第一章 表面张力与表面自由能

水表面张力介绍

水表面张力介绍 表面张力 表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。通常,处于液体表面层的分子较为稀薄,其分子间距较大,液体分子之间的引力大于斥力,合力表现为平行于液体界面的引力。表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。 1基本信息 多相体系中相之间存在着界面(interface)。习惯上人们仅将气-液,气-固界面称为表面(surface)。 表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。显然这样的分散体系便储存着较多的表面能(surface energy)。 2相关数据 在293K下水的表面张力系数为72.75×10-3N·m-1,乙醇为22.32×10-3N·m-1,正丁醇为24.6×10-3N·m-1,而水-正丁醇(4.1‰)的界面张力为34×10-3N·m-1。 表面张力的测值通常有多种方法,实验室及教科书中,通常采用的测试方法为最大气泡压法。由于其器材易得,操作方法相对易于学生理解表面张力的原理,因而长期以来是教学的必备方法。 作为表面张力测试仪器的测试方法,通常有白金板法(du Nouy method)\白金环法(Wilhelmy plate method)\悬滴法\滴体积法\最大气泡压法等。 3测定方法 (1)表面张力法。表面张力测定法适合于离子表面活性剂和非离子表面活性剂临界胶束浓度的测定,无机离子的存在也不影响测定结果。在表面活性剂浓度较低时,随着浓度的增加,溶液的表面张力急剧下降,当到达临界胶束浓度时,表面张力的下降则很缓慢或停止。以表面张力对表面活性剂浓度的对数作图,曲线转折点相对应的浓度即为CMC。如果在表面活性剂中或溶液中含有少量长链醇、高级胺、脂肪酸等高表面活性的极性有机物时,溶液的表面张力-浓度对数曲线上的转折可能变得不明显,但出现一个最低值(图2—15)。这也是用以鉴别表面活性剂纯度的方法之一。 (2)电导法。本法仅适合于表面活性较强的离子表面活性剂CMC的测定,以表面活性剂溶液电导率或摩尔电导率对浓度或浓度的平方根作图,曲线的转折点即CMC。溶液中若含有无机离子时,方法的灵敏度大大下降。 (3)光散射法。光线通过表面活性剂溶液时,如果溶液中有胶束粒子存在,则一部分光线将被胶束粒子所散射,因此测定散射光强度即浊度可反映溶液中表面活性剂胶束形成。以溶液浊度对表面活性剂浓度作图,在到达CMC时,浊度将急剧上升,因此曲线转折点即为CMC。利用光散射法还可测定胶束大小(水合直径),推测其缔合数等。但测定时应注意环境的洁净,避免灰尘的污染。 (4)染料法。一些有机染料在被胶团增溶时。其吸收光谱与未增溶时发生明显改变,例如频那氰醇溶液为紫红色,被表面活性剂增溶后成为蓝色。所以只要在大于CMC的表面活性剂

水的表面张力

水的表面张力 表面张力是一种特殊的力,它是液体(纯净液体、溶液)性质的一种表现.从微观上看,表面张力是因液体麦面薄层(约10-9米,并非几何面)内分子间的相互作用,它不同于液体内部分子间的相互作用,从而使液体表面层具有一种特殊性质.表面张力是分子力的一种宏观表现,在内聚力的作用下,表面层液体分子的移动总是尽量地使表面积减小.在液体表面形成一层弹性薄膜,这样便出现了表面张力.表面张力起源于分子引力,从其作用效果来看,它属一种拉力. 液体表面具有收缩趋势的微观解释 从力的角度分析:由于液体表面层分子显著地受到液体内部分子引力的作用(这其间也存在着分子斥力,只是分子引力占了优势).表面层外气体或其它液体分子的作用很小.于是,表面层内分子受力上、下不均,所以表面层分子仅受到了一指向液体内部的合引力,这一引力导致了表面层分子有向液体内部运动的趋势,宏观上便表现出液体表面具有自动收缩的趋势. 从能量的角度分析:由于液体表面层内出现了一个指向液体内部、自液面而下逐渐增强的分子引力场.液体分子由液体内部进入分子引力场,需要外力做功,其分子势能将增大(类似重力场中举起重物),而液体分子由表面进入液体内部,其势能会减小(类似重力场中下落物体).因任何物体的势能总有减小的倾向,以便使其稳定(势能最小原理),所以表面层的分子总想进入液体内部以获得“安稳”,从而使表面层分子的总势能尽可能减小.这一趋势宏观上使表面积趋于减小,即液面具有自动收缩的趋势. 表面张力和分子引力联系的解释 众所周知,表面张力及其形成和分子引力有着密切的关系.那么,与液面共面相切的宏观力——表面张力,和垂直液面指向液体内部的微观力——分子引力合力,二者的联系如何理解? 如前所述,液体表面层的分子因受到指向液体内部的拉力——分子引力的作用.表面层分子总要尽可能地向液体内部钻.这样一来,宏观上整个液面就会处在一种张紧的状态,表面上出现张力,即和液体表面共面且相切的表面张力.分子引力、表面张力的联系可用下面的事例说明类比:一直位于水平面上的小车,通过一个定滑轮在垂直向下的拉力作用下,该车上便会有一沿水平方向的力.分子引力和表面张力的关系是:前者为因,后者为果 表面张力和温度的关系 表面张力一般随温度升高而减小,因为温度升高,分子热运动加剧,液体分子之间距离增大.相互吸引力将减小,所以表面张力要相应地减小.到达临界温度(物质以液态形态出现

温度和压力对表面张力的影响

三、温度和压力对表面张力的影响 可以从两个方面解释温度对表面张力的影响。一是温度对液体分子间相互作用力的影响。随着温度升高,分子热运动加剧,动能增加,分子间引力减弱,从而使得液体分子由内部到表面所需的能量减少。二是温度变化对表面两侧的体相密度的影响。温度升高,与表面层相邻的两体相的密度差变小,故表面张力减少。此二因素在宏观上均表现为温度升高表面张力下降。表12-1列出一些纯液体在不同温度下的表面格力温度系数值。 表示液体表面张力与温度关系的经验公式是 (12-10) 其中T为绝对温度。γ。可视为绝对零度时的表面张力,是一与体系有关的经验常数。b也是一个随体系而变的常数,其值与液体的临界温度有关。由于在临界温度T c时,界面消失, 表面张力为零,因此代入(12-10)得 (12-11) 考虑到一般液体在低于临界温度时表面张力已变为零,Ramsay 和 Shields 建议改用下列经验公式: (12-12) 其中M为液体的摩尔质量,υ为比容,k为常数。 Van der Walls 从热力学角度改进了(12-11),得出 (12-13) 指数n一般为接近 1 的常数。液体金属的n为 1,有机物的n约为 1.21 。 另一类表面张力-温度关系表达式为多项式,

(12-14) 例如,Harkins 测定的水表面张力和力与温度关系被表示为 (12-15) 式中t为摄氏温度。此式的适用温度范围是 10-60℃。 由于表面张力与压力关系的实验研究不易进行,因此,压力对表面张力的影响问题要复杂得多。一般情况下,增加体系的压力,气体在液体表面上的吸附和在液体中溶解度增大,因此,表面张力下降。

实验1.纯液体表面张力测定及温度对表面张力的影响

实验1 纯液体表面张力测定及温度对表面张力的影响 一、实验目的 1. 学习并掌握用吊环法测定纯液体表面张力的原理和方法; 2. 测定不同温度下纯液体的表面张力,讨论温度对纯液体表面张力的影响。 二、基本原理 液体中各分子间相互吸引,在液体内部,每个分子所受的各方面的力是一样的,即受力平衡,靠近表面的分子则不同,液体内部对它的吸引力大于外部(通常指空气)对它的引力,故表面分子受到向内的拉力,表面产生自动缩小的趋势。要扩大液体表面,即把一部分分子从内部移到表面上就必须对抗拉力而作功。在等温等压下增加单位表面积所需的功称表面自由能,单位为(N·m -1)。即沿着液体表面,垂直作用于单位长度上的紧缩力,定义为表面张力,用γ表示。 测表面张力的方法有很多种,有毛细管上升法,滴体积法,最大气泡压力法,吊环法等。 吊环法是将吊环浸入溶液中,然后缓缓将吊环拉出溶液,在快要离开溶液表面时,溶液在吊环的金属环上形成一层薄膜,随着吊环被拉出液面,溶液的表面张力将阻止吊环被拉出,当液膜破裂时,吊环的拉力将达到最大值。自动界面张力仪将记录这个最大值P。 液体表面张力与温度关系的研究虽已有一个世纪之久,但尚无准确的理论关系。已建立了一些经验关系,在一定范围内可代表实验结果,也可满意地用于内插之类的数据处理。最简单的经验公式是 γ = γ0(1-bT ) (1) 其中T 为绝对温度。γ0和b 为随体系而变的经验常数。由于在液体临界温度时气-液界面将不存在,这时表面张力应该为零,故γ –T 关系可用对比温度表示: ??? ???? ??=c 01T T γγ (2) 其中T c 为液体临界温度。 考虑到一般液体在低于临界温度时表面张力已变为零,Ramsay 和 Shieds 建议改用下列经验公式: ()(6c 3 2??=T T k M νγ) (3) 其中M 为分子量,υ为比容,k 为常数。 van der Waals 从热力学角度改进了式(2),得出 n T T ?????????=c 01γγ (4) 常用多项式来代表表面张力随温度变化的实验结果,一般形式为

液体表面张力的测量预习报告

液体表面张力系数的测量实验 液体沿表面总是存在着使液面紧张且向液体内收缩的力称为表面张力。液体的许多现象,如毛细管现象、湿润现象、泡沫的形成等,都与表面张力有关。表面张力系数是液体表面的重要力学性质:对于不同种类的液体,其表面张力不同,而对于同一种液体,其表面张力系数随着温度及其所含杂志的改变而增大或减小。这些性质广泛应用于工业生产中,如浮法选矿、液体的传输技术、化工生产线的设计等等都要对液体的表面张力进行研究。 测定液体表面张力系数的方法很多。常用的有拉脱法和毛细管升高法。本次实验介绍用拉脱法测定液体表面张力系数。 一、实验目的 1.用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法; 2.观察拉脱法测量表面张力的过程,并用物理学基本概念进行分析,加深对物理规律的认识; 3.测量纯水和其它液体(如:甘油)的表面张力系数。 二、实验仪器 实验仪器主要由液体表面张力系数测量实验仪主机以及实验装置以及镊子、砝码组成。应用电脑采集测量时需要壹根串口转USB 连接线、电脑和采集软件,仪器装置见下图。 三、实验原理 一个金属环固定在传感器上,将该环浸没于液体中,并渐渐拉起圆环,当它从液面拉脱瞬间传感器受到的拉力差值f 为 απ)(21D D f += (1) 式中: 1D 、2D 分别为圆环外径和内径,α为液体表面张力系数,g 为重力加速度,所以液体表面张力系数为:

)](/[21D D f +=πα (2) 实验中,液体表面张力可以由下式得到: B U U f /)(21-= (3) B 为力敏传感器灵敏度,单位V/N 。1U ,2U 分别为即将拉断水柱时数字电压表读数以及拉 断时数字电压表的读数。 四、实验步骤 1.连接硅压阻力敏传感器,并开机预热15~20分钟。测量吊环内外直径,然后清洗玻璃器皿(盛装待测液体)和吊环,给实验装置加水(注意加水量不可过多,可以参考装置外壁加水刻度线); 2.将吊环挂在力敏传感器的钩上,将力敏传感器转至水容器外部,这样取放砝码比较方便。待吊环晃动较小时,对仪器进行调零,然后用镊子安放砝码对传感器进行定标,取放砝码时应尽量轻; 3.将待测液体倒入玻璃器皿后,再将盛有待测液体的玻璃器皿小心地放入空的塑料容器,并一起放入实验圆筒内;将力敏传感器转至容器内,并轻轻挂上吊环,可以轻触吊环,让其晃动 说明:之所以不将测量液体直接倒入塑料容器内进行测量,是防止某些待测液体与塑料容器发生化学反应而影响测量结果。 4.关闭橡皮球阀门,反复挤压橡皮球使装置内部液体液面上升,当吊环下沿部分均浸入待测液体中时,及时松开橡皮球的阀门,这时液面缓慢下降,观察环浸入液体中及从液体中拉起时的物理过程和现象。特别应注意吊环即将拉断液柱前一瞬间数字电压表读数值为U 1,拉断后数字电压表读数为U 2。记下这两个数值。 5.用计算机采集时,在环接触液面开始下降时点开始采集按钮,可以通过软件实时采集传感器输出电压值的变化过程,通过鼠标移动测量拉脱瞬间的电压值以及拉断后的电压值,计算测量液体的表面张力,并与手动测量的结果进行比较。 五、注意事项 1.实验前,吊环须严格处理干净:可用NaOH 溶液洗净油污或杂质后,用纯水冲洗干净,并用热吹风烘干;

第一章课后作业答案

课后作业答案 第一章 练习一 一、填空题 1、液体的表观特征有: (1)类似于液体,液体最显著的性质是具有流动性,即不能够象固体那样承受剪切应力; (2)类似于液体,液体可完全占据容器的空间并取得容器内腔的形状; (3)类似于固体,液体具有自由表面; (4)类似于固体,液体可压缩性很。 2、按液体结构和内部作用力分类,液体可分为原子液体、分子液体及离子液体三类。其中,液态金属属于原子液体,简单及复杂的熔盐通常属于离子液体。 3、偶分布函数g(r)的物理意义是距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原点r=0)距离为r位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 4、考察下面右图中表达物质不同状态的偶分布函数g(r)的图(a)、(b)、(c)的特征,然后用连线将分别与左图中对应的结构示意图进行配对。 固体结构(a)的偶分布函数 气体结构(b)的偶分布函数 液体结构(c)的偶分布函数 5、能量起伏:描述液态结构的“综合模型”指出,液态金属中处于热运动的不同原子的能量有高有低,同一原子的能量也在随时间不停地变化,时高时低。这种现象称为能量起伏。

6、结构起伏:液态金属是由大量不停“游动”着的原子团簇组成,团簇内为某种有序结构,团簇周围是一些散乱无序的原子。由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变,这种现象称为结构起伏。 7、在特定的温度下,虽然“能量起伏”和“结构起伏”的存在,但对于某一特定的液体,其团簇的统计平均尺寸是一定的。然而,原子团簇平均尺寸随温度变化而变化,温度越高原子团簇平均尺寸越小。 8、浓度起伏:工业中常用的合金存在着异类组员;即使是“纯”金属,也存在着大量杂质原子。因此,对于实际金属及合金的液态结构,还需考虑不同原子的分布情况。由于同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异。这种局域成分的不均匀性随原子热运动在不时发生着变化,这一现象称为浓度起伏。 9、对于液态合金,若同种元素的原子间结合力大于不同元素的原子间结合力,即F(A-A、B-B) >F(A-B),则形成富A及富B的原子团簇,具有这样的原子团簇的液体仅有“拓扑短程序”;若熔体的异类组元具有负的混合热,往往F(A -B)>F(A-A、B-B),则在液体中形成具有A-B化学键的原子团簇,具有这样的原子团簇的液体同时还有“化学短程序”。具有“化学短程序”的原子团簇,在热运动的作用下,出现时而化合,时而分解的分子,也可称为不稳定化合物,甚至可以形成比较强而稳定化合物,在液体中就出现新的固相。 10、金属熔化潜热?H m比其气化潜热?H b小得多(表1-2),为1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。 二、判断题(括号中添“√”或“×”) 1、(√) 2、(×),因为Ga, Bi, Sb, Ce, Si, Ge等熔化时体积增大。 3、(×),理想纯金属液体中既有“能量起伏”,也有“结构起伏”。 4、(√) 5、(×),近年,人们发现液态Ga、Cs、Se、I、、Bi 、Te等元素以及石墨熔体的某些物理性质随压力出现异常非连续变化,Katayama等利用对液态磷进行高压X-衍射实验,证实了液态磷中发生压力诱导型非连续液-液结构转变;我国及国外的学者也以多种手段揭示,一些合金熔体的性质与结构随温度发生非连续变化。

《材料成型基本原理》刘全坤版 第一章答案

第一章习题 1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部 破坏? 答:(1)液体与固体及气体比较的异同点可用下表说明 相同点 不同点 液体 具有流动性,不能承受切应力;远程无序,近程有序 固体 具有自由表面;可 压缩性很低 不具有流动性,可承受切应力;远程有序 液体 远程无序,近程有序;有自由表面;可压缩性很低 气体 完全占据容器空间 并取得容器内腔形 状;具有流动性 完全无序;无自由表面;具有很高的压缩性 (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ① 物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化V Δm /V 为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ② 金属熔化潜热H Δm 约为气化潜热ΔH b 的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。 由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一 定的规律性。 2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N 1 、平均原子间距r 1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参 考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo (=N/V )的相对偏差。 N 1 表示参考原子周围最近邻(即第一壳层)原子数。 r 1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3. 如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合 金结构的近程有序(包括拓扑短程序和化学短程序)。 答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不 具备平移、对称性。 近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集 团 (2)说明液态金属或合金结构的近程有序的实验例证 ① 偶分布函数的特征 对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均 相等,呈一条直线g(r)=1。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。 ② 从金属熔化过程看 物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化V Δm /V 为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热H Δm 约为气化潜热ΔH b 的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。 ③ Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、Pb和Tl等熔体进行了十多 年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。 ④ Reichert 观察到液态Pb 局域结构的五重对称性及二十面体的存在,并推测二十面体存在于所有的单组元简单液体。

水表面张力的测定

物理实验报告 实验名称:液体表面张力系数的测定学院:水利科学与工程学院 专业班级:水工1801 学号:201802979 学生姓名:周柱伟

实验成绩 实验预习题成绩: 1.什么是液体的表面? 接触的表面存在一个薄层 2.液体表面的分子具有什么特点(表面张力产生的原因)? 液体层里的分子比液体内部稀疏,分子间的距离比液体内部大一些,分子间的相互作用表现为引力。就象你要把弹簧拉开些,弹簧反而表现具有收缩的趋势3.液体表面张力系数是怎么定义的? 表面张力系数σ是在温度T和压力p不变的情况下吉布斯自由能G对面积S的偏导数 4.液体表面张力系数与哪些因素有关? 表面张力系数与液体性质,温度,液体所含杂质,相邻物质的化学性质有关5.简述拉脱法测量液体表面张力系数的原理(用矩形金属薄片或金 属环时,表面张力系数的具体表达式)。 测量一个已知周长的金属圆环或者金属片从待测液体表面脱离时所需的拉力,从而求得该液体表面张力系数的方法称为拉脱法。 6.焦利氏秤和普通的弹簧秤有所不同?

焦利氏秤实际上是一个特殊结构的弹簧秤,是用来测量铅直方向微小力的仪器之一。 一般的弹簧秤,弹簧的上端固定不动,在弹簧下端挂重物时,弹簧则伸长,物体重量可由指针所指示的标尺直接标出。而焦利氏秤上的弹簧是挂在可以上下移动的有刻度的管子上的,管外面套有外管,外管上有游标,旋转旋钮即可使管上下移动。 7.“三线对齐”是那三线?为什么要这样做? 指标镜上的刻线,玻璃管上的刻线和玻璃管上刻线在镜中的像 水的表面张力近似为液膜破裂瞬间的拉力,保持“三线对齐”是为了能够使水膜破裂瞬间近似“三线对齐”,从而得到水膜破裂时精确的拉力。使能准确测出该拉力大小减少实验误差 8.焦利氏秤测定液体的表面张力有什么优点? 测定表面张力F’,用普通的弹簧是很难迅速测出液膜即将破裂时的 F 的,应用焦利氏秤则克服了这一困难,可以方便地测量表面张力F’,并且焦利氏秤的劲度系数较小,有游标卡尺式的读数尺,故测量精度高。 9.千分尺是否存在系统误差如何判断?如何调零? 千分尺使用前,使移动测砧与固定测砧接触,观察微分筒上的棱边是否与固 定套筒上的零刻线重合,如果不重合即存在系统误差。当套筒上零刻线位于微分筒0~5方向上时即为正值,计算时需要减去其绝对值,相反方向即为负值,需要加上其绝对值。 10.比较逐差法与图解法处理实验数据的不同点。 在对某些函数关系并不明确的物理量进行测量时,常用作图法.数据点是离散的,

液滴尺寸与表面张力

第29卷第5期2014年10月 大学化学 UNIVERSITY CHEMISTRY Vol.29No.5 Oct.2014  液滴尺寸与表面张力 刘引烽* 房嫄 赵凯凯 李琛骏 杨小瑞 周海堤 王宇翔 朱逸莉 徐华根 (上海大学材料科学与工程学院高分子材料系 上海200444) 摘要 液体的滴数问题是化学实验等实际工作中经常遇到的界面问题三液滴体积与液体的表面张力有关,因此一定体积的液体所具有的液滴数也与表面张力有关三但若仅考虑表面张力的影响而忽视密度的作用,则有可能得出不正确的结论三本文从一道考题入手,讨论了表面张力二密度等因素对液滴大小的影响,对考题答案进行了分析三 关键词 界面化学 液滴大小 表面张力 密度 液体的滴数问题是界面化学在化学实验等实际工作中经常遇到的问题三一滴液滴的大小与液体的表面张力有关,因此一定体积的液体所具有的液滴数也与表面张力有关三学生在课程学习和复习迎考时,往往会从各种复习资料中搜集试题来加以练习和巩固三我们注意到,关于胶体化学或界面化学课程,常有关于滴数的考题三有些参考试题及其解答是正确的,有些则有误三本文通过对一个考题的分析来辨析一些基本概念三 在某大学物理化学考试试卷中有以下一道考题:在同一条件下,用同一滴管分别滴下同体积的3种液体 水二硫酸水溶液二丁醇水溶液,则它们的滴数为( )三 A.一样多 B.水的最多,丁醇水溶液最少 C.硫酸水溶液最多,丁醇水溶液最少 D.丁醇水溶液最多,硫酸水溶液最少 资料中给出的答案是D,其原因分析是:因为硫酸溶液表面张力最大,可以托住的液滴质量最大,所以滴数最少;丁醇表面张力最小,可以托住的液滴质量最小,所以滴数最多三 这道考题能结合实际当然很好,但它的结论是正确的吗?我们将在下面进行分析三 表面张力与液滴大小密切相关三在表面张力的测定方法中,有一种就是采用滴重法来进行的三根据滴重法测定液体表面张力原理(Tate定律),对于表面张力为γ二半径为r二质量为m的液滴,应满足以下关系: 2πrγ=mg 但由于液滴滴落时并非完美的球形,而是会被拉长成椭球并产生一定的液柱,部分液柱会残留于毛细管底部并不下落,因此,该式在应用时需要进行校正三校正后的方程应该是: 2πrγf=mg 式中f是校正因子三于是,Tate方程可以写成: r=mg2πγf(1) 对于不同的物质,每一滴的质量并不一样,它与液滴体积(V)和密度(ρ)有关,因此: *通讯联系人,E?mail:liuyf@https://www.360docs.net/doc/6d17131930.html,

《日用化学品制造原理与技术》第一章思考题

《日用化学品制造原理与技术》第一章思考题 1.什么是表面活性物质?什么是表面活性剂? 答:表面活性物质:具有能使溶剂表面张力降低的性质的物质。 表面活性剂:凡是能够使体系的表面状态发生明显变化的物质都称为表面活性剂。 2.什么是表面张力?它的单位如何表示?液体的表面张力是怎样产生的? 答:表面张力是指作用于液体表面单位长度上使表面收缩的力。 单位:mN/m 产生原因:由于液体分子之间的引力大于液体分子与表面外分子的引力,而造成的分子聚拢效应。 3.什么是cmc?为什么说cmc是表面活性剂的一个重要特性值? 答:Cmc:临界胶束浓度是表面活性剂的一个重要参数,它是指表面活性剂分子或离子在溶液中开始形成胶束的最低浓度。 达到cmc后即有胶束形成,胶束中的表面活性剂分子可随时补充表面分子膜中分子的损失,从而使表面活性得以充分发挥。 4.什么是Krafft点? 答:在较低温度下,表面活性剂在水中的溶解度随温度的上升而升高缓慢,但到某一温度后,表面活性剂在水中的溶解度随温度上升而迅速上升。该溶解度突变所对应的温度称为Krafft点。 5.增溶的方式有哪几种?有机物在表面活性剂中的增溶与在有机溶剂中的溶解有什么区别? 答:增溶是由于胶束的存在而使物质溶解度增加的现象,这些物质或溶入胶束的亲油基中间,或插于胶束的分子之间,或黏附于胶束的亲水基上,从而使溶解度大增。 表面活性剂增溶是利用离子型表面活性剂达到其cmc点(临界胶束浓度)后增加对于溶质的溶解度完成的。与溶剂溶解溶质的理论不一样,有机溶剂对于溶质的溶解只受到温度的影响。 6.什么叫做接触角?接触角的大小与洗涤之间有什么关系?

水的表面张力

《观察水的表面张力》教学设计 河北师范大学化学学院 教学目标:1.知道水有表面张力。 准备的材料有:一元硬币、滴管、纸杯、玻璃球、水。 将一元硬币平放在桌面上,让学生猜测究竟能撑多少滴水 小心的用滴管并记录下滴的数量 想不到吧,滴了44滴。硬币上的水才溢了出来。一元硬币上可以容纳43滴水。观察硬币上的水,你可以发现,硬币上的水象个小山包,里面好像有什么力量把水滴聚集在一起,这就是水的表面张力啦。从水漕里取出一本水,看看这一本水还能再加东西吗向里面慢慢放玻璃球,可以放多少呢让我们小心地试试看,直到加到第10个玻璃球,水才溢出去。现在,玻璃球已经装满半杯了,真不可思议。 由此可见,水分子之间的间隙并不是我们想象那样,密不可分, 科学探究:科学知识:1.认识水的表面存在着一股收缩的力——表面张力,表面张力可以改变。2.了解生活中水的表面张力

现象。情感态度、价值观:1.培养学生细 致观察、大胆预测、认真实验科学的习惯。 2.体验大自然的奥秘,进一步热爱科学探 究活动。教学准备:1.收集水的表面张力 材料。2.分组材料:玻璃杯两个、玻璃球、硬币、大头针、小块滤纸、滴管、洗洁精。教学过程:一、激趣导入1.谈话:看到我 们桌上的研究材料,聪明的同学一定能猜 到我们今天的研究内容和水有关。说到水,相信同学们一定不陌生,那么你们知道水 的哪些特点呢还知道水有什么特点吗(大 家的科学知识真不少!)今天的我们还要 继续来研究水的一个新的特点。如果不借 助船、木筏等工具,你们能在水面上悠闲 自在的散步吗对,肯定不行,只有在一些 武侠片中,我们才能看到一些轻功高手在 水面上疾驰如飞,不过这都是虚构的。但 是在自然界中却有一些动物能在水面上悠 闲自在的散步,你们见过吗想不想来看一 下2.(出示:水黾等的图片。)水黾的本领 大吧!看来它可是真正的轻功高手了。水黾 怎么可以在水面上而不沉下去呢想不想揭 开其中的奥秘。二、认识水的表面张力现 象1.讲述:我们首先借助大头钉来研究。

温度和压力对表面张力的影响教学资料

温度和压力对表面张 力的影响

三、温度和压力对表面张力的影响 可以从两个方面解释温度对表面张力的影响。一是温度对液体分子间相互作用力的影响。随着温度升高,分子热运动加剧,动能增加,分子间引力减弱,从而使得液体分子由内部到表面所需的能量减少。二是温度变化对表面两侧的体相密度的影响。温度升高,与表面层相邻的两体相的密度差变小,故表面张力减少。此二因素在宏观上均表现为温度升高表面张力下降。表12-1列出一些纯 液体在不同温度下的表面格力温度系数值。 表示液体表面张力与温度关系的经验公式是 尸亦1-旳)(12-10) 其中T为绝对温度。Y。可视为绝对零度时的表面张力,是一与体系有关的经验常 数。b也是一个随体系而变的常数,其值与液体的临界温度有关。由于在 臼=£昴声0) 临界温度T c时,界面消失,表面张力为零,因此△代入(12- 10)得 r=/o 1J 考虑到一般液体在低于临界温度时表面张力已变为零, 议改用下列经验公式: 1 =k{T^-T-6) 其中M为液体的摩尔质量,u 为比容,k为常数 Van der Walls 从热力学角度改进了(12-11),得出 (12-11) Ramsay 和Shields 建 (12-12) (12-13)

指数n —般为接近1的常数。液体金属的n为1,有机物的n约为1.21 。 另一类表面张力-温度关系表达式为多项式, 厂二氏 + +dr3 +cT3(12-14) 例如,Harkins测定的水表面张力和力与温度关系被表示为 Y = 75.796-0.145t-0,00024-z-1(12-15)式中t为摄氏温度。此式的适用温度范围是10 —60C 由于表面张力与压力关系的实 验研究不易进行,因此,压力对表面张力的影响问题要复杂得多。一般情况下,增加体系的压力,气体在液体表面上的吸附和在液体中溶解度增大,因此,表面张力下降。

表面张力知识

基本概念 一、粘度 液体在流动时,在其分子间产生内摩擦的性质,称为液体的黏性,粘性的大小用黏度表示,粘度又分为动力黏度与运动黏度度。 1.黏度简介 将流动着的液体看作许多相互平行移动的液层, 各层速度不同,形成速度梯度(dv/dx),这是流动的基本特征.(见图) 由于速度梯度的存在,流动较慢的液层阻滞较快液层的流动,因此.液体产生运动阻力.为使液层维持一定的速度梯度运动,必须对液层施加一个与阻力相反的反向力. 在单位液层面积上施加的这种力,称为切应力τ(N/m2).切变速率(D) D=d v /d x (S-1) 切应力与切变速率是表征体系流变性质的两个基本参数牛顿以图4-1的模式来定义流体的粘度。两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:τ= ηdv/dx =ηD(牛顿公式)其中η与材料性质有关,我们称为“粘度”。 2.黏度定义 将两块面积为1m2的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1Pa.s。牛顿流体:符合牛顿公式的流体。粘度只与温度有关,与切变速率无关,τ与D为正比关系。非牛顿流体:不符合牛顿公式τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。 又称黏性系数、剪切粘度或动力粘度。流体的一种物理属性,用以衡量流体的粘性,对于牛顿流体,可用牛顿粘性定律定义之: 式中μ为流体的黏度;τyx为剪切应力;ux为速度分量;x、y 为坐标轴;dux/dy为剪切应变率。流体的粘度μ与其密度ρ的比值称为运动粘度,以v表示。 粘度随温度的不同而有显著变化,但通常随压力的不同发生的变化较小。液体粘度随着温度升高而减小,气体粘度则随温度升高而增大。对于溶液,常用相对粘度μr表示溶液粘度μ和溶剂粘度μ之比,即:相对粘度与浓度C的关系可表示为: μr=1+【μ】C+K′【μ】C+… 式中【μ】为溶液的特性粘度, K′为系数。【μ】、K′均与浓度无关。 不同流体的粘度差别很大。在压强为101.325kPa、温度为20℃的条件下,空气、水和甘油的动力粘度和运动粘度为: 空气μ=17.9×10Pa〃s,v=14.8×10m/s 水μ=1.01×10Pa〃s,v=1.01×10m/s 甘油μ=1.499Pa〃s,v=1.19×10m/s 由于粘度的作用,使物体在流体中运动时受到摩擦阻力和压差阻力,造成机械能的损耗(见流动阻力)。 各种流体的粘度数据,主要由实验测得。常用的粘度计有毛细管

材料成型基本原理习题答案第一章答案

材料成型基本原理习题答案第一章答案

第一章习题 1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并 不是原子间结合力的全部破坏? 相同点不同点 液体具有自由表 面;可压缩性 很低 具有流动性,不能承受切应力;远程无序, 近程有序 固 体 不具有流动性,可承受切应力;远程有序 液体完全占据容器 空间并取得容 器内腔形状; 具有流动性 远程无序,近程有序;有自由表面;可压 缩性很低 气体完全无序;无自由表面;具有很高的压缩性 (2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明: ①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。 ②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。 由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。 2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么? 答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。 N1 表示参考原子周围最近邻(即第一壳层)原子数。 r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。 3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。 答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

宋启煌主编-精细化工工艺学第一章习题及答案(精藏)

第三章表面活性剂 1、表面张力是一种能引起液体表面自动收缩的力,它的单位为mN/m。 垂直作用于液体表面单位长度与液面相切,使表面收缩的力。 3、表面张力是液体本身所具有的基本性质,温度升高,表面张力不变。( × ) 表面张力反映了物质分子间作用力强弱,作用力越大,表面张力也就越大。(√) 5、在常温常压下,乙醇、水银、水几种液体其表面张力大小排序为:水银>水>乙醇。 6、具有表面活性的物质都是表面活性剂。( × ) 表面活性剂是这样一类物质,它能吸附在表(界)面上,在加入很少时即可显著改变表(界)面的物理化学性质(包括表面张力),从而产生一系列应用功能(如润湿、乳化、破乳、起泡、消泡、分散、絮凝、增溶等)。 8、表面活性剂的结构特点表现为具有双亲性的结构。 、表面活性剂按照亲水基团在水中能否解离分为离子型表面活性剂和非离子型表明活性剂。 10、根据表面活性剂解离后所带电荷类型分为:阳离子、阴离子、两性离子表面活性剂。 11、简述表面活性剂降低水表面张力的原理。 把表面活性剂加入到水中以后,由于它具有亲水亲油结构,它就会吸附于水的表面产生一定程度的定向排列:亲油基朝向疏水的空气,亲水基朝向水中,使原来的水/气界面变成了表面活性剂/气界面,从而降低表面张力。 12、描述胶束的结构。 胶束是表面活性剂在水中形成的一种自聚体结构。这种结构表现为:表面活性剂的亲油基朝内聚居在一起形成一个疏水的内核,亲水基朝外形成一个亲水的外壳。表面活性剂的这种结构使得表面活性剂能够稳定的存在于水中。 13、列举出表面活性剂的6种应用性能。 乳化,发泡,消泡,分散,增溶,润湿,洗涤,渗透,柔顺,抗静电,防水,缓蚀,杀菌。 当表面活性剂在水中达到一定浓度时,表面活性剂的两亲性结构会使表面活性剂分子在溶液内部发生自聚:疏水基团向里靠在一起形成内核,亲水基朝外与水接触以达到稳定存在状态。表面活性剂在水中形成的这种自聚体结构就叫做胶束。 把表面活性剂开始大量形成胶束时的最低浓度也就是达到饱和吸附时的表面活性剂的浓度叫做临界胶束浓度。 、胶束的大小可以用胶束量来表示,胶束量=表面活性剂的分子量×缔合度。 16、名词解释:亲水亲油平衡值(HLB值)。是指表面活性剂的亲水基与亲油基之间在大小和力

液体的表面张力

液体的表面张力 发表时间:2017-09-20T11:58:35.687Z 来源:《文化研究》2017年6月作者:李佳昂 [导读] 水的张力系数远高于酒精的表面张力系数,这也正是酒精更容易浸润一些分体材料的原因之一。 山东省聊城第一中学高三(20)班山东聊城 252000 摘要:本文通过简单的设计方法测量了水、盐水、酒精三种不同液体的表面张力系数,证实了这种常被中学生忽视的力的存在,加深了对液体表面张力的理解。实验表明,同一温度下,盐水的表面张力系数高于水的表面张力系数,而水的张力系数远高于酒精的表面张力系数,这也正是酒精更容易浸润一些分体材料的原因之一。 1. 前言 浮力和液体表面张力的概念都是中学阶段要求的学习内容,但是由于对浮力的相关知识学习较多,往往忽视了液体表面张力这一概念。比如,当一根头发轻轻地掉到水面上并漂浮在水面上时,大部分中学生都认为由于头发较轻,浮力使得其能够漂浮。然而事实确实如此吗?我们还需要更多地认识另外一个概念—液体的表面张力。生活常识告诉我们,当轻轻地托起一个一角硬币于水面上时,硬币有时也能漂浮,这时,如果我们再用浮力来解释,显然是不合理的,因为制造硬币的金属的密度远远大于水。这时,对液体表面张力的认识显得尤为重要。 凡是作用于液体表面,并且使液体表面积缩小的力,都称为液体表面张力。液体跟气体接触的表面存在一个薄薄的表面层,由于表面层里的分子受到内部液体分子的作用力大于外界空气分子的作用力,表层中的分子比液体内部稀疏,分子间的距离比液体内部大,分子间的相互作用表现为吸引力,这样,液体表面层就像一张被扩张的皮膜,总有一种收缩的趋势。由于这一收缩的趋势,使得液体表层具有阻止物体破坏自身而进入内部或到外面去的能力。也正是由于这种原因,才使得一些细小的昆虫能够在水面上自由行走,一些轻的硬币能够漂浮于水面。需要说明的是,液体表面张力来源于分子之间的吸引力,其方向总是垂直于液体表面 2. 实验器材及过程 实验用到的主要器材有可伸降铁架台、压阻力敏传感器、玻璃皿、0.5克砝码若干、铝合金圆环和吊篮、游标卡尺、电压表、纯水、无水酒精、盐水等。让圆环水平放置,使其下沿与水接触,当圆环从水中拉出时,测量水对圆环的张力。由于张力与作用长度成正比,先测量铝合金圆环的内外周长。实验过程中使用的压阻力敏传感器输出的是电压值,因此,还需找到传感器输出的电压与力之间的关系,即定标。最后对张力进行测量,计算出不同液体的表面张力。 3. 实验结果及计算 实验测得圆环的相关数据如表1所示。 对压阻力敏传感器定标后,即可测量几种液体的表面张力了。首先测量水,将圆环悬挂于压阻力敏传感器上,调整其高度并保持水平,调整铁架台旋钮,使得圆环的下沿浸泡于水中,不断下降水面的高度,能够观察到传感器输出的电压值越来越高,之后有一个减小过程,最后,水和圆环的下沿完全脱离,电压值突然下降到一个较小的值,这一较小的电压值代表的是圆环的重力,而在脱离前瞬间的电压值表示的是张力和圆环的重力之和。经过多次测量,水、盐水、酒精的数据如表3所示。 根据以上数据可计算得到张力的作用长度即圆环的内外周长之和为208.22mm,压阻力敏传感器的敏感系数为20.05mV/g,圆环在水、盐水、酒精中收到的张力分别为13.03mN、14.78mN、6.37mN。根据液体表面张力正比于作用长度这一规律,可得到常温下水、盐水、酒精的表面张力系数分别为0.063、0.071、0.031N/m。从这一计算结果可以看出,盐水的表面张力系数最大,而酒精的表面张力系数最小,即盐水的表面最不容易被破坏,最不容易发生浸润现象,最容易形成液滴,硬币也最容易在其表面漂浮。 实际生活中,液体表面张力有重要的应用,比如,可在金属器材表面涂抹机油,使得液态水在其表面不容易浸润、容易形成水珠滚落,从而减少机器因水分过多而引起生锈的几率。比如,矿场用浮选矿法选矿时,将破碎后的矿石倒进水中,再向其中加入能够被矿物所

243-液态纯铁1 550℃的粘度及表面张力与结构的相关性与在线粘度计(黏度-液体结构-动力粘度)

万方数据

万方数据

万方数据

万方数据

液态纯铁1 550℃的粘度及表面张力与结构的相关性 作者:滕新营, 闵光辉, 石志强, 王焕荣, 刘含莲, 叶以富 作者单位:滕新营,叶以富(山东大学机械学院,), 闵光辉,石志强,王焕荣,刘含莲(山东大学) 刊名: 材料科学与工艺 英文刊名:MATERIAL SCIENCE AND TECHNOLOGY 年,卷(期):2001,9(4) 被引用次数:5次 参考文献(18条) 1.EGRY I;IOHOFER G;SAUERLAND S Surface tension and viscosity of liquid metals 1993 2.EGRY I On the relation between surface tension and viscosity for liquid metals 1993 3.IIDA T;GUTHRIE R I L The properties of liquid metals 1993 4.REYNOLDS C L;COUCHMAN P R;KARASZ F E On the relation between surface energy, melting temperature and interatomic separation for metals 1976(04) 5.Waseda Y The structure of non-crystalline materials: liquids and amorphous solids 1980 6.Chhabra R P;SHETH D K Viscosity of molten metals and its temperature dependence 1990(04) 7.SHIMOJI M;ITAMI T Atomic transport in liquid metals 1986 8.ЕЛАНСКИЙГН;КУАРИНВА Свойстваистроениерасллавовжелеэа 1991 9.KEENE B J Review of data for the surface tension of pure metals 1993(04) 10.Waseda Y;OHTANI M The estimation of viscosity coefficient, self-diffusion coefficient and surface tension of molten metals by the principle of corresponding states 1975(01) 11.UTIGARD T;TOGURI J M Surface segregation and surface tension of liquid mixtures 1987(12) 12.Nakashima K;TAKIHIRA K;MORI K Wettability of Al2 O3 substrate by liquid iron 1992(10) 13.SKAPSKI A S The surface tension of liquid metals 1948(04) 14.RICE S A Structure of the liquid-vapor interface of metals and binary alloys 1996 15.Hines A L;WALLS H A;JETHANI K R Determination of the coordination number of liquid metals near the melting point 1985(02) 16.KEENE B J Review of data for the surface tension of iron and its binary alloys 1988(01) 17.王焕荣;叶以富;王伟民液态纯铁的微观原子模型[期刊论文]-科学通报 2000(14) 18.KITA Y;ZEZE M;MORITA Z Structure analysis of molten Fe -Si alloys by X-ray diffraction 1982 本文读者也读过(10条) 1.程世绪铜液表面张力的测定[期刊论文]-中氮肥2002(6) 2.成国光.吴洁冶金熔体粘度计算模型[会议论文]-1998 3.李大勇.石德全.张宇彤.Li Da-Yong.SHI De-quan.ZHANG Yu-tong液态铝合金表面张力快速检测新方法与装置[期刊论文]-中国有色金属学报2005,15(2) 4.林喜斌.李爽.李彦琴.黄玲.刘进京新型降表面张力钻井液技术研究[期刊论文]-钻井液与完井液2008,25(3) 5.陈达畅.程西云.Chen Dachang.Cheng Xiyun基于磁液表面张力磁流体密封模型的研究[期刊论文]-润滑与密封2005(5) 6.子澍.吴国蔚.陈桂馨.ZI Shu.WU Guo-wei.CHEN Gui-xin利用铁液表面张力炉前快速预判铸铁针孔形成倾向性

相关文档
最新文档