(完整版)LTE多天线技术

(完整版)LTE多天线技术
(完整版)LTE多天线技术

个人也是学习中,算不上高手,说下我的理解:

1、最早的多天线技术出现在接收端多天线接收,由于在接收端有多天线,可以形成多条接收通道,从而可以对抗无线信道的深度衰落,显然嘛:多条接收通道同时处于深度衰落的可能性肯定是小于单条接收通道

处于深度衰落的可能性,这样就能改善传输质量,提高无线传输的可靠性。这种技术又叫“收分集”技术,可以应用在基站或手机侧,而且显然由于不涉及到互操作,所以也不用标准化。从而最先在无线系统中使

用。因为不用标准化,所以在LTE中我们就没有看到这方面的内容。

2、“收分集”技术的应用又给了人们启发:如果手机接收端部署多天线,显然对手机的成本和复杂度是有提

高的。能否把多天线部署在发射端来提高接收端的信道可靠性呢?这样一来:手机只用单个天线,复杂度

和成本都在基站一侧,由系统侧承担,岂不乐哉?然而问题随之而来:如果发射端单纯的用多天线发射相同

的数据流,它们实际上是相互干扰的,不但起不了分集的作用,而且可能会相互抵消!要多天线发射起到提供增益,而不相互打架,就需要特别的信号处理技术。

(以下都两天线发射为例,H表示复数的共轭,exp()表示一个复数,)

牛人1: Alamouti

天线1发射{x1, x2, .......}

天线2发射{-H(x2),H(x1), .......}

这种发射编码方案相当于在形成2个正交的信道(为啥?),从而可以提高传输可靠性

这种发射编码方案被用在LTE中就是Mode 2“发射分集”方案

牛人2: 无名

天线1发射{x1, x2, .......}

天线2发射{x1*exp(b1),x2*exp(b2), .......}

这种发射编码方案天线1正常发射,天线2把数据加上一个大的相位偏移后再发射

相当于在信道中人为造成多径效应(为啥?),从而可以提高传输可靠性

这种发射编码方案被用在LTE中就是CDD“分集”方案,LTE中CDD不单独使用,只和空间复用技术结合在一起使用。

牛人3: 无名

天线1发射{x1, x2, .......}

天线2发射{x1*exp(B1),x2*exp(B2), .......}

这种发射编码方案天线1正常发射,天线2把数据加上一个相位偏移后再发射。不同于牛人2中的"相位偏移"是事先规定好的,这里的相移是根据某个具体UE的信道实时计算出来的。它不同于CDD方案:发射在空间中是各向同性的,对所有UE是平等的;这个方案的发射是为了对准某个具体UE,从而使特定UE的接收增强,其它UE接收很弱。

这种发射编码方案被用在LTE中就是Mode 7“Beamforming波束成形”方案

3.搞完了上面的“收分集”和“发分集”技术后,人们又开始妄想。。。。

是否能把发射端多天线和接收端多天线结合起来,不仅用来提高传输可靠性,还能并行传输多个数据流啊?

原理如下:两天线发射+两天线接收时,不时有4个信道吗,记为h11,h12,h21,h22

学过解线性方程组吧:

h11*x1+h12*x2 = y1

h21*x1+h22*x2 = y2

当向量[h11,h12]和向量[h21,h22]线性无关时,以上的方程可以解出来。

也就是说:当信道线性无关时,并行传输2个数据流是可以的。这就叫空间复用

又为了降信号间的干扰,提高接收的可靠性,在发射端先乘上一个复矩阵后再发射

这个复矩阵通常是个正交复矩阵或CDD矩阵

这种发射端先乘上一个复矩阵的操作在LTE中叫Precodeing,之所以叫Pre是因为复矩阵是协议规定好的

如果复矩阵由发射端随机选择的,就叫"Open loop"开环空间复用,对应LTE的Mode 3

如果复矩阵由接收端根据信道估计选出来的,然后反馈给发射端,就叫"close loop"闭环空间复用,对应LTE 的Mode 4

如果并行传输的多个数据流是用于多个UE的,则叫"MU mimo"多用户空间复用,对应Lte 的Mode 5

闭环方式下还有个只能传输一个流的特例,这就叫“close loop RANK=1"的闭环发分集,对应Lte 的Mode 6

1.codeword: 相当于TranportBlock, 即物理层需要传输的原始数据块. LTE可支持在同一块资源同时传

输2个相对独立的codeword,这是通过空间复用(SM)技术实现的。

https://www.360docs.net/doc/6d14842309.html,yer:数据被分为不同layer进行传输,layer总数<=天线个数。和信道矩阵的rank是对应的。相

当于空分的维度。

3.rank:相当于总的layer数。

4.atenna port:其实并不等同于天线个数,而是相当于不同的信道估计参考信号pattern。对端口0~3,

确实对应多天线时,RS的发送pattern;对于端口4,对应于PMCH,MBSFN情况的RS;对于端口5,对应于UE Special RS。

然后介绍LTE的7个传输模式,其中后6种传输模式分别应用了四种MIMO技术方案:传输分集(TD),波束赋型(Beamforming),空间复用(SM),多用户MIMO(MU-MIMO):

1.为普通单天线传输模式。

2.TransmitDiversity 模式:分2发送天线的SFBC,和4发送天线的SFBC+FSTD两种方案。

SFBC是由STBC(Space Time Block Code)演变而来,由于OFDM一个slot的符号数为奇数,因

此不适于使用STBC,但频域资源是以RB=12个子载波来分配的,因此可以用连续两个子载波来代

替连续两个时域符号,从而组成SFBC。而当使用4发送天线时,SFBC+FSTD(Frequency Switched Transmit Diversity)被采用。

3.SM-open loop,UE仅仅反馈信道的RI(Rank Indicator)。此时基站会使用CDD(Cycle Delay

Diversity)技术。

4.SM-close loop,UE根据信道估计的结果反馈合适的PMI(Precoding Matrix Indicator)。(如

利用系统容量最大计算合适的PMI)

5.MU-MIMO,该方案将相同的时频资源通过空分,分配给不同的用户。

6.close loop rank1——SM or BF,UE反馈信道信息使得基站选择合适的Precoding。

7.UE Special RS——BF,和BeamForming的前一种方式不同,这种方式无需UE反馈信道信息,而

是基站通过上行信号进行方向估计,并在下行信号中插入UE S pecial RS。基站可以让UE汇报UE Special RS估计出的CQI。

上行反馈如果是频率选择性信道,则反馈多个subband的CQI,否则仅反馈wideband的CQI。根据不同情

况选择通过PUSCH或PUCCH反馈。

1)对于来自上层的数据,进行信道编码,形成码字;

2)对不同的码字进行调制,产生调制符号;

3)对于不同码字的调制信号组合一起进行层映射;

4)对于层映射之后的数据进行预编码,映射到天线端口上发送。

码字、层和天线端口的区分。

1、码字:

码字是指来自上层的业务流进行信道编码之后的数据。不同的码字q区分不同的数据流,其目的是通过MIMO发送多路数据,实现空间复用。

由于LTE系统接收端最多支持2天线,所以发送的数据流数量最多为2。这决定了不管发送端天线数为1、2或者4,码字q的数量最多只为2。

当发送端天线只有一根时,实际能够支持的码流数量也只能为1,所以码字数量最多也只能为1。

如果接收端有两根接收天线,但是两根天线高度相关。如果发送端仍然发送两组数据流(两个码字),则接收端无法解码。因此,在收端信道高度相关的情况下,码字数量也只能为1。

综上,码字q的数量决定于信道矩阵的秩。

2、层

由于码字数量和发送天线数量不一致,需要将码字流映射到不同的发送天线上,因此需要使用层与预编码。

层映射与预编码实际上是“映射码字到发送天线”过程的两个的子过程。

层映射首先按照一定的规则将码字流重新映射到多个层(新的数据流),参见P68表3-23、3-24。(注:层的数量小于物理信道传输所使用的天线端口数量P)。

预编码再将数据映射到不同的天线端口上。在各个天线端口上进行资源映射,生成OFDM符号并发射,参见P67页图3-11

3、天线端口

天线端口指用于传输的逻辑端口,与物理天线不存在定义上的一一对应关系。天线端口由用于该天线的参

考信号来定义。

等于说,使用的参考信号是某一类逻辑端口的名字。

具体的说:p=0,p={0,1},p={0, 1, 2, 3}指基于cell-specific参考信号的端口;

p=4指基于MBSFN参考信号的端口;

p=5为基于UE-specific参考信号的端口。

从层到物理天线端口传输是通过预编码来完成的,参见P69的两个公式。

由公式可见,无论层数是多少,只要其小于用于物理传输的端口数,即可通过预编码矩阵W(i)将其映射到物理的传输天线上。

对于p=4、5的情况,再P69第4行有介绍。

P={0,4,5}

都指单天线端口预编码,即使用的发送天线为1。由于层数量必须小于天线端口的数量,所以此时层数为1,适用表3-23

第一种情况,层映射前后的码字是相同的。

曾有人指出,p=4、5时,发送端可以使用发送分集。理论上这是可行的,但是在LTE的规范中,p=4、5仅

适用于单天线端口的预编码。由

P69的预编码中的 1 、2 、3 小点分别介绍单端口、空间复用、传输分集的三种预编码方式。P=4、5不属于传输分集。

4、总结

码字用于区分空间复用的流;层用于重排码字数据;天线端口决定预编码天线映射。

Codeword是经过信道编码和速率匹配以后的数据码流。在MIMO系统中,可以同时发送多个

码流,所以可以有1,2甚至更多的Codeword。在LTE系统中,一个TTI最多只能同时接受2个TB流,所以一般最多2个Codeword;

layer和信道矩阵的“Rank“是一一对应的,信道矩阵的RI是由收发天线数量的最小值确

定的[信道的Rank未必就是收、发天线数的较小值,信道矩阵很可能行不满秩、列也不满秩。不过这种情况一般不会发生,因为使用预编码(或者说空分复用)的条件之一就是要求空间

信道无关(也就是满秩),要是两发两收的矩阵却rank=1,这就是典型的空间相关信道,

这样预编码技术就无用武之地了]。Codeword的数量和layer的数量可能不相等,所以需要

层映射。

codeword:就是可以进行独立编码、调制的一串码字,一般一个codeword对应传输层的一个TB。LTE规定只支持两个codeword同时传输。

layer:层的数目等于信道的秩,层映射就是为了使codeword数目和信道的秩进行匹配。即因为对于两个codeword时,信道的秩可能是3或4,而每个天线上发送的数据数是相等的,

因此中间有个层映射,达到这种匹配,具体映射协议中有规定

antenna port:0~3号实际对应得是现实中的物理天线;port4应用于SFN中;port5用于beamforming。具体区分这几个端口的依据是天线上发射的的RS信号类型。

codeword到天线端口经过层映射、天线映射、资源映射。天线映射就相当于precoding吧port0~3就是指实际的天线,他们根据实际情况用于空分复用,根据LTE协议可能有3种情况:只用1根天线、2根、4根;不同天线使用不同的RS pattern;

port 4应用于SFN情况,这是可以是1根天线发射,也可以使多根天线发射,多根天线时

就是分集作用。而且每个发射天线的RS pattern是一样的

port5应用于beamforming,指向同一个用户的多根天线使用相同的RS pattern

因此根据不同的RS pattern和应用场景区别出这些端口

antenna port并不对应实际的天线,天线端口的概念只是从终端看来,基站有几个天线,

但实际中基站的天线数可以多于这个值

在LTE里,layer等于信道矩阵的秩,也就是说能够独立并行传输的数据流数,但每个UE 最多有两个码字(codeword),而layer可以最多有antenna port个,这就涉及到如何将codeword映射到layer上去的问题,即layer mapping;LTE已经规定好了映射规则,另一

方面,layer数又有可能小于天线端口数,则需要进行precoding

codeword is the code after coding. In LTE system, it should be 1/3 (code rate) Turbo coding and it can be adjusted by rate matching.

suppose

1.original data: [1 0] named data word

2.after Turbo coding: [ 1 1 0 1 0 1] named code word

3.and then symbol mapping : QPSK or QAM named symbols

and for layer mapping. It depends on input bit stream number which is made up by

symbols

传输块(transport block),码字(codeword),层映射(layermapping),传输层(transmission layer), 阶(rank),和预编码(Precoding),天线端口(antennaport)是LTE物理层的几个基本概念,搞清楚这几个概念的定义

和相互关系才能透彻理解LTE多天线技术和调度算法。

传输块(Transport block)

一个传输块就是包含MACPDU的一个数据块,这个数据块会在一个TTI上传输,也是HARQ重传的单位。LTE规定:对于每个终端一个TTI最多可以发送两个传输块。

码字(codeword)

一个码字就是在一个TTI上发送的包含了CRC位并经过了编码(Encoding)和速率匹配(Ratematching)之后的独立传输块(transport block)。LTE规定:对于每个终端一个TTI最多可以发送两个码字。

层映射(Layer mapping)

将对一个或两个码字分别进行扰码(Scrambling)和调制(Modulation)之后得到的复数符号根据层映射矩

阵映射到一个或多个传输层。层映射矩阵的维数为C×R,C为码字的个数,R为阶,也就是使用的传输层的

个数。

传输层(Transmissionlayer)和阶(Rank)

一个传输层对应于一个无线发射模式。使用的传输层的个数就叫阶(Rank)。

预编码(Precoding)

根据预编码矩阵将传输层映射到天线端口。预编码矩阵的维数为R×P,R为阶,也就是使用的传输层的个数;

P为天线端口的个数。

天线端口(Antenna Port)

一个天线端口(antennaport)可以是一个物理发射天线,也可以是多个物理发射天线的合并。在这两种情

况下,终端(UE)的接收机(Receiver)都不会去分解来自一个天线端口的信号,因为从终端的角度来看,

不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考

信号(ReferenceSignal)就定义了这个天线端口,终端都可以根据这个参考信号得到这个天线端口的信道

估计。

LTE定义了最多4个小区级天线端口,因此UE能得到四个独立的信道估计,每个天线端口分别对应特定的

参考信号模式。为了尽量减小小区内不同的天线端口之间的相互干扰,如果一个资源元素(Resourceelement)用来传输一个天线端口的参考信号,那么其它天线端口上相应的资源元素空闲不用。

LTE还定义了终端专用参考信号,对应的是独立的第5个天线端口。终端专用参考信号只在分配给传输模式

7(transmissionmode)的终端的资源块(ResourceBlock)上传输,在这些资源块上,小区级参考信号也在传输,这种传输模式下,终端根据终端专用参考信号进行信道估计和数据解调。终端专用参考信号一般用

于波束赋形(beamforming),此时,基站(eNodeB)一般使用一个物理天线阵列来产生定向到一个终端的波束,这个波束代表一个不同的信道,因此需要根据终端专用参考信号进行信道估计和数据解调。

总之,一个天线端口就是一个信道,终端需要根据这个天线端口对应的参考信号进行信道估计和数据解调。

码字个数、阶和天线端口数之间的关系

传输块个数= 码字个数( C )<=阶(R)<=天线端口数(P)

MIMO技术详解

MIMO技术详解 1.介绍 随着无线通信系统的充分发展,语音业务已经不能够满足人们对高速数据业务的要求。提供网页浏览、多媒体数据传输以及其他类型的数据业务是发展无线通信系统和服务的一个重要目的。特别是,基于码分多址的第三代移动通信系统。虽然已经提出多种利用现有无线资源(诸如码道、时隙、频率等)提高数据传输速率的建议,但是其只不过是以语音容量换取数据容量的方法。随着MIMO的技术的出现,一种利用多个发射天线、多个接收天线进行高速数据传输的方法已经被提出,并成为未来无线通信技术发展的一种趋势。最早提出MIMO概念的是Telatar和Foschini,其中Foschini等人提出的BLAST结构是典型的利用MIMO技术进行空间多路复用的技术。已经证明,具有M个发射天线以及P 个接收天线的MIMO系统,在P≥M的情况下几乎可以使得信道容量提高到原来的M倍。 传统的MIMO系统均是非扩频的系统,而第三代移动通信系统是基于CDMA技术的扩频系统。可以采用码复用(Code-Reuse)方式把MIMO技术与CDMA系统结合起来,从而有效地提高其高速下行分组接入(HSDPA)的总体数据速率。同样,TD-SCDMA系统也可以采用码复用的方式来应用MIMO技术,本文给出了一种TD-SCDMA系统的MIMO技术解决方案。这样,TD-SCDMA系统将既可以应用智能天线技术,也可以应用MIMO天线技术,本文将初步分析应用MIMO技术之后对智能天线技术的影响。 2.MIMO技术概述 MIMO技术大致可以分为两类:发射/接收分集和空间复用。传统的多天线被用来增加分集度从而克服信道衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。举例来说,在慢瑞利衰落信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到,单天线衰落信道的平均误差概率为。对于发射分集技术来说,同样是利用多条路径的增益来提高系统的可靠性。在一个具有m根发射天线n根接收天线的系统中,如果天线对之间的路径增益是独立均匀分布的瑞利衰落,可以获得的最大分集增益为mn。智能天线技术也是通过不同的发射天线来发送相同的数据,形成指向某些用户的赋形波束,从而有效的提高天线增益,降低用户间的干扰。广义上来说,智能天线技术也可以算一种天线分集技术。 分集技术主要用来对抗信道衰落。相反,MIMO信道中的衰落特性可以提供额外的信息来增加通信中的自由度(degrees of freedom)。从本质上来讲,如果每对发送接收天线之间的衰落是独立的,那么可以产生多个并行的子信道。如果在这些并行的子信道上传输不同的信息流,可以提供传输数据速率,这被成为空间复用。需要特别指出的是在高SNR 的情况下,传输速率是自由度受限的,此时对于m根发射天线n根接收天线,并且天线对之间是独立均匀分布的瑞利衰落的。 根据子数据流与天线之间的对应关系,空间多路复用系统大致分为三种模式:D-BLAST、V-BLAST以及T-BLAST。 D-BLAST最先由贝尔实验室的Gerard J. Foschini提出。原始数据被分为若干子流,每个子流之间分别进行编码,但子流之间不共享信息比特,每一个子流与一根天线相对应,但是这种对应关系周期性改变,如图1.b所示,它的每一层在时间与空间上均呈对角线形状,称为D-BLAST(Diagonally- BLAST)。D-BLAST的好处是,使得所有层的数据可以通过不同的路径发送到接收机端,提高了链路的可靠性。其主要缺点是,由于符号在空间与时间上呈对角线形状,使得一部分空时单元被浪费,或者增加了传输数据的冗余。如图1.b所示,在数据发送开始时,有一部分空时单元未被填入符号(对应图中右下角空白部分),为了保证D-BLAST的空时结构,在发送结束肯定也有一部分空时单元被浪费。如果采用burst模式的数字通信,并且一个burst的长度大于M(发送天线数目)个发送时间间隔,那么burst的长度越小,这种浪费越严重。它的数据检测需要一层一层的进行,如图1.b所示:先检测c0、c1和c2,然后a0、a1和a2,接着b0、b1和b2…… 另外一种简化了的BLAST结构同样最先由贝尔实验室提出。它采用一种直接的天线与层的对应关系,即编码后的第k个子流直接送到第k根天线,不进行数据流与天线之间对应关系的周期改变。如图1.c所示,它的数据流在时间与空间上为连续的垂直列向量,称为V-BLAST(Vertical-BLAST)。由于V-BLAST中数据子流与天线之间只是简单的对应关系,因此在检测过程中,只要知道数据来自哪根天线即可以判断其是哪一层的数据,检测过程简单。 考虑到D-BLAST以及V-BALST模式的优缺点,一种不同于D-DBLAST与V-BLAST的空时编码结构被提出:T-BLAST。等文献分别提及这种结构。它的层在空间与时间上呈螺纹(Threaded)状分布,如图2所示。原始数据流被多路分解为若干子流之后,每个子流被对应的天线发送出去,并且这种对应关系周期性改变,与D-BLAST系统不同的是,在发送的初始阶段并不是只有一根天线进行发送,而是所有天线均进行发送,使得单从一个发送时间间隔来看,它的空时分布很像V-BALST,只不过在不同的时间间隔中,子数据流与天线的对应关系周期性改变。更普通的T-BLAST结构是这种对应关系不是周期性改变,而是随机改变。这样T-BLAST不仅可以使得所有子流共享空间信道,而且没有空时单元的浪费,并且可以使用V-BLAST检测算法进行检测。

多天线与MIMO技术的发展和应用

多天线与MIMO技术的发展和应用 杨杉杉 北京中网华通设计咨询有限公司,云南普洱 665000 摘要;本文介绍了多天线技术的概念和核心技术,并重点介绍了MIMO技术的特点,在现有通信网种的应用。 关键词:多天线;MIMO;LTE

目录 一、引言 (3) 二、概述 (3) 1 多天线技术的定义 (3) 2 多天线技术的分类 (3) 2.2.1.天线分集技术 (3) 2.2.2.波束赋型技术 (4) 2.2.3.空分复用技术 (4) 三、MIMO技术 (4) 1MIMO技术的定义和原理 (4) 3.1.1.MIMO技术的定义 (4) 3.1.2.MIMO技术的原理 (5) 2MIMO技术的优点 (5) 3.2.1.提高信道容量 (5) 3.2.2.提高信道的可靠性 (5) 3MIMO技术的缺点 (6) 四、MIMO系统的分类 (6) 1按照收发天线的数目进行分类 (6) 4.1.1.SISO (6) 4.1.2.MISO (6) 4.1.3.SIMO (7) 4.1.4.MIMO (7) 2按照实现方式进行分类 (7) 4.3.1.空间复用 (7) 4.3.2.空间分集 (7) 4.3.3.波束赋型 (8) 4.3.4.开环传输 (8) 4.3.5.闭环传输 (8) 五、MIMO技术的应用 (8) 1MIMO技术在3G中的应用 (8) 2MIMO技术在WIMAX中的应用 (9) 3MIMO技术在LTE中的应用 (9) 5.3.1.LTE的MIMO模式协议 (9) 5.3.2.LTE主要支持的多天线类型 (10) 六、小结 (10)

一、引言 2004年12月在3GPP(The 3rd Generation Partnership Project,第三代合作伙伴计划)组织在多伦多会议上正式启动了UMTS(Universal Mobile Telecommunications System,通用移动通信系统)技术标准的长期演进LTE(Long Term Evolution),其中MIMO(Multi-Input & Multi-Output,多输入多输出)作为其关键技术备受关注。 随着中国联通对MIMO技术的广泛应用,以及LTE-FDD商用网的大规模建设,要求我们无线通信设计人员必须清楚MIMO技术的概念和特点,以便于频谱资源和网络配置的规划。本文将逐步介绍多天线技术的概念、MIMO技术特点,以及MIMO技术的应用和发展趋势。 二、概述 1多天线技术的定义 多天线技术顾名思义,就是采用多个天线,区别于传统的无线通信系统,多天线技术是在无线链路的发射端或者接收端采用多个天线或者天线矩阵,也可在发射端和接收端同事采用多个天线或者天线矩阵,以实现频率复用,提高数据传输速率。 2多天线技术的分类 根据不同的实现方式分为天线分集,波束赋型和空分复用三种技术。 2.2.1.天线分集技术 分集技术是用来补偿衰落信道损耗的,它通常通过两个或更多的天线来实现。同均衡器一样,它在不增加传输功率和带宽的前提下,而改善无线通信信道的传输质量。在移动通信中,基站和移动台的接收机都可以采用分集技术。目前常用的分集方式主要有两种:宏分集和微分集。 天线分集是指利用多天线间较低的无线信道的相关性,提供额外的(发射或接收)分集来对抗无线信道的衰落,是一种被用以恢复信号完整度的技术。按天线类型可有空间分集,

多天线与MIMO技术的发展和应用

多天线与MIMO技术的发展和应用 杉杉 北京中网华通设计咨询有限公司,普洱665000摘要;本文介绍了多天线技术的概念和核心技术,并重点介绍了MIMO技术的特点,在现有通信网种的应用。 关键词:多天线;MIMO ; LTE

目录 一、弓丨言 (3) 二、概述 (3) 1 多天线技术的定义 (3) 2 多天线技术的分类 (3) 2.2.1. 天线分集技术 (3) 222.波束赋型技术 (4) 2.2.3. 空分复用技术 (4) 三、MIMO技术 (4) 1 MIMO技术的定义和原理 (4) 3.1.1. MIMO 技术的定义 (4) 3.1.2. MIMO技术的原理 (5) 2 MIMO技术的优点 (5) 3.2.1. 提高信道容量 (5) 3.2.2. 提高信道的可靠性 (6) 3 MIMO技术的缺点 (6) 四、MIMO 系统的分类 (6) 1 按照收发天线的数目进行分类 (6) 4.1.1. SISO (6) 4.1.2. MISO (6) 4.1.3. SIMO (7) 4.1.4. MIMO (7) 2 按照实现方式进行分类 (7) 4.3.1. 空间复用 (7) 4.3.2. 空间分集 (8) 4.3.3. 波束赋型 (8) 4.3.4. 开环传输 (8) 4.3.5. 闭环传输 (8) 五、MIMO技术的应用 (8) 1 MIMO技术在3G中的应用 (8) 2 MIMO 技术在WIMAX中的应用 (9) 3 MIMO技术在LTE中的应用 (9) 5.3.1. LTE的MIMO 模式协议 (9) 5.3.2. LTE主要支持的多天线类型.......................................... 10...... 六、小结........................................................................ 10 ..........

(完整版)LTE多天线技术

个人也是学习中,算不上高手,说下我的理解: 1、最早的多天线技术出现在接收端多天线接收,由于在接收端有多天线,可以形成多条接收通道,从而可以对抗无线信道的深度衰落,显然嘛:多条接收通道同时处于深度衰落的可能性肯定是小于单条接收通道 处于深度衰落的可能性,这样就能改善传输质量,提高无线传输的可靠性。这种技术又叫“收分集”技术,可以应用在基站或手机侧,而且显然由于不涉及到互操作,所以也不用标准化。从而最先在无线系统中使 用。因为不用标准化,所以在LTE中我们就没有看到这方面的内容。 2、“收分集”技术的应用又给了人们启发:如果手机接收端部署多天线,显然对手机的成本和复杂度是有提 高的。能否把多天线部署在发射端来提高接收端的信道可靠性呢?这样一来:手机只用单个天线,复杂度 和成本都在基站一侧,由系统侧承担,岂不乐哉?然而问题随之而来:如果发射端单纯的用多天线发射相同 的数据流,它们实际上是相互干扰的,不但起不了分集的作用,而且可能会相互抵消!要多天线发射起到提供增益,而不相互打架,就需要特别的信号处理技术。 (以下都两天线发射为例,H表示复数的共轭,exp()表示一个复数,) 牛人1: Alamouti 天线1发射{x1, x2, .......} 天线2发射{-H(x2),H(x1), .......} 这种发射编码方案相当于在形成2个正交的信道(为啥?),从而可以提高传输可靠性 这种发射编码方案被用在LTE中就是Mode 2“发射分集”方案 牛人2: 无名 天线1发射{x1, x2, .......} 天线2发射{x1*exp(b1),x2*exp(b2), .......} 这种发射编码方案天线1正常发射,天线2把数据加上一个大的相位偏移后再发射 相当于在信道中人为造成多径效应(为啥?),从而可以提高传输可靠性 这种发射编码方案被用在LTE中就是CDD“分集”方案,LTE中CDD不单独使用,只和空间复用技术结合在一起使用。 牛人3: 无名 天线1发射{x1, x2, .......} 天线2发射{x1*exp(B1),x2*exp(B2), .......} 这种发射编码方案天线1正常发射,天线2把数据加上一个相位偏移后再发射。不同于牛人2中的"相位偏移"是事先规定好的,这里的相移是根据某个具体UE的信道实时计算出来的。它不同于CDD方案:发射在空间中是各向同性的,对所有UE是平等的;这个方案的发射是为了对准某个具体UE,从而使特定UE的接收增强,其它UE接收很弱。 这种发射编码方案被用在LTE中就是Mode 7“Beamforming波束成形”方案 3.搞完了上面的“收分集”和“发分集”技术后,人们又开始妄想。。。。 是否能把发射端多天线和接收端多天线结合起来,不仅用来提高传输可靠性,还能并行传输多个数据流啊? 原理如下:两天线发射+两天线接收时,不时有4个信道吗,记为h11,h12,h21,h22 学过解线性方程组吧: h11*x1+h12*x2 = y1 h21*x1+h22*x2 = y2 当向量[h11,h12]和向量[h21,h22]线性无关时,以上的方程可以解出来。 也就是说:当信道线性无关时,并行传输2个数据流是可以的。这就叫空间复用 又为了降信号间的干扰,提高接收的可靠性,在发射端先乘上一个复矩阵后再发射 这个复矩阵通常是个正交复矩阵或CDD矩阵

通俗易懂的MIMO技术简介

通俗易懂的MIMO技术简介 MIMO概述 MIMO技术已经广泛应用在许多现代通信标准中,特别是消费领域。原因是相对于SISO,MIMO技术有很明显的优势。 MIMO是多路输入多路输出的意思,指的是当一个报文在发射端被一根或者多跟天线传输,而在接收侧被一根或者多根天线接收的情况。与之比对的是单输入单输出(SISO),SISO 指发送和接收都用1根天线,而另外有种说法叫单输入多输出(SIMO),SIMO指发送用一根,接收有多根天线。 可能有人会对SIMO的输入和输出定义有点奇怪,其实这是因为当初在贝尔实验室最开始定义这个名称时,工程师在发送和接收侧都是分别测试的,而不是整个无线链路测试,因此他们把“IN”定义为发送功能,“OUT”定义为了接收,一直沿用至今。 什么是多天线技术? 在发送和接收侧的多天线引入了信号自由度的概念,这在SISO系统是没有的。这里的自由度主要指的是空间自由度。这种空间自由度可以被定义三种,分别为“分集”,“复用”或者这两种的组合。

分集(diversity ) 简单点来说,分集意味着重复:举个例子,多根天线接收同一个信号,就代表发射分集。由于每根天线在接收数据时也接收到了各自的噪声,但由于各个噪声的不相关性,合并多个天线信号能够消除部分噪声,从而得质量更好的信号。打个比方,如果从两个不同的方面来看同一个物件,那么得到的评价也会更可靠。需要说明的是,分集并不一定要多个接收天线才能实现,后面就会讲到,分集也可以使用多个发送天线通过空时编码(STC )技术来实现。 空间复用(Spatial Multiplexing ) 第二个主要的MIMO 技术为空间复用,空间复用可以在不增加带宽和发送功率的情况下通过成对的MIMO 发送、接收来增加系统吞吐量。空间复用增加的吞吐量与发送或接收天线数目(较少的那个)成线性关系。空间复用中,每个传输天线发送不同的bit 流信息,每个接收天线收到来自所有传输天线的线性综合信息。这样,整个无线信道构成一个矩阵,由发射和接收天线阵列组成,反射和散射等信道传输因素也考虑在里面。而当这个MIMO 系统在一个散射特别强的环境中运行时,信道矩阵就可逆,(这是因为丰富的散射让矩阵行列不相关),这样接收译码出来的信号就有多路增益。 ????? ???????????????????=4321*44342414343323134232221241312111 Y Y Y Y 4321x x x x h h h h h h h h h h h h h h h h 总结:分集可以获得信号增益,而空间复用能够提升系统吞吐量。需要说明的是,MIMO 系统中需要权衡分集和复用所能带来的增益,一个典型的MIMO 系统,根据无线信道条件可

多天线技术

多天线技术综述 一、引言 进入21世纪后,无线通信网络技术高速发展,同时无线通信网络中数据业务迅速增长。根据业界的普遍预测,在未来10年间里,数据业务将以每年1.6 2倍的速率增长,预计到2020年通信网络的容量需求将是目前的1000倍[1],这无疑给整个无线通信网络带来了巨大的挑战。而多天线技术作为一种增强通信系统的方法,很早就应用到了无线通信网络中,且其价值也在无线通信领域得到了认可。研究表明,作为多天线技术之一的多进多出MIMO(Multiple Input Multiple Output)技术能够很好的提高无线通信系统的频谱利用率。采用MIMO 技术在室内传播环境下的频谱效率能够达到2040bit/s/Hz,而使用传统的无 线通信技术在移动蜂窝中的频谱效率仅为15bit/s/Hz,在点对点的固定微波 系统中也只有1012bit/s/Hz[2]。由此可见,多天线技术能够在不增加功率和带宽资源的前提下有效的提高无线网络的频谱效率。 多天线技术主要是指智能天线技术和MIMO技术。基于WCDMA, CDMA2000和TD-SCDMA技术的第三代移动通信系统应用的多天线技术主要是智能天线技术[3]。智能天线技术可以克服多用户间的干扰,通过空分多址增加频谱效率和信道容量;并且能够有效的抵抗多径衰落的影响,从而提高通信质量;同时,对功率的控制也可以通过在网络建设初期增加基站的覆盖范围来实现。因此,应用到支持多种业务的第三代移动通信系统中,很好的提高了传输速率,增加了频谱宽度,从而使通信服务质量得到了极大的提高。而MIMO技术是在3G向LTE(Long Term Evolution)演进中被引入的,它和正交频分复用技术0FDM相结合在LTE中起到了巨大的作用。第四代移动通信系统应用的多天线技术是智能天线技术和MIMO 技术的结合,两者的结合使第四代移动通信系统在不占用额外的频谱和传输功率的前提下大大增加了传输速率和传输的可靠性[4]。据专家预测,能够高效处理特性差异巨大的各种业务的下一代移动通信系统5G(IMT-2020)将使用大规模天 线技术[5],大规模天线技术在5G中的引入将使系统的传输速率大大的提升,它 将是5G通信中具有革命性的技术之一。

相关主题
相关文档
最新文档