只有164.125MPa,最大应力小于屈服力的大小,型钢处于弹性应力应变阶段。 1)应力、应变关系如下: 绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化不明显,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查得50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应力最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固,可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;2、通过选择更大规格的型钢来试验,直到满足设计要求为止。 通过上述例子,如果我们选择40*4的等边角钢来试验,通过计算和分析校核,发现可以满足使用要求,从而更加节省了型钢的用量。 以上分析只考虑了垂直方向的载荷,实际上对于有压管道,同时存在水平方向的受力,所以我们分开单独分析一下。 二、支架水平方向受力

(完整版)支架承载力计算

支架竖向承载力计算: 按每平方米计算承载力, 中板恒载标准值:f=2.5*0.4*1*1*10=10KN ; 活荷载标准值N Q = (2.5+2 )*1*1=4.5KN ; 则:均布荷载标准值为: P1=1.2*10+1.4*4.5=18.3KN ; 根据脚手架设计方案,每平方米由2根立杆支撑,单根承载力标准值为100.3KN ,故:P1=18.3/2=9.15KN<489.3*205=100.3KN 。满足要求。 或根据中板总重量(按长20m 计算)与该节立杆总数做除法, 中板恒载标准值:f=2.5*0.4*10*20*19.6=3920KN ; 活荷载标准值NQ = (2.5+2 )*20*19.6=1764KN ; 则:均布荷载标准值为: P1=1.2*3920+1.4*1764=7173KN ; 得P1=7173KN<100.3*506=50750KN 。 满足要求。 支架整体稳定性计算: 根据公式: [] N f A σ?≤= 式中: N -立杆的轴向力设计值,本工程取15.8kN ; -轴心受压构件的稳定系数,由长细比λ决定,本工程λ=136,故=0.367; λ-长细比,λ=l 0 /i =2.15/1.58*100=136; l 0-计算长度,l 0=kμh =1.155*1.5*1.2=2.15m ;

k-计算长度附加系数,取 1.155;μ-单杆计算长度系数 1.55;h-立杆步距0.75m。 i-截面回转半径,本工程取1.58cm; A-立杆的截面面积,4.89cm2; f-钢材的抗压强度设计值,205N/mm2。 σ=15.8/(0.367*4.89)=88.04N/mm2<[f]=205N/mm。 满足要求. 支架水平力计算 支架即作为竖向承力支架,也作为侧墙内撑支架,因此需计算支架水平支撑力,即侧墙施工时产生的侧压力。 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: F=0.22γc t0β1β2V1/2 F= γc*H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取26 kN/m3 t0------新浇混凝土的初凝时间(h),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;t=200/(25+15)=5 T------混凝土的温度(°)取25° V------混凝土的浇灌速度(m/h);取2m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取5.0m β1------外加剂影响修正系数,不掺外加剂时取1.0; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—

桥台模板支架施工方案

桥台模板、支架施工方案 一、工程概况及编制依据 1.1地理位置 泉州市东海片区滩涂区域纬五路(东海综合大道~经十八路段)等13条市政道路工程(第三标段),东滨大道位于东海组团的滩涂区域内,道路基本呈东西走向,西起现状东海综合大道,东至拟建的经十八路,路线长1.057km。本次设计起点桩号为K1+478,坐标为X=.225,Y=.977,与现状东海综合大道相接;设计终点桩号为K2+420,坐标为X=.59,Y=.989,与拟建的经十八路相接;道路在起点处与东海综合大道相交路口,为现状平交灯控路口;道路在桩号K1+889.532处,与拟建的经十六路相交,相交路口为右进右出的平交路口;道路在桩号K2+059.617处,与拟建的东海大街相交,相交路口为平交灯控路口;道路在桩号K2+242.116处,与拟建的经十七路相交,相交路口为右进右出的平交路口;道路在终点处与拟建的经十八路路口相接,相接路口为平交灯控路口,该路口不在本次设计范围。 本次工程包括一座预应力混凝土空心板桥,桥位位于R=1100m大半径平曲线内,桥按正交桥设计。桥梁起点桩号DBK2+157.98,终点桩号DBK2+182.02,全长24.04m,全桥建筑面积1406.5平米。桥梁上部结构采用20m标准跨径预制空心板梁,梁高95cm,下部结构桥台采用肋板式桥台,钻孔灌注桩基础,桩径1.0m。1.2桥梁工程主要技术标准 (1)汽车荷载:公路-I级; (2)人群荷载:3.5kPa; (3)抗震设防烈度:7度(地震动峰值加速度等于0.15g); (4)环境类别:II类; (5)结构重要性系数:1.0; (6)设计基准期:100年; (7)设计洪水位:+5.49m; (8)通航要求:不通航。 1.3编制依据 (1)《公路桥涵设计通用规范》(JTG D60-2004)

模板及支架施工方案

菊园新区B10地块 (嘉宝·梦之湾) 1#~39#楼 模板和支架施工方案 方远建设集团股份有限公司 2011年10月 目录 编制依据 (3) 第一章工程概况 (4) 资源备置........................................................................................................... 4第二

章 施工流程第三章........................................................................................................... 5 主要结构模板施工方案................................................................................... 7第四 章 第4.1节基础筏板砖胎模及外墙导墙模板 (7) 第4.2节地下室外墙模板 (10) 第4.3节立柱模板 (14) 第4.4节楼梯模板 (17) 第4.5节梁模板 (18) 第4.6节楼板模板 (20) 第4.7节模板支架 (21) 第五章模板工程质量技术保证措施......................................................................... 24 模板安装及拆除的安全技术措施第六章................................................................. 28 第6.1节模板安装 (28) 第6.2节模板拆除 (28) 第七章支架安装及拆除的安全技术措施................................................................. 31 第7.1节支架安装 (31) 第7.2节支架拆除 (31) 第八章安全文明施工................................................................................................. 32 现浇混凝土模板计算书. 编制依据 1#~39#楼结构、建筑施工图纸 施工组织设计 建筑施工模板安全技术规范JGJ 162-2008 建筑施工扣件式钢管脚手架安全技术规范JGJ 130-2001 建筑施工高处作业安全技术规范JGJ 80-91 建筑施工安全检查标准JGJ 59-99 施工现场临时用电安全技术规范JGJ 46-2005 混凝土结构工程施工质量验收规范GB 50204-2002 第一章工程概况 本项目地块位于上海市嘉定区菊园新区,紧靠轨道交通11号线,交通条件良好。用地范围东至红石路,南至盘安路,西至胜辛路,北至平城路。 本区域内自然环境优越,王家宅河从基地内穿越贯通而过,四周交通发达便利,11号轨道线在地块东南角擦边而过。 原地貌为农田,地表平坦,标高3.2~3.5m。 王家宅河南面全部布置为三层低层住宅,两条小区交通干道将其分为几个小片区,

模板支架工程专项方案

模板、支架工程专项方案 一、工程概况 御水湾花园二期三标段工程位于南京市白下区中和桥北村一号(原南京制药厂),东侧为御水湾花园一期,南侧为秦淮河北路,西侧为光卡路,本标段由18个单体工程组成:38#~43#、45#~47#楼住宅(砖混六层),48#~51#住宅(框剪3、7层),教工食堂(框架二层);教学楼(框架四层),5#、6#、7#地下室车库(框剪一层)。总建筑面积37803.06m2。建筑耐火等级地上二级,地下一级,抗震设防烈度七度,合理使用年限50年,人防工程抗力等级为6B级,二类二级防火设计,建筑防水屋面及地下室均为二级,建筑结构安全等级为二级,地基基础设计等级为丙级。 本工程±0.000相对于绝对标高13.65~14.40米,具体详总图。 二、模板及支撑系统的支设材料选定 针对工程质量要求“确保一次性合格”的目的,为了确保混凝土的质量和美观,在材料上选用了18mm全新九合木胶板作为梁、柱、墙、板的模板,木档采用5×10cm松木方料,支架全部采用φ48~3.5mm A3钢管。 三、模板安拆施工 A.模板安装前准备工作 a.模板拼装 模板组装要严格按照模板图尺寸拼装成整体,并控制模板的偏差在规范允许的范围内,拼装好模板后要求逐块检查其背楞是否符合模板设计,模板的编号与所用的部位是否一致。 b.模板的基准定位工作 首先引测建筑的边柱或者墙轴线,并以该轴线为起点,引出每条轴线,并根据轴线与施工图用墨线弹出模板的内线、边线以及外侧控制线,施工前五线必须到位,以便于模板的安装和校正。 c.标高测量 利用水准仪将建筑物水平标高根据实际要求,直接引测到模板的安装位置。 d.竖向模板的支设应根据模板支设图。 e.已经破损或者不符合模板设计图的零配件以及面板不得投入使用。

支架受力计算书

福成锅炉房改造支架受力计算书 管道计算参数: D720×10:管道总重q=640kg/m(管道重175.1kg/m,管内水重385 kg/m,保温重80kg/m); D630×10:管道总重q=483.88kg/m(管道重152.89kg/m,管内水重292kg/m,保温重39kg/m); D529×9:管道总重q=353.91kg/m(管道重115.42kg/m,管内水重205.1kg/m,保温重33.50kg/m); D478×9:管道总重q=301.16kg/m(管道重104.1kg/m,管内水重166.5kg/m,保温重30.75kg/m); D426×9:管道总重q=246.63kg/m(管道重92.55kg/m,管内水重130.7kg/m,保温重23.38kg/m); D325×8:管道总重q=156.16kg/m(管道重62.54kg/m,管内水重74.99kg/m,保温重18.63kg/m); 1kgf=9.8N; 聚四氟乙烯板滑动摩擦系数μ=0.1。 一、滑动支架 室内: 1. HN-1 主管一根:D720×10,7m;支管D325×8,4m(锅炉分支)+2.5m(旁通)=6.5m。垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×7+156.16×6.5) ×1.5×9.8=80777N 水平摩擦力:F=μP=0.1×80777=8078N 2. HN-2 主管一根:D720×10,12m;支管D325×8,4m。 垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×12+156.16×4) ×1.5×9.8=122078N 水平摩擦力:F=μP=0.1×122078=12208N 3. HN-3 主管一根:D720×10,11m;支管325×8,5.35m(锅炉分支)+2.5m(旁通)=7.85m。垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×11+156.16×7.85) ×1.5×9.8=121508N

模板支架专项方案计算书汇总

主体结构 模板支架受力计算书 计算人: 复核人:

狮山路站模板、支架强度及稳定性验算 1、设计概况 狮山路站为地下两层,双跨整体式现浇钢筋混凝土框架结构;车站内衬墙与围护桩间设置柔性防水层。在通道、风道与主体结构连接处设置变形缝。主要结构构件的强度等级及尺寸如下: 表1 狮山路站主体结构横断面尺寸表 2、模板体系设计方案概述 狮山路站全长272m,共分10段结构施工。主体结构施工拟投入8套标准段脚手架(长27.2m×宽19.8m×6.35m)。最长段模板长32m、最短段模板长24m,每段模板平均按27.2m考虑。模板主要采用胶合板模板加三角钢模板。支架采用Φ48×3.5mm碗扣式钢管脚手架支撑,中间加强杆件、剪刀撑、扫地杆采用扣件式脚手架。 (1)狮山路站侧墙模板施工采用三角支架模板系统,三角大模板支架体系分为:三角钢架支撑和现场拼装的模板系统。三角支架分为4.0m高的标准节和0.85m高的加高节,大模板采用4000(长)×1980(宽)×6.0mm(厚)钢模板。大模板竖肋、横肋和边肋均采用[8普通型热轧槽钢,背楞采用2[10,普通型热轧槽钢。 在浇注底板混凝土时,侧墙部分要比底板顶面向上浇灌300mm高。在浇灌混凝土前水平埋入一排φ25精扎螺纹钢(外露端车丝),作为侧墙大模板的底部支撑的地脚螺栓拉结点,L=700。在施工过程中必须确保此部分侧墙轴线位置和垂直度的准确,以保证上下侧墙的对接垂直、平顺。对于单面侧墙模板,采用单面侧向支撑加固。侧向支撑采用角钢三角架斜撑,通过预埋Φ25拉锚螺栓和支座垫块固定。纵向间距同模板竖龙骨间距,距离侧墙表面200mm。

支架受力分析

管道支架受力分析 ——曹伟 选取购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 相邻两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 l=3.14*0.1062*1000*6kg=211.688kg=2116.88N f2=πr2ρ 介质 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为: F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 1)应力应变关系如下:

绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化平缓,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查的50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应变最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固:可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;

光伏支架受力计算书..

支架结构受力计算书 设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司

1 工程概况 项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团 结构高度: 电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量 铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金 铝合金设计强度[单位:2/N mm ]

钢材 钢材设计强度[单位:2/N mm ] 不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

钢管支架受力计算及施工

现浇连续梁钢管支架的计算及施工 扣件式钢管脚手架工程是桥梁连续梁施工中常用的且十分重要的临时设施,这项工作的优劣将直接影响工程的质量、安全、速度、效率等。扣件式钢管支架安装,拆卸比较方便,在荷载作用下稳定性较好。现以2005年合肥当涂路现浇连续刚构扣件式钢管支架的计算施工为例,浅述一下我们的应用。 一、工程概述 该桥孔跨布置为:1-8m框架+(20.3+2×17.8+20.3)m连续刚架,梁宽7m,梁厚1m,本桥现浇梁支架采用普通钢管脚手架,350工字钢梁做门洞梁,适用于跨度6m的门洞搭设,以满足既有当涂路交通的正常运营。 二、满堂脚手架的布置 该桥陆地上除门洞外其余梁体浇筑施工均采用满堂支架。支架材料为普通钢管脚手架,支架基础必须经碾压并硬化达到要求后,再搭设支架。地面进行硬化方法为:场地平整后用压路机压实,先铺10㎝碎石垫层,后铺C15砼15㎝(软弱地段换填垫片石和灰土)。支架间距顺桥向0.6m,横桥向0.6m,步长120cm.采用普通脚手钢管满堂支架,间距60×60㎝,步距120㎝.钢管上下均采用可调调节支撑,支架底托下延横桥向垫槽钢,所有支架应依据搭设高度设置剪刀撑。 因为满堂支架是整个梁体最重要的受力体系,所以钢管支撑的杆件有锈蚀,弯曲、压扁或有裂缝的严禁使用;使用的扣件有脆裂、变形、滑丝的扣件禁止使用,扣件活动部位应能灵活转动,当扣件夹紧钢管时,开口处的最小距离应不小于5mm. 三、支架检算如下: 1、模板支架检算(按一米梁长计算,钢管按Φ48计算) (1)钢筋砼断面如图①,荷载按照宽4.5米计算,则长1米的梁自重 N1=4.5×1×1×26=117(KN) (2)模板荷载N2=4.5×1×0.018×9=0.729(KN) (3)5×8方木荷载N3=4×0.05×0.1×4.5×7.5=0.675(KN) (4)15×15方木荷载N4=8×1×0.152×7.5=1.35(KN) (5)人及机具活载N5=20(KN) 则模板支架立杆的轴向力设计值N=1.2×(117+0.729+0.675+1.35)+1.4×20=154.315(KN) 模板支架立杆的计算长度l0=步距1m+2×0.5=2m 长细比λ=l0/I=2/1.58=126.6 则轴心受压件的稳定系数Φ=0.412,f为钢材的抗压强度设计值 =205Mpa; A≥N/Φ。f =154.315/(0.412×205)=18.27cm2 一根Φ48钢管的截面为:4.89cm2;则上述荷载需钢管数=18.27/4.89 =4根

模板支架专项施工方案

模板支架专项施工方案 一、编制依据 1、依据有限责任公司mmm住宅楼施工设计图纸; 2、依据《有限责任公司mmm住宅楼施工组织设计》 3、各类参考规范、图书: 《建筑施工手册》第四版; 《建筑施工计算手册》江正荣著; 《建筑结构荷载规范》(GB50009-2001); 《混凝土结构设计规范》(GB50010-2002); 《钢结构设计规范》(GB50017-2003); 《建筑工程大模板技术规程》(JGJ74-2003); 《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001); 《建筑施工门式钢管脚手架安全技术规范》(JGJ128-2000); 《木结构设计规范》(GB50005-2003); 二、工程概况 三、总体设计及施工部署 (一)、总体筹划 本工程考虑到施工工期、质量、安全和合同要求,故在选择方案时,应充分考虑以下 几点: 1、架体的结构设计,力求做到结构要安全可靠,造价经济合理。 2、在规定的条件下和规定的使用期限内,能够充分满足预期的安全性和耐久性。 3、选用材料时,力求做到常见通用、可周转利用,便于保养维修。 4、结构选型时,力求做到受力明确,构造措施到位,升降搭拆方便,便于检查验收; 5、综合以上几点,脚手架的搭设,还必须符合JGJ59-99等检查标准要求,要符合相关文明标化工地的有关标准。 6、结合以上脚手架设计原则,同时结合本工程的实际情况,综合考虑了以往的施工经验,决定采用以下脚手架方案: 墙模板、梁模板(扣件钢管架)、板模板(扣件钢管高架) (二)、安全领导小组 搭设过程中,因处在施工高峰期,各施工班组在交叉作业中,故应加强安全监控力度,现场设定若干名安全监控员。 水平和垂直材料运输必须设置临时警戒区域, 用红白三角小旗围栏。谨防非施工人员进入。同时成立以项目经理为组长的安全领导小组以加强现场安全防护工作,本小组机构组成、人员编制及责任分工如下:mmm (项目经理)——组长,负责协调指挥工作;张某某 (施工员)——组员,负责现场施工指挥,技术交底李某某 (安全员)——组员,负责现场安全检查工作;刘某某 (架子工班长)——组员,负责现场具体施工; 四、材料选择 (一)墙模板 外墙和临空墙螺栓采用止水螺栓,内墙采用普通可回收螺栓。其他材料见下表: 模板支架材料类型 墙模板面板材料18mm厚胶合面板主楞材料圆钢管次楞材料木方 穿墙螺栓M12

支架受力计算

支架受力计算 7.1 碗扣式满堂支架计算 7.1.1 材料技术参数 (1)钢管截面特性 外径 (Φd ) 壁厚 (t ) 截面积A (cm 2) 惯性矩 I (cm 4) 截面模量W (cm 3) 回转半径 i (cm ) 每米重 (kg/m ) Φ48 3.5 4.89 12.19 5.08 1.58 3.84 Q235钢钢材的强度设计值与弹性模量 抗拉、抗弯f 抗 压fc 弹性模量E 205MPa 205MPa 2.06?105MPa (3)12mm 竹胶板力学特征: A=1000*12=12×10-3m2 ; W=1/6*b*h^2=24*10^-6m3 ; I=1/12*b*h^3=144×10-9m4 EI=10×10^6×144×10^-9=1.44KN.m2 EA=10×10^6×12×10-3=120000KN 竹胶板:弯应力[ ]13MPa σ=弯曲剪应力 [ ] 1.7MPa τ= 7.1.3 荷载取值与组合 荷载分项系数 序号 荷 载 类 别 大小 γi P1 模板及支撑系统 1000 Pa 1.2 支架相关自重 P2 新浇筑混凝土、钢筋混凝土自重46.185*2.45+19.484=132.64t ,面积120.69m2,10770Pa 容重按2.45计算 1.2 P3 施工人员及施工机具运输或堆放的荷载 2500 Pa 1.4 P4 倾倒混凝土时产生的竖向荷载 2000 Pa 1.4 P5 振捣混凝土时产生的竖向荷载 2000 Pa 1.4 (1)计算满堂架强度:采用P1+P2+P3+P4+P5组合。 (2)计算满堂架刚度:采用P1+P2组合。 7.1.4 荷载计算 12345p () 1.2(+) 1.4P P P P P =+?++?

满堂支架受力分析

附件1 支架计算书 箱梁施工采用满堂碗扣脚手支架,以下受力验算取武汉某立交高度最高的支架27#~28#墩进行。 受力情况不验算箱梁翼板而只计算梁底受力情况。支架步距采用90cm,横向间距在一般截面为60+90+120+90+60+90+120+90+60+90+120+90+60cm,在墩顶截面为19×60cm,竹胶板下顺桥向布置10×10cm木方,木方下横桥向布置工10工字钢,具体见箱梁一般截面受力分析图和箱梁墩顶截面受力分析图。 箱梁一般截面受力分析图 39KN/m 箱梁墩顶截面受力分析图 1. 支架计算与基础验算 资料

(1)HB碗扣为Φ48×3.5mm钢管;(2)立杆、横杆承载性能; 立杆横杆 步距(m)允许载荷(KN)横杆长度(m) 允许集中荷载 (KN)) 允许均布荷载 (KN) 0.6400.9 4.512 1.230 1.2 3.57 1.825 1.5 2.5 4.5 2.420 1.8 2.0 3.0(3)根据《工程地质勘察报告》,本桥位处地基容许承载力在100Kpa以上。 2. 荷载分析计算 (1)恒载(砼): 混凝土荷载按照24.2KN/m3考虑,增加钢筋重量并相应减去占用混凝土体积后,综合按照26.8KN/m3考虑。 箱梁一般截面恒载受力计算成果表 木方编号 受力 (KN/m) 木方编号 受力 (KN/m) 立杆编号 受力 (KN) 1 1.9521 3.12111.63 211.7022 3.12214.09 38.7823 3.12310.15 4 4.6824 3.54410.46

箱梁墩顶截面恒载受力计算成果表

模板及支架方案

夫子庙上盖物业项目支架及模板专项施工方案 一、编制依据 1、《建筑施工手册第四版》中国建筑工业出版社 2、《建筑施工扣件式钢管脚手架安全技术规范(2001 年版)》( JGJ130-2011) ; 3、《建筑施工模板安全技术规范》( JGJ162 -2008 ); 4、《危险性较大工程安全专项施工方案编制及专家论证审查办法》(建质[2004]213 号); 5、《危险性较大的分部分项工程安全管理办法》建质〔2009〕87 号; 6、《路桥施工计算手册》人民交通出版社2001.5 7、《地下铁道工程施工及验收规范》( GB50299-2003); 8、《混凝土结构工程施工质量验收规范》( GB50204-2002); 9、《建筑施工安全检查标准》( JBJ59-99); 10、《冷弯薄壁型钢结构技术规范》( GB50018-2002); 11、南京地铁3 号线夫子庙上盖物业项目主体结构设计蓝图; 12、南京地铁3 号线夫子庙上盖物业项目施工组织设计。 二、工程概况夫子庙站位于建康路与平江府路路口北侧地块内,为地下三层的岛式车站,目前车站主体已完工,正在施工车站附属。夫子庙上盖物业位于夫子庙地铁车站上方,局部位于车站外侧。上盖物业地面以上9层(包含4层商业裙房及5层酒店),采用框架混凝土结构;地下负一层地下室为停车库,局部地铁车站顶板作为地下室底板。局部负二层地下室处为地铁与物业首层相接的地下通道。 夫子庙上盖物业围护结构采用钻孔桩+内支撑的支护形式,截水帷幕采用双轴搅拌桩,明挖顺作法施工,即开挖至基坑底后顺作结构底、顶板及侧墙和内部结构。 本工程场地现状为夫子庙站施工场地,地下室均在施工场地范围内。周边建筑物有金陵职业教育中心、金隆名爵府小区等。地下室基坑北侧为金隆名爵府小区,东侧为金陵职业教育中心,南侧为夫子庙站2 号风亭组,西侧为夫子庙站主体。场地范围内无影响施工的管线。 根据本基坑功能,结合地质及周边环境,依据江苏省和南京地区建筑基坑支护的有关技术规范和规定,本基坑变形控制等级为一级。 基坑为不规则多边形,最大宽度31m最大长度56m地面标高9.86m,标准段基底标高为4.31m,深约5.55m坑中坑基底标高为0.08m,基坑深约9.78m。车站内部结构为钢筋混凝土箱型结构,采用① 800@1000钻孔灌注桩加内支撑的支护形式,明挖顺作法施工,即开挖至基坑底后顺作主体底、中、顶板及侧墙和 内部结构。顶板覆土厚度约为0.2m 主要构件尺寸:顶板厚300/200mm 梁800m M 900mm 600m M 900mm 600mm x 1000mm 400mr K

脚手架受力计算

脚手架和模板工程计算公式参数 扣件式钢管脚手架与模板支架的设计计算10 - 1-2 前言10 —1-2 1充分认识脚手架和模板支架在工程施工中的重要性,认真做好施工组织设计10 -1-2 2扣件式钢管脚手架基本构造与主要杆件10 - 1-4 3扣件式钢管脚手架和模板支架设计计算10 - 1-6 4 了解扣件式钢管脚手架和模板支架(结构支架)的特性,应注意掌握的几 个要点10 - 1-13 5算例及比较10 - 1- 17 扣件式钢管脚手架与模板支架的设计计算 益德清(中国工程设计大师) 、八 刖言 扣件式钢管脚手架和模板支架工程是土木建筑工程施工中必不可少且十分 重要的临时设施,它既为工程顺利施工,又直接影响工程的质量、进度、效率、安全等。二十余年来,我国经济迅速发展,高层建筑、大跨度建筑大量兴建,商品混凝土泵送现浇钢筋混凝土结构体系的形成,都促使高层脚手架和空间高、跨度大的模板支架应用日渐增多。随之在工程施工中,编制高层脚手架和模板支架的施工组织设计的重要性也越加明显。 特别是近年来,扣件式钢管模板支架发生的安全事故,引起了建设主管部门和工程部门的关切和重视,为了贯彻浙江省建设厅关于开展全省建设安全生产年活动”笔者受省、市工程管理和施工部门的邀请,针对扣件式钢管脚手架

和模板支架的设计计算中的某些要点和问题,作了一些介绍,有一部分工程技术人员希望有书面资料,为此,笔者整理成这篇文章,供施工部门

技术人员编制施工组织设计时参考。由于本人对施工技术知之不多,若有不妥,请工程界同仁指正。 1充分认识脚手架和模板支架在工程施工中的重要性,认真做好施工组织设计1.1脚手架工程 脚手架是土木建筑工程施工必须使用的重要设施,是为保证高处作业安全、顺利进行施工而搭设的工作平台或作业通道,在结构施工、装修施工和设备管道的安装施工中,都需要按照操作要求搭设脚手架。 脚手架是施工中必不可少的,是随着工程进展需要而搭设的。虽然它是建筑施工中的临时设施,工程完成就拆除,但它对建筑施工速度、工作效率、工程质量以及工人的人身安全有着直接的影响,如果脚手架搭设不及时,势必会拖延工程进度;脚手架搭设不符合施工需要,工人操作就不方便,质量会得不到保证,工效也提不高;脚手架搭设不牢固,不稳定,就容易造成施工中的伤亡事故。因此,脚手架的选型、构造、搭设质量等决不可疏忽大意、 轻率对待。 脚手架的种类很多,按搭设位置分:有外脚手架和里脚手架;按所用材料分:有木脚手架、竹脚手架和金属(钢管、型钢)脚手架;按构造形式分:有多立杆式、框式、桥式、吊式、挂式、升降式等;按立杆搭设排数分:有单排、双排和满堂红架;按搭设高度分:有高层脚手架和普通脚手架;按搭设用途分:有砌筑架、装修架、承重架等。 不论哪种脚手架工程,都应符合以下基本要求: (1)要有足够的牢固性和稳定性,保证在施工期间对所规定的荷载或 在气候条件的影响下不变形、不摇晃、不倾斜,能确保作业人员的人身安全。 (2)要有足够的面积,满足堆料、运输、操作和行走的要求。 (3)构造要简单,搭设、拆除和搬运要方便,使用要安全,并能满足 多次周转使用。 (4)要因地制宜,就地取材,量材施用,尽量节约用料。 扣件式钢管脚手架是我国目前土木建筑工程中应用最为广泛的,也是属于多

相关文档
最新文档