氧氯制取氯乙烯

氧氯制取氯乙烯
氧氯制取氯乙烯

一、概述

1.氯乙烯的性质和用途

氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9℃,临界温度142℃,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8℃,与空气容易形成爆炸混合物,其爆炸范围为4~21.7%(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g/L。

氯乙烯具有麻醉作用,在20~40%的浓度下,会使人立即致死,在10%的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。

氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。

氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。

2.氯乙烯的生产方法

氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为:

CaC2+ 2H2O → Ca(OH)2+ C2H2

C2H2+ HCl CH2CHCl

50年代前,电石是由焦炭与生石灰在电炉中加热生成:

CaO+3C CaC2+ CO

随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。

随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。

CH2=CH2十C12→ CH2C1—CH2C1

CH2C1—CH2C1→ CH2=CHC1十HC1

十HCl → CH2=CHC1

50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。

在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种生产方法称为平衡法。

至今世界上虽仍有少量的氯乙烯来自于电石乙炔及乙炔—乙烯混合法,而绝大部分氯乙烯是通过基于乙烯和氯气的平衡过程生产。平衡氧氯化生产工艺仍是已工业化的、生产氯乙烯单体最先进的技术,在世界范围内,93%的聚氯乙烯树脂都采用由平衡氧氯化法生产的氯乙烯单体聚合而成。该法具有反应器能力大、生产效率高、生产成本低、单体杂质含量少和可连续操作等特点。

二、反应原理

乙烯氧氯化法生产氯乙烯,包括三步反应:

(1)乙烯直接氯化CH2=CH2+ Cl2→ CH2ClCH2Cl

(2)二氯乙烷裂解2CH2ClCH2Cl → 2CH2=CHCl + 2HCl

(3)乙烯氧氯化CH2=CH2+ 2HCl + O2→ CH2ClCH2Cl + H2O

总反应式2CH2=CH2+ Cl2+ O2→2CH2=CHCl + H2O

其工艺过程示意如图6—14。

图6-14乙烯平衡氧氯化法生产氯乙烯的工艺流程

此图可见,该法生产氯乙烯的原料只需乙烯、氯和空气(或氧),氯可以全部被利用,其关键是要计算好乙烯与氯加成和乙烯氧氯化两个反应的反应量,使1,2—二氯乙烷裂解所生成的HCl恰好满足乙烯氧氯化所需的HCl。这样才能使HCl在整个生产过程中始终保持平衡。该法是目前世界公认为技术先进、经济合理的生产方法。现将三步反应原理分别进行讨论:1.主、副反应

(1)乙烯直接氯化部分

主反应: CH2=CH2+ Cl2→ CH2ClCH2Cl△H = -171.7kJ/mo1 该反应可以在气相中进行,也可以在溶剂中进行。气相反应由于放热大,散热困难而不易控制,因此工业上采用在极性溶剂存在下的液相反应,溶剂为二氯乙烷。

副反应:

CH2ClCHCl + Cl2→ CH2ClCHCl2+ HCl

CH2ClCHCl2+ Cl2→ CHCl2CHCl2+ HCl

主要生成多氯乙烷。

乙烯中的少量甲烷和微量丙烯亦可发生氯代和加成反应形成相应副产物。

(2)二氯乙烷裂解部分

主反应:CH2ClCH2Cl CH2=CHCl + HCl△H = 79.5kJ/mo1

此反应是吸热可逆反应。

副反应:

CH2=CHCl →CH≡CH + HCl

CH2=CHCl + HCl → CH3CHCl2

CH2ClCH2Cl → H2+ 2HCl + 2C

n CH2=CHCl 聚氯乙烯

(3)乙烯氧氯化部分

主反应:CH2=CH2+ 2HCl + O2→ CH2ClCH2Cl + H2O△H = -251kJ/mo1

这是一个强放热反应。

副反应:

CH2=CH2+ 2O2→ 2CO + 2H2O

CH2=CH2+ 3O2→ 2CO2+ 2H2O

CH2=CHCl + HCl → CH3CH2Cl

CH2ClCH2Cl CH2=CHCl CH2ClCHCl2

还有生成其它氯衍生物的副反应反生。这些副产物的总量仅为二氯乙烷生成量的1%以下。2.催化剂

乙烯液相氯化反应的催化剂常用FeCl3。加入FeCl3的主要作用是抑制取代反应,促进乙烯和氯气的加成反应,减少副反应增加氯乙烯的收率。

二氯乙烷裂解反应是在高温下进行,不需要催化剂。

乙烯氧氯化制二氯乙烷需在催化剂存在下进行。工业常用催化剂是以γ—A12O3为载体的CuCl2催化剂。根据氯化铜催化剂的组成不同,可分为单组分催化剂、双组分催化剂、多组分催化剂。近年来,发展了非铜催化剂。

三、操作条件

1.乙烯直接氯化部分

(1)原料配比

乙烯与氯气的摩尔比常采用1.1:1.0。略过量的乙烯可以保证氯气反应完全,使氯化液中游离氯含量降低,减轻对设备的腐蚀并有利于后处理。同时,可以避免氯气和原料气中的氢气直接接触而引起的爆炸危险。生产中控制尾气中氯含量不大于0.5%,乙烯含量小于1.5%。

(2)反应温度

乙烯液相氯化是放热反应,反应温度过高,会使甲烷氯化等反应加剧,对主反应不利;反应温度降低,反应速度相应变慢,也不利于反应。一般反应温度控制在53℃左右。

(3)反应压力

从乙烯氯化反应式可看出,加压对反应是有利的。但在生产实际中,若采用加压氯化,必须用液化氯气的办法,由于原料氯加压困难,故反应一般在常压下进行。

2.二氯乙烷裂解部分

(1)原料纯度

在裂解原料二氯乙烷中若含有抑制剂,则会减慢裂解反应速度并促进生焦。在二氯乙烷中能起强抑制作用的杂质是1,2—二氯丙烷,其含量为0.1~0.2%时,二氯乙烷的转化率就会下降4~10%。如果提高裂解温度以弥补转化率的下降,则副反应和生焦量会更多,而且1,2—二氯丙烷的裂解产物氯丙烯具有更强的抑制裂解作用。杂质l,1—二氯乙烷对裂解反应也有较弱的抑制作用。其它杂质如二氯甲烷、三氯甲烷等,对反应基本无影响。铁离子会加速深度裂解副反应,故原料中含铁量要求不大于10-4。水对反应虽无抑制作用,但为了防止对炉管的腐蚀,水分含量控制在5×10-6以下。

(2)反应温度

二氯乙烷裂解是吸热反应,提高反应温度对反应有利。温度在450℃时,裂解反应速度很慢,转化率很低,当温度升高到500℃左右,裂解反应速度显著加快。

但反应温度过高,二氯乙烷深度裂解和氯乙烯分解、聚合等副反应也相应加速。当温度高于600℃,副反应速度将显著大于主反应速度。因此,反应温度的选择应从二氯乙烷转化率和氯乙烯收率两方面综合考虑,一般为500~550℃。

(3)反应压力

二氯乙烷裂解是体积增大的反应,提高压力对反应平衡不利。但在实际生产中常采用加压操作,其原因是为了保证物流畅通,维持适当空速,使温度分布均匀,避免局部过热;加压还有利于抑制分解生炭的副反应,提高氯乙烯收率;加压还利于降低产品分离温度,节省冷量,提高设备的生产能力。目前,工业生产采用的有低压法(~0.6MPa)、中压法(1MPa)和高压法(>1.5MPa)等几种。

(4)停留时间

停留时间长,能提高转化率,但同时氯乙烯聚合、生焦等副反应增多,使氯乙烯收率降低,且炉管的运转周期缩短。工业生产采用较短的停留时间,以获得高收率并减少副反应。通常停留时间为10s左右,二氯乙烷转化率为50~60%。

3.乙烯氧氯化部分

(1)反应温度

乙烯氧氯化反应是强放热反应,反应热可达251kJ/moI,因此反应温度的控制十分重要。升高温度对反应有利,但温度过高,乙烯完全氧化反应加速,CO2和CO的生成量增多,副产物三氯乙烷的生成量也增加,反应的选择性下降。温度升高催化剂的活性组分CuCl2挥发流失快,催化剂的活性下降快,寿命短。一般在保证HCl的转化率接近全部转化的前提下,反应温度以低些为好。但当低于物料的露点时,HCl气体就会与体系中生成的水形成盐酸,对设备造成严重的腐蚀。因此,反应温度一般控制在220~300 ℃。

(2)反应压力

常压或加压反应皆可,一般在0.1~1MPa。压力的高低要根据反应器的类型而定,流化床宜于低压操作,固定床为克服流体阻力,操作压力宜高些。当用空气进行氧氯化时,反应气体中含有大量的惰性气体,为了使反应气体保持相当的分压,常用加压操作。

(3)原料配比

按乙烯氧氯化反应方程式的计量关系,C2H4:HC1:O2=1:2:0.5(摩尔)。在正常操作情况下,C2H4稍有过量,O2过量50%左右,以使HC1转化完全。实际原料配比为C2H4:HC1:O2=

1.05:2:0.75~0.85(摩尔)。若HC1过量,则过量的HCl会吸附在催化剂表面,使催化剂颗粒胀大,使密度减小;如果采用流化床反应器,床层会急剧升高,甚至发生节涌现象,以至不能正常操作。C2H4稍过量,可保证HC1完全转化,但过量太多,尾气中CO和CO2的含量增加,使选择性下降。氧的用量若过多,也会发生上述现象。

(4)原料气纯度

原料乙烯纯度越高,氧氯化产品中杂质就越少,这对二氯乙烷的提纯十分有利。原料气中的乙炔、丙烯和C4烯烃含量必须严格控制。因为它们都能发生氧氯化反应,而生成四氯乙烯、三氯乙烯、1,2—二氯丙烷等多氯化物,使产品的纯度降低而影响后加工。原料气HC1主要由二氯乙烷裂解得到,—般要进行除炔处理。

(5)停留时间

要使HCl接近全部转化,必须有较长的停留时间,但停留时间过长会出现转化率下降的现象。这可能是由于在较长的停留时间里,发生了连串副反应,二氯乙烷裂解产生HCl和氯乙烯。在低空速下操作时,适宜的停留时间—般为5~10s。

四、工艺流程

1.乙烯直接氯化生产二氯乙烷的工艺流程

乙烯液相氯化生产二氯乙烷,催化剂为FeCl3。早期开发的乙烯直接氯化流程,大多采用低温工艺,反应温度控制在53℃左右。乙烯液相氯化生产二氯乙烷的工艺流程如图6—15所示。

乙烯液相氯化是在气液鼓泡塔反应器(1)中进行,氯化塔内部安装有套筒内件,内充以铁环和作为氯化液的二氯乙烷液体,乙烯和氯气从塔底进入套筒内,溶解在氯化液中而发生加成反应生成二氯乙烷。为了保证气液相的良好接触和移除反应释放出的热量,在氯化塔外连通两台循环冷却器(2)。反应器中氯化液由内套筒溢流至反应器本体与套筒间环形空隙,再用循环泵将氯化液从氯化塔下部引出,经过滤器(4)过滤后,把反应生成的二氯乙烷送至洗涤分层器(5),其余的经循环冷却器(2)用水冷却除去反应热后,循环回氯化塔。在反应过程中损失的FeCl3的补充是通过将FeCl3溶解在循环液内,从氯化塔的上部加入,氯化液中FeCl3的浓度维持在2.5×l04左右。

图6-15 乙烯液相氯化生产二氯乙烷工艺流程图

1-氯化塔;2-循环冷却器;3-催化剂溶解槽;4-过滤器;5、6-洗涤分层器

随着反应的进行,产物二氯乙烷不断地在反应器内积聚,通过反应器侧壁溢流口将产生的氯化液移去,从而保证了反应器内的液面恒定。反应产物经过滤器(4)过滤后,送入洗涤分层器(5、6),在两级串联的洗涤分层器内经过两次洗涤,除去其中包含的少量FeCl3和HCl,所得粗二氯乙烷送去精馏。氯化塔顶部逸出的反应尾气经过冷却冷凝回收夹带的二氯乙烷后,送焚烧炉处理。

低温氯化法反应所释放出的大量热量没有得到充分利用,而且反应产物夹带出的催化剂需经水洗处理,洗涤水需经汽提,故能耗较大;反应过程中需不断补加催化剂,过程的污水还需专门处理。为此,近年来开发出高温工艺,使反应在接近二氯乙烷沸点的条件下进行。二氯乙烷的沸点为83.5℃,当反应压力为0.2~0.3MPa时,操作温度可控制在120 ℃左右。反应热靠二氯乙烷的蒸出带出反应器外,每生成lmo1二氯乙烷,大约可产生6.5mo1二氯乙烷蒸气。由于在液相沸腾条件下反应,未反应的乙烯和氯会被二氯乙烷蒸气带走,而使二氯乙

烷的收率下降。为解决此问题,高温氯化反应器设计成一个U形循环管和一个分离器的组合体。高温氯化法的工艺流程如图6—16所示。

乙烯和氯通过喷散器在U形管上升段底部进入反应器(1),溶解于氯化液中立即进行反应生成二氯乙烷,由于该处有足够的静压,可以防止反应液沸腾。至上升段的三分之二处,反应已基本完成,然后液体继续上升并开始沸腾,所形成的气液混合物进入分离器(B)。离开分离器的二氯乙烷蒸气进入精馏塔(2),塔顶引出包括少量未转化乙烯的轻组分,经塔顶冷凝器冷凝后,送入气液分离器。气相送尾气处理系统,液相作为回流返回精馏塔塔顶。塔顶侧线获得产品二氯乙烷;塔釜重组分中含有大量的二氯乙烷,大部返回反应器,少部分送二氯乙烷—重组分分离系统,分离出三氯乙烷、四氯乙烷后,二氯乙烷仍返回反应器。

图6-16高温氯化法制取二氯乙烷的工艺流程

A-U型循环管;B-分离器;1-反应器;2-精馏塔

高温氯化法的优点是二氯乙烷收率高,反应热得到利用;由于二氯乙烷是气相出料,不会将催化剂带出,所以不需要洗涤脱除催化剂,也不需补充催化剂;过程中没有污水排放。尽管如此,这种型式的反应器要求严格控制循环速度,循环速度太低会导致反应物分散不均匀和局部浓度过高,太高则可能使反应进行的不完全,导致原料转化率下降。

与低温氯化法相比,高温氯化法可使能耗大大降低,原料利用率接近99%,二氯

乙烷纯度可超过99.99%。

2.二氯乙烷裂解制氯乙烯工艺流程

由乙烯液相氯化和氧氯化获得的二氯乙烷,在管式炉中进行裂解得产物氯乙烯。管式炉的对流段设置有原料二氯乙烷的预热管,反应管设置在辐射段。二氯乙烷裂解制氯乙烯的工艺流程如图6—17所示。

用定量泵将精二氯乙烷从贮槽(1)送入裂解炉(2)的预热段,借助裂解炉烟气将二氯乙烷物料加热并达到—定温度,此时有一小部分物料未气化。将所形成的气—液混合物送入分离器(3),未气化的二氯乙烷经过滤器(8)过滤后,送至蒸发器(4)的预热段,然后进该炉的气化段气化。气化后的二氯乙烷经分离器(3)顶部进入裂解炉(2)辐射段。在0.558MPa和500~550℃条件下,进行裂解获得氯乙烯和氯化氢。裂解气出炉后,在骤冷塔(5)中迅速降温并除炭。为了防止盐酸对设备的腐蚀,急冷剂不用水而用二氯乙烷,在此未反应的二氯乙烷会部分冷凝。出塔气体再经冷却冷凝,然后气液混合物一并进入氯化氢塔(6),塔顶采出主要为氯化氢,经致冷剂冷冻冷凝后送入贮罐,部分作为本塔塔顶回流,其余送至氧氯化部分作为乙烯氧氯化的原料。

图6-17二氯乙烷裂解制取氯乙烯的工艺流程

1-二氯乙烷贮槽;2-裂解反应炉;3-气液分离器;4-二氯乙烷蒸发器;5-骤冷塔;6-氯化

氢塔;

7-氯乙烯塔;8-过滤器

骤冷塔塔底液相主要含二氯乙烷,还含有少量的冷凝氯乙烯和溶解氯化氢。这股物料经冷却后,部分送入氯化氢塔进行分离,其余返回骤冷塔作为喷淋液。

氯化氢塔的培釜出料,主要组成为氯乙烯和二氯乙烷,其中含有微量氯化氢,该混合液送入氯乙烯塔(7),塔顶馏出的氯乙烯经用固碱脱除微量氯化氢后,即得纯度为99.9%的成品氯乙烯。塔釜流出的二氯乙烷经冷却后送至氧氯化工段,一并进行精制后,再返回裂解装置。3.以空气作氧化剂的乙烯流化床氧氯化制二氯乙烷的工艺流程

乙烯氧氯化反应部分的工艺流程如图6—18所示。

图6-18流化床乙烯氧氯化制二氯乙烷反应部分工艺流程图

1-加氢反应器;2-汽水分离器;3-流化床反应器;4-催化剂贮槽;5-空气压缩机

来自二氯乙烷裂解装置的氯化氢预热至170℃左右,与H2一起进入加氢反应器(1),在载于氧化铝上的钯催化剂存在下,进行加氢精制,使其中所含有害杂质乙炔选择加氢为乙烯。原料乙烯也顶热到一定温度,然后与氯化氢混合后一起进入反应器(3)。氧化剂空气则由空气压缩机(5)送入反应器,三者在分布器中混合后进入催化床层发生氧氯化反应。放出的热量借冷却管中热水的汽化而移走。反应温度则由调节汽水分离器的压力进行控制。在反应过程中需不断向反应器内补加催化剂,以抵偿催化剂的损失。

氯乙烷的分离和精制部分的工艺流程如图6—19所示。自氧氯化反应器顶部出来的反应气含有反应生成的二氯乙烷,副产物CO2、CO和其它少量的氯代衍生物,以及末转化的乙烯、氧、氯化氢及惰性气体,还有主、副反应生成的水。此反应混合气进入骤冷塔(1)用水喷淋骤冷

至90℃并吸收气体中氯化氢,洗去夹带出来的催化剂粉末。产物二氯乙烷以及其它氯代衍生物仍留在气相,从骤冷塔顶逸出,在冷却冷凝器中冷凝后流入分层器(4),与水分层分离后即得粗二氯乙烷。分出的水循环回骤冷塔。

图6-19二氯乙烷分离和精制部分工艺流程图

1-骤冷塔;2-废水汽提塔;3-受槽;4-分层器;5-低温冷凝器;6-汽液分离器;7-吸收塔;8-解吸塔;9-碱洗罐;10-水洗罐;11-粗二氯乙烷贮槽;12-脱轻组分塔;13-二氯乙烷塔;

14-脱重组分塔

从分层器出来的气体再经低温冷凝器(5)冷凝,回收二氯乙烷及其它氯代衍生物,不凝气体进入吸收塔(7),用溶剂吸收其中尚存的二氯乙烷等后,含乙烯1%左有的尾气排出系统。溶有二氯乙烷等组分的吸收液在解吸塔(8)中进行解吸。在低温冷凝器和解吸塔回收的二氯乙烷,一并送至分层器。

自分层器(4)出来的粗二氯乙烷经碱洗罐(9)碱洗、水洗罐(10)后进入贮槽(11),然后在3个精馏塔中实现分离精制。第一塔为脱轻组分塔(12),以分离出轻组分;第二塔为二氯乙烷塔(13),主要得成品二氯乙烷;第三塔是脱重组分塔,在减压下操作,对高沸物进行减压蒸馏,从中回收部分二氯乙烷。精制的二氯乙烷,送去作裂解制氯乙烯的原料。

骤冷塔塔底排出的水吸收液中含有盐酸和少量二氯乙烷等氯代衍生物,经碱中和后进入汽提塔进行水蒸气汽提,回收其中的二氯乙烷等氯代衍生物,冷凝后进入分析器。

空气氧化法排放的气体中尚含有1%左右的乙烯,不再循环使用,故乙烯消耗定额较高,且有大量排放废气污染空气,需经处理。

五、典型设备-流化床反应器

图6-20流化床乙烯氧氯化反应器结构图

1-C2H4的HCl出口;2-空气入口;3-板式分布器;4-管式分布器;5-催化剂入口;6-反应器外壳;7-冷却管组;8-加压热水入口;9-第三级旋风分离器;10-反应气出口;11、12-净化空气入口;13-第二级旋风分离器;14-第一级旋风分离器;15-人孔;16-高压水蒸汽出口

催化剂在流化床反应器内处于沸腾状态,床层内又装有换热器,可以有效地引出反应热,因此反应易于控制,床层温度分布均匀。这种反应器适用于大规模的生产,但缺点是催化剂损耗量大,单程转化率低。流化床反应器是钢制圆柱形容器,高度约为直径的十倍左右,其结构如图6—20所示。在反应器底部水平插入空气进料管,进料管上方设置具有多个喷嘴的板式分布器,用于均匀分布进入的空气。在反应段设置了—定数量的直立冷却管组,管内通入加压热水,使其汽化以移出反应热,并产生相当压力的水蒸气。在反应器上部设置三组三级旋风分离器,用以分离回收反应气体所夹带的催化剂。在生产中催化剂的磨损量每天约有0.1%,故需补加催化剂。催化剂自气体分布器上方用压缩空气送入反应器内。

由于氧氯化反应过程有水产生,若反应器的某些部位保温不好,温度会下降,当温度达到露点时,水就凝结,将使设备遇到严重的腐蚀。因此,反应器各部位的温度必须保持在露点以上。

知识窗

聚氯乙烯(PVC)工业技术进展情况

聚氯乙烯工业技术进展大致可以分为以下三个方面:

1、在氯乙烯单体生产技术方面,采用乙烯作为原料,用直接氧氯化法生产出低成本的氯乙烯。

2、在PVC树脂生产技术方面,新技术的发展集中在进一步解决聚合体系的稳定及防粘釜问题上,改进悬浮PVC树脂的粒径分布以及开发一些使用性能更好的专用树脂,如更易于加工的聚氯乙烯薄膜专用树脂,性能更好的丙烯酸改性聚氯乙烯型材专用树脂等。

3、在PVC加工方面,现已研究出用聚丁烯改进制品冲击强度和热稳定性的新技术,研制出粘结力强、耐风化性好的汽车车体防锈涂料,采用交联PVC发泡生产出仪表仪表盘发泡板,开发出水性PVC涂料,防雾性能更好的的农膜,生产出高强度的PVC地板夹,热变形温度高的超韧性PVC合金等。

据专家预测,2010年我国PVC需求量将超过10Mt,我国将迎来一个PVC技术和产能高速发展的新时期。

ε

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

电石法生产氯乙烯

合肥工业大学 课程设计 设计题目: 5万吨/年电石法制氯乙烯 学院:化学与化工学院专业:化学工程与工艺班级: 学生:方柳陈志指导教师:张旭系主任: (签名) 一、设计要求: 1、根据设计题目,进行生产实际调研或查阅有关技术资料,选定合理的流程方案和设备类型,并进行简要论述。(字数不小于8000字) 2、设计说明书内容:封面、目录、设计题目、概述与设计方案简介、工艺方案的选择与论证、工艺流程说明、专题论述、参考资料等。 3、图纸要求:工艺流程图1张(图幅2号);设备平面或立面布置图1张(图幅3号))。 二、进度安排: 三、指定参考文献与资料 《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》

摘要 本次课程设计主要是设计氯乙烯的生产成套装置。氯乙烯是生产聚氯乙烯的主要原料,到目前为止,全球有93%以上的氯乙烯采用氧氯化法生产。在国内,考虑到石油资源不足,价格较高,而电石资源丰富,所以大部分工厂都采用电石法制取氯乙烯。本次主要介绍电石法制取氯乙烯。先后介绍了从原料气氯化氢、乙炔的制备到氯乙烯的合成、氯乙烯的精馏等一系列生产过程的工艺流程、工艺原理以及主要设备选型等问题。 关键词:氯乙烯;电石法;乙炔;氯化氢;工艺流程;精馏

一乙炔的制备 乙炔生产的工艺原理 (1)电石的破碎 通常厂家采购的电石都是大块的电石,而电石料块进入发生器的合理径为25~50mm,因此在进发生器前必须破碎,通常是将大块的电石放入颚式破碎机,粗破后料块直径为80~100mm,通过皮带机输入电石仓库,然后经过二次破碎,径粒达到25~50mm,破碎后料块通过皮带机径除铁器除铁后输入日料库,作为发生器的入料电石。进入破碎机的电石温度应≤130℃,否则会烫坏,烧坏皮带;进入发生器的电石温度应该≤80℃,否则对发生系统不安全。 (2)电石的除尘 化学工程里把气体与微粒子混合物中分离粒子的操作称作除尘。针对电石及其粉尘的特性,选用的除尘方法一般有以下几种。 ①旋风除尘。旋风除尘器对数微米以上的粗粉尘非常有效。采用简单的旋风除尘器和风机进行除尘,利用电石粉尘在风机的作用下,在除尘器内旋转所产生的离心力,将电石粉尘从气流中分离出来。这种方式结构简单,器身无运动部件,不需要特殊的附属设备,安装投资较少,操作、维护也方便,压力损失中等,动力消耗不大,运转维护费用低,也不受浓度、温度的影响。但由于电石粉尘比较细,用这种简单的除尘方式很难达到环保要求,除尘效率不高。 ②湿法除尘。湿法除尘具有投资少,结构简单,占地面积小,特别是对易燃易爆气体的除尘效果更好,在操作时不会产生捕集到的电石灰尘再飞扬。电石除尘通常采用旋风除尘和湿法的冲激式除尘器相结合。这种除尘方式虽然效率较高,但由于系统压力损失大,管道容易积灰。冬天用蒸汽时,积灰易受潮结块,造成管道堵塞,清理比较困难。除尘器内排出的电石渣水,多耗了水又易造成二次污染,除尘器排出的气体中水蒸气在寒冷的北方也容易结冰,因此这种除尘方式适合于气候湿润、冬天不冷的地方使用。 (3)袋式过滤除尘 布袋除尘室依靠编制的或毡织的滤布作为过滤材料来达到分离含尘气体中电石尘的目的,除尘效率一般可达99%。滤布在长期与粉尘的接触和反复清理的过程

高锰酸钾制取氧气的注意事项

高锰酸钾制取氧气的注意事项 1、高锰酸钾制取氧气实验步骤: ⑴连接仪器(先下后上,从左至右); ⑵检查气密性; ⑶装药品,并固定在铁架台上(试管口放一团棉花); ⑷加热(先预热); ⑸收集; ⑹先把导管移出水面,后熄灭酒精灯。 2、检查气密性的方法? 先把导管一端浸入水中,后用手握住试管,导管口有气泡冒出, 移开手后,导管中会形成一段水柱,则气密性好。 3、加热高锰酸钾制取氧气时试管口为什么要放一团棉花? 防止高锰酸钾粉末进入导管,堵塞导管(若通过导管进入水槽,则水会变红)。 4、为什么加热固体时试管口要略向下倾斜? 防止在试管口形成的冷凝成水倒流入试管底部,使试管破裂。 5、为什么试管内的导管不宜过长?(一般导管只要稍露出橡皮塞即可) 使瓶中的空气完全排出,收集到的氧气更纯。 6、什么时候收集? ——产生连续、均匀气泡时收集。(开始时含有空气,会使收集到的氧气不纯) 7、为什么氧气可用排水法收集氧气? 氧气不易溶于水,且不与水反应。 8、用排水法收集气体时,何时表示收集满了? 当集气瓶口的气泡向外冒时,表示收集满。 9、收集好的氧气瓶如何放置,为什么? 氧气瓶应正放,因为氧气的密度比空气大。 10、用排水法收集气体结束时,应如何操作?为什么? 先将导管移出水面,后熄灭酒精灯。防止水倒吸入试管,使试管破裂。(若先熄灭酒精灯,试管内温度降低,气压减小,水就沿导管倒吸入热的试管中) 11、若在实验过程中,出现水沿导管倒吸时,应如何处理? 立刻拔掉橡皮塞。 12、还可用什么方法收集氧气?为什么? 还可用向上排空气法收集氧气,利用氧气的密度比空气大,不与空气反应的性质。 13、用向上排空气法收集氧气时,导管一定要伸到集气瓶底部,为什么? 便于瓶中的空气完全排出,使收集到氧气更纯。 14、用向上排空气法收集气体时,为什么瓶口要放一玻璃片? 防止流动的空气进入瓶中。 15、用向上排空气法收集氧气时,如何验证氧气已经集满? 将带火星的木条放在集气瓶口,如果木条复燃,说明氧气已经集满。 16、怎样验证制得的气体是氧气? 将带火星的木条伸入集气瓶中,如果木条复燃,说明该气体是氧气。 17、排水法与向上排空气法收集的氧气有何不同? 排水法收集的氧气比较纯净,但气体潮湿不干燥; 向上排空气法收集的氧气比较干燥,但气体不是很纯净。

生产岗位流程设置及岗位明细职责(20200523192025)

生产岗位流程设置及岗位明细职责 生产主管岗位职责 生产主管直属生产总部及分厂厂长领导,接受生 产指令,按照技术部配方生产,指挥所属员工正确 使用设备,生产出合格的成品。具体职责如下: 1、每日主持召开班前会,按照生产部下达的生 产计划,合理安排、配置生产人员,严密组织, 保证生产计划的有效实施,满足销售需要。 2、严格按照各项规章制度和作业规程要求部 下,并带头遵照执行。 3、加强与部下沟通,做好部下的思想工作, 并协助厂长解除部下的后顾之忧 ,及时将部下的合 理化建议报告总部或厂长。4、按照现场管理要求,做好生产现场安全、操 作、质量、卫生、定置管理等的监督、检查,及时、 灵活、有效地纠正、处理生产中出现的各种问题, 减少停机时间,保证产品质量,做到不合格产品不 出车间。 5、掌握生产工艺流程和所有生产设备的性能, 指导生产员工合理使用设备。 6、努力钻研生产技术,提高自身素质,利用 各种机会对生产员工进行培训和交流,强化员工的 效率和节约意识,提高工作技能和生产效率, 确保生产部分解到车间的各项指标得以完成。 7、审核本车间每天出库的原料种类及数量,审 核生产记录,月终汇总所有报表上报给北京总部。 8、定期组织车间所有员工对生产现场、退火炉 进行安全检查;对安全隐患及时组织整改, 并做好 相关记录。 9、有权调整本车间员工工作岗位;有权制定车 间管理制度并报厂长批准后实施; 10、月终核算车间员工记件工分,并核算员工工 资报厂长审核后发北京总部。 11、向公司领导和厂长提出工作改进建议。 12、完成上级交给的其它任务。北京总部副总经理生产主管生产统计质检员缠绕组封装组退火作业员喷涂+包装作业员

人教版九年级化学 23制取氧气教案

【黄冈零距离】备战化学中考同步创新 第二单元《我们周围的空气》课题3 制取氧气教案 【教学目标】 1、知识与技能:新-课- 标-第-一-网 (1)了解实验室中制取氧气的主要方法和原理,初步了解通过化学实验制取新物质的方法; (2)练习连接仪器的操作,学习检查装置的气密性,动手制取氧气; (3)认识分解反应、催化剂及催化作用。 2、过程与方法: 通过学生动手实验进行科学探究,在活动过程中对获取的信息进行加工处理。从中培养学生的观察能力、分析能力、实验操作能力等。 3、情感、态度与价值观: 通过亲自动手做实验,让学生体验实验成功的喜悦,激发学习兴趣;通过实验,增强学生的探究欲。, 【教学资源分析】 本课题安排在第二单元的最后一部分,教材从学生熟悉的物质——空气开始,介绍空气的成分及用途。然后引出氧气,学习氧气的性质和用途。再来学习氧气的制取。内容由浅人深,过渡自然,学生很容易接受。 本课题内容可分为两部分:第一部分是实验室制取氧气的反应原理,同时介绍了催化剂。这部分内容更侧重于过程,让学生学习用比较的方法对获得的信息进行分析、探究、推断,从而作出判断。第二部分是活动与探究,由学生来制取氧气并试验氧气的性质,让学生掌握进行科学探究活动必须具备的化学基本实验技能。 学习氧气的制取(原料选择、反应原理、仪器装置、气体收集、操作步骤及其有关注意事项),可以为今后学习气体的制取提供范例。 【教学策略分析】新 |课 |标| 第 |一| 网 学生对于气体的制取尚属首次接触,为此,如何来选择药品、如何来确定装置根本无从着手。因此,教师要充分利用学生对氧气知识的一定积累,创设好教学情境,激发学生强烈的求知欲。 在进行本课题的教学时,要善于采用对比、分析、讨论、归纳等方法来确定药品的选择以

乙烯制氯乙烯

化工过程课程设计 课题名称:乙烯制氯乙烯的工艺流程实例设计 班级: 姓名: 学号: 时间: 化工过程课程设计 (1) 1 氯乙烯概述 (1) 2氯乙烯的应用 (2) 3 氯乙烯的生产 (3) 3.1乙烯氧氯化法 (3) 3.2乙炔法 (4) 3.3乙烯直接氯化法 (4) 3.4乙烯氯化裂解法 (4) 3.5乙烯氯化平衡法 (4) 3.6混合烯炔法 (4) 4 乙烯氧氯化法具体工艺流程 (5) 4.2 反应催化剂 (5) 4.3 反应机理 (6) 4.4 动力学方程 (6) 4.6 反应器的形式 (7) 4.8 工艺流程图 (9) 4.9 总流程框图 (10) 5 参考文献 (10) 1 氯乙烯概述 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化气体,沸点-13.9℃,临界温度142℃,临界压力5.22MPa。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。

氯乙烯三维图形 2 氯乙烯的应用 氯乙烯的主要应用是在工业上进行均聚或共聚以生产高聚物。目前世界上用于制造聚氯乙烯树脂的氯乙烯单体(VCM)量约占总产量的96%,而美国则高达98%,氯乙烯的聚合物广泛用于工业,农业,建筑业以及人们的日常生活之中。例如:硬聚氯乙烯具有强度高、质量轻、耐磨性能好等特点,广泛用于工业给水、排水、排污、排气和排放腐蚀性流体等用管道、管件以及农业灌溉系统、电缆电线管道等,其总量约占聚氯乙烯(PVC ,prly vnyl chloride)消耗量的1/3;目前世界上塑料销量的20%以上用于建筑,而建筑用塑料中有40%是氯乙烯的聚合物,如塑料地板,不仅可以制成色彩鲜艳的各种图案,而且可将图案制成表面有浮雕感的多种型材;聚氯乙烯塑料制成的门、窗框具有较好的隔热、隔冷、隔音性能和耐腐蚀性、耐潮湿、耐霉烂等特点,而且由于表面光滑,不需要油漆、维修方便、比其他材料门框便宜,因而在国内得到了广泛的应用和发展。聚氯乙烯料壁具有色泽鲜艳、花纹有立体感、防潮、防霉、防燃、便于清洗等优点,用于房屋建筑内墙装饰,美观大方,价格便宜。美国、日本、瑞典等国有50%以上的内墙用壁纸装饰。软聚氯乙烯具有坚韧、耐绕曲、有弹性耐寒性高等特点,所以常用作电线电缆的绝缘包皮,用以代替铅皮、橡胶、纸张;还广泛用于软管、垫片及各种零件、人造革和日常用品的生产。聚氯乙烯糊是将聚氯乙烯微粒分散在液体悬浮介质中,形成高黏度糊状混合物,用于制造人造革、纸质黏胶制品,涂于织物、纸张、金属防腐用的涂装材料、微孔塑料、浇铸成型品等表面。泡沫聚氯乙烯抗压强度高、有弹性、不吸水、不氧化,常用作衣物衬里、衬垫、防火壁、绝缘材料及隔音材料等。聚氯乙烯还广泛应用于汽车仪表表皮、门板表面、座椅、车顶内衬、侧面车板等。

使用家用制氧机注意事项

正确使用分子筛制氧机能够有效提高呼吸系统疾病患者的血氧饱和度,改善机体缺氧。但是,如果制氧机使用不正确,有可能损害到制氧机本身,甚至危及自身生命。下面制氧机之家就给大家介绍制氧机使用过程中需要注意的问题。 第一,切勿使用呼吸面罩代替鼻吸管;部分呼吸系统疾病患者认为使用呼吸面罩能增加吸入氧气的浓度,但是,制氧机吸氧采用呼吸面罩有可能将自己带入危险之中。我们吸收氧气的同时也在排出二氧化碳,高浓度的氧气进入人体肺部产生大量的二氧化碳,这些二氧化碳不能及时排出,会造成二氧化碳潴留。二氧化碳潴留会产生各种问题,严重时可能危及生命。平时在医院和影视作品中见到有的病人带呼吸面罩,他们使用的并不是制氧机,而是呼吸机,制氧机和呼吸机的区别我在《制氧机和呼吸机的区别》一文中已做了简单介绍。 第二,保证气路通畅;分子筛分离氧气需要大量的空气作为原料,必须保证制氧机进气口通畅。以前做厂家售后时曾遇到过一些顾客,制氧机买回家后为了防尘和美观,把制氧机放在一块大毛巾垫上,周边还包上一层布,造成流量不足。因此,不要在机器上包裹或覆盖任何物件,利于空气通畅和机器散热。 第三,定期清洗滤网;新型制氧机采用分子筛分离空气制氧,而分子筛作为其中的重要组成部分具有不可逆转性,定期清洁滤网可以有效延长制氧机的使用寿命。 第四,定期更换湿化杯中的水;湿化杯的作用是让我们吸入的氧气比较湿润,同时也有一定的过滤作用。而如果长时间不更换湿化杯中的水容易使细菌滋生而影响健康状况,因此应该经常更换湿化杯中的水。但是切记使用自来水,应该使用纯净水,自来水在水厂中加入了消毒剂,存在次氯酸,在气体的冲击下容易挥发出微量次氯酸和微量氯气,引起身体不适,因此不能使用自来水,假如条件有限的情况下,可将自来水烧沸腾了冷却后使用。

实验室制取氧气的步骤和注意事项

实验室制取氧气的步骤和 注意事项 Prepared on 24 November 2020

用高锰酸钾或氯酸钾与二氧化锰的混合物制取氧气笔记 一、药品:高锰酸钾或二氧化锰和氯酸钾 二、装置选择:制取装置包括气体发生装置和收集装置两部分。 1、选择气体发生装置(即制气装置)考虑因素:反应物的状态和反应条件。 2、选择气体收集装置考虑因素:气体的性质。 (1)若气体不易溶于水,不与水反应则可以选择用排水法(此法收集到的气体较纯净)收集气体。 (2)若气体密度比空气大,可选用向上排空气法。密度比空气小,可选用向下排空气法。相对于排水法而言,排空气法收集到的气体较干燥。 三、操作步骤: 按由下到上,由左到右的顺序将仪器连接完毕后: 1、查检查装置的气密性 将导管伸入装有水的烧杯中,用手紧握试管外壁(给试管加热使气体膨胀逸出)。若装置气密性良好则看到导管口有气泡放出且松开手后,水倒流回导管内,出现一段液柱。 2、装将高锰酸钾装到干燥的试管中,并在试管口放一小团棉花。 3、定将试管固定在铁架台上。 4、点点燃酒精灯,均匀加热后固定在药品的底部加热。 5、收用排水法收集氧气。 6、离收集结束后,将导管撤离水槽。 7、熄熄灭酒精灯 四、注意事项

1、为使药品均匀受热,药品应平铺在试管底部。 2、为防止药品中的水分受热后变成水蒸气,遇冷液化回流到试管底部,使试管 炸裂,试管口应略向下倾斜。 3、铁夹要夹在试管的中上部(距离试管口1/3处)。 4、为便于气体排出,试管内的导管只要露出胶塞即可。 5、集气瓶先集满水,倒置在水槽中。 6、为防止试管炸裂,应先预热再加热。加热时不要触及酒精灯的灯芯。 7、(1)用排水法... 收集气体时,应注意当气泡连续并均匀的冒出时再开始收 集,否则收集到的气体里混有空气。当集气瓶口一侧有气泡向外逸出时,说明已经收集满。 (2)用向上排空气法...... 收集气体时,将带火星的木条放在集气瓶口,若木条火焰复燃则说明已经收集满。 8、停止加热时,应先把导管从水里移出,再熄灭酒精灯。如果先熄灭酒精灯, 试管内温度降低,压强减少,水槽内的水就会被吸入热的试管内,使试管炸裂。 9、用高锰酸钾制取氧气时,试管口要放一小团棉花,防止加热时高锰酸钾粉末 进入导管。 10、 盛有氧气的集气瓶应盖住玻璃片,正放在桌面上。因为氧气的密度比空气大,正放可以减少气体逸散 五、 检验方法(证明收集到的气体是否为氧气):将带火星的小木条伸入集 气瓶中,若木条的火焰复燃说明收集的是氧气。 六、 验满方法(检验氧气是否收集满):

氯乙烯生产及危害综述

氯乙烯简介 第一部分氯乙烯物理化学性质 1 名称 化学名:氯乙烯(chloroethylene)、乙烯基氯(vinyl chloride) 2 物理性质 2.1 性状:无色、有醚样气味、易液化气体,沸点-13℃,临界温度151.5℃,临界压力5.57MPa。相对密度2.2%。它与空气形成爆炸混合物,爆炸极限 3.6%~33% (体积),在加压下更易爆炸。 2.2 贮运:贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。 3 化学性质 结构式: CHCL=CH2 不饱和度:1 分子式C2H3CI 相对分子量62.4987 密度(空气=1) 2.2 闪点-78℃ 熔点159.7℃危险性符号R11 R12 R45 R23/24/25 R39/23/24/25 CAS登录号75-01-04 溶解性微溶于水,溶于乙醇、乙醚、丙酮、苯等多数有机溶 剂 EINECS登录号200-831-0 UN危险货物UN1086 2.1 稳定性:稳定 危险反应:与强氧化剂等禁配物接触,有发生火灾和爆炸的危险。燃烧或无抑制剂时可发生烈聚合避免接触的条件:受热 禁配物:强氧化剂 危险的分解产物:氯化氢 第二部分氯乙烯的生产 1 氯乙烯的发现

1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。乙炔法、混合烯炔法等其他方法由于能耗高而处于逐步被淘汰的地位。 2 氯乙烯的生产技术进展 VCM工业化生产始于20世纪20年代,早期生产方法采用电石为原料的乙炔法路线,电石水解生成乙炔,乙炔与氯化氢反应生成VCM。由于该工艺能耗较高,污染严重,因此自以乙烯为原料的工艺路线问世之后就逐渐被淘汰。目前全世界范围内95%以上的VCM产能来自乙烯法工艺。此外还开发出以乙烷为原料的VCM工艺路线。 2.1 乙炔法VCM生产工艺 乙炔法路线是电石水解生成乙炔,乙炔与氯化氢反应生成VCM。该方法虽然是生产VCM 最早的工业化方法,设备工艺简单,但耗电量大,对环境污染严重。目前,该方法在国外基本上已经被淘汰,由于我国具有丰富廉价的煤炭资源,因此用煤炭和石灰石生成碳化钙(电石)、然后电石加水生成乙炔的VCM生产路线具有明显的成本优势,我国VCM的生产目前仍以乙炔法工艺路线为主。 乙炔与氯化氢反应生成VCM可采用气相或液相工艺,其中气相工艺使用较多。将气相反应物与循环气体活化后送人反应器,压力和温度缓慢上升,与催化剂接触后急冷并部分液化,VCM产品从反应器后的第一只塔顶作为液相获得,大部分塔顶产物(如HCL、C2H2、C2H2CL)循环至反应器。反应物组成根据催化剂性能可从1:1到1:10(moL) (HCL过量),乙炔转化率达95%~100%。反应通常采用多管式固定床反应器,以活性炭负载HgCL2为催化剂,Hg含量为2%~10%(wt)。另外沸石和分子筛也可用作催化剂载体。由于Hg的挥发性对反应器操作和产量至关重要,因此常添加氯化铈、氯化铜及一些聚合物以降低催化剂的挥发性。

生产部工作流程教学文稿

第一部分生产管理规定 生产管理概述 1、生产计划系统 2、生产过程管理 3、生产设备管理 4、生产统计和成本控制 5、生产人员管理 6、生产质量和安全管理 生产计划系统 ?生产计划包含1、年、月、周、日、班生产计划2、设备零配件库存、采购、使用计划、3全年人员需求培训计划、4、设备维修计划、5、设备更新改造计划、6、产品质量持续改进计划等。 设备更新改造计划 1.每年根据公司总体的经营计划做出相应的设备改造更新计划。 2.生产部组织技术人员提出方案,包含技术可行性,经济实用性。 3.报总经理审批。 4.执行方案。 设备维修计划 1.统计上一年的设备故障率,找出关键设备。 2.根据上一年的设备使用情况,提出当年的设备维修总计划,一般在上一年的11月份作出。 3.根据年度设备维修总计划,作出分月度的分计划。

4.执行月计划,并标明完成情况。 零配件库存采购计划 1.统计上一年度的零配件的领用情况,对常规的配件做适当的库存。 2.零配件采购根据当年的使用情况,确定采购的厂家,型号,价格。争取每种类的配件有三家以上的供应商。 3.生产部经理根据公司全年的生产计划和设备运行情况作出全年的零配件 采购计划,报总经理审核批准。 4.每月零配件采购计划由分管设备的经理提出经生产部经理审核报总经理批准采购 5.零配件采购人员根据零配件价值的大小和重要程度,由生产部经理安排相关人员采购。 6.生产常用零配件定点采购,争取有三家以上的供应商。货比三家,质量第一,努力降低采购成本。 员工需求计划 1.生产部经理根据公司全年的经营计划作出生产部全年的人员需求计划。 2.对于需要招聘的人员向公司行政部提出申请,说明招聘条件。由行政部安排招聘。 3.对于需要招聘的技术人员,生产部经理提前3个月提出申请。 员工培训计划 1.生产部每年须安排两次以上的人员培训计划。 2.人员培训计划包括岗位技能培训和素质培训。 3.培训方式为实际操作和理论讲授相结合。

化学:人教版九年级 制取氧气教案

【黄冈零距离】备战2011年化学中考同步创新 第二单元《我们周围的空气》课题3 制取氧气教案 【教学目标】 1、知识与技能: (1)了解实验室中制取氧气的主要方法和原理,初步了解通过化学实验制取新物质的方法; (2)练习连接仪器的操作,学习检查装置的气密性,动手制取氧气; (3)认识分解反应、催化剂及催化作用。 2、过程与方法: 通过学生动手实验进行科学探究,在活动过程中对获取的信息进行加工处理。从中培养学生的观察能力、分析能力、实验操作能力等。 3、情感、态度与价值观: 通过亲自动手做实验,让学生体验实验成功的喜悦,激发学习兴趣;通过实验,增强学生的探究欲。, 【教学资源分析】 本课题安排在第二单元的最后一部分,教材从学生熟悉的物质——空气开始,介绍空气的成分及用途。然后引出氧气,学习氧气的性质和用途。再来学习氧气的制取。内容由浅人深,过渡自然,学生很容易接受。 本课题内容可分为两部分:第一部分是实验室制取氧气的反应原理,同时介绍了催化剂。这部分内容更侧重于过程,让学生学习用比较的方法对获得的信息进行分析、探究、推断,从而作出判断。第二部分是活动与探究,由学生来制取氧气并试验氧气的性质,让学生掌握进行科学探究活动必须具备的化学基本实验技能。 学习氧气的制取(原料选择、反应原理、仪器装置、气体收集、操作步骤及其有关注意事项),可以为今后学习气体的制取提供范例。 【教学策略分析】 学生对于气体的制取尚属首次接触,为此,如何来选择药品、如何来确定装置根本无从着手。因此,教师要充分利用学生对氧气知识的一定积累,创设好教学情境,激发学生强烈的求知欲。 在进行本课题的教学时,要善于采用对比、分析、讨论、归纳等方法来确定药品的选择以

乙烯氧氯化法生产氯乙烯[1]概要

乙烯氧氯化法生产氯乙烯 一、概述 1.氯乙烯的性质和用途 氯乙烯在常温常压下是一种无色的有乙醚香味的气体,沸点-13.9℃,临界温度142℃,临界压力为5.12MPa,尽管它的沸点低,但稍加压力,就可得到液体的氯乙烯。氯乙烯易燃,闪点小于-17.8℃,与空气容易形成爆炸混合物,其爆炸范围为4~21.7%(体积)。氯乙烯易溶于丙酮、乙醇、二氯乙烷等有机溶剂,微溶于水,在水中的溶解度是0.001g/L。氯乙烯具有麻醉作用,在20~40%的浓度下,会使人立即致死,在10%的浓度下,—小时内呼吸管内急动而逐渐缓慢,最后微弱以致停止呼吸。慢性中毒会使人有晕眩感觉,同时对肺部有刺激,因此,氯乙烯在空气中的允许浓度为500ppm。 氯乙烯是分子内包含氯原子的不饱和化合物。由于双键的存在,氯乙烯能发生一系列化学反应,工业应用最重要的化学反应是其均聚与共聚反应。 氯乙烯是聚氯乙烯的单体,在引发剂的作用下,易聚合成聚氯乙烯。氯乙烯也可以和其它不饱和化合物共聚,生成高聚物,这些高聚物在工业上和日用品生产上具有广泛的用途。因此,氯乙烯的生产在有机化工生产中占有重要的地位。 2.氯乙烯的生产方法

氯乙烯首先在工业上实现生产是在20世纪30年代,当时是使用电石水解成,乙炔和氯化氢进行加成反应得到的。其化学反应方程式为:CaC2 + 2H2O → Ca(OH)2 + C2H2 C2H2 + HCl CH2CHCl 50年代前,电石是由焦炭与生石灰在电炉中加热生成: CaO+3C CaC2 + CO 随着氮乙烯需求量的增加,人们致力于寻找生产氯乙烯更廉价的原料来源。在50年代初期,乙烯成为生产氯乙烯更经济、更合理的原料。实现了由乙烯和氯气生产氯乙烯的工业生产路线。该工艺包括乙烯直接氯化生产二氯乙烷及二氯乙烷裂解生产氯乙烯。 随后,人们注意到二氯乙烷裂解过程,除生成氯乙烯外还生成氯化氢。由此,工业界想到由氢化氢可以连同乙炔生产工艺一起生产氯乙烯。 CH 2=CH2十C12 → CH 2C1—CH 2C1 CH 2C1—CH 2C1 → CH 2=CHC1十HC1 十HCl → CH 2=CHC1 50年代后期,开发出乙烯氧氯化工艺以适应不断增长的对氯乙烯的需求。 在这个过程中,乙烯、氧气和氯化氢反应生成二氯乙烷,和直接氯化过程结合在一起,两者所生成的二氯乙烷一并进行裂解得到氯乙烯,这种

生产加工单主要操作流程

生产加工单操作流程 1.1 业务流程: 1.2 部门职责 生产部门的日常工作在ERP系统中主要有: 1.技术部维护产品结构BOM的数据准确性,子件定额数量,用料车 间; 2.下达生产计划,及时录入生产加工单; 3.生产订单执行过程中,及时做生产进度汇报; 4.与材料库管员核对生产过程中的材料实际领用情况,与成品库管核对完工产品的数量

1.3 日常业务操作 1.1填制一张生产加工单点击保存:(或根据销售订单生成) 第一步:领料 点击‘领料’按钮,把表体中本次出库数量中系统自动带出的定额数量修改为实际领用数量,(可以分多次出库),输入完成后,点击“保存”按钮。 第二步:分单 1、单击工具条上的“分单”按钮,进行分单,根据出库数量自动生成材料出库单。 2、在弹出的分单出库方式窗口中选择出库方式,依据出库方式的不同可生成包含不同材料数据的材料出库单。系统默认按仓库进行分单,其他选项可在此基础上进行更为明细的单据划分。

如:按仓库+材料方式,即按同一仓库同一材料生成一张材料出库单。

3、单击确认生成材料出库单,在生产加工单的分单号栏中可看到所分出的分单号,在出库单号栏可看到出库单号。 4、分单时,如果存货的现存量小于零,而且用户在【选项】中设置为不允许零出库时,系统将让用户重新输入数量。 5、下次分单要在上次分单审核清空数据后再进行分单 第三步:打单 1、单击工具栏上的〖打单〗按钮,弹出打单条件输入窗口。 2、录入打单条件指定打单的范围 3、注意: 打单应在分单之后,审核之前执行。 审核后的分单不能再进行打单,只能在材料出库单中打印。 打单与打印不同,打印是打印当前生产加工单。 第四步:签收

(完整word版)制取氧气的三种方法整理版

● 制取气体 一、实验室制取氧气三种方法的比较 过氧化氢制取氧气 氯酸钾制取氧气 高锰酸钾制取氧气 药品状态 过氧化氢(H 2O 2)溶液、二氧化锰[MnO 2黑色固体,不溶于水] 氯酸钾[KClO 3白色晶体] 、二氧化锰 高锰酸钾[KMnO 4 紫黑色晶体] 反应条件 常温下,二氧化锰作催化剂 优点:安全简便,节能环保 加热 二氧化锰作催化剂 加热 反应原理 过氧化氢 水 + 氧气 H 2O 2H 2O + O 2 氯酸钾 MnO 2 △ 氯化钾 + 氧气 KClO 3 MnO 2 △ KCl + O 2 高锰酸钾 △ 锰酸钾 + 二氧化锰 + 氧气 KMnO 4 △ K 2MnO 4 + MnO 2 + O 2 气体发生装置 固液不加热型 固固加热型 固固加热型 收集装置 1、向上排空气法(密度比空气大)【收集氧气】 2、排水法(不易溶于水)【收集氧气】 ● 二、高锰酸钾制氧气实验步骤: 实验步骤 注意事项 查:检查装置气密性 先将导管一端浸入水中,再用两手紧握容器外壁,若有气泡冒出,则证明装置气密性良好 装:将药品装入试管 药品要斜铺在试管底部,便于均匀加热 定:把试管固定在铁架台上 铁夹夹在距试管口1/3处 点:点燃酒精灯,先预热,再对准药品的部位集中加热。 先让试管均匀受热,防止试管因受热不均而破裂,然后对准药品部位用外焰加热 收:收集气体 若用向上排空气法收集气体时,导管应伸入到集气瓶底部 离:收集完毕,将导管撤离水槽。 熄:熄灭酒精灯 二氧化锰 二氧化锰

验满方法: (1)用排水法收集时,如果集气瓶口有大气泡冒出时说明收集满 (2)向上排空气法,将带火星的木条放在集气瓶口若木条复燃证明集满。 操作注意事项: 1.收集氧气可以用排水法的原因是什么? 答:氧气不易溶于水也不与水反应 2、利用固体加热制取氧气,试管口为什么要略向下倾斜? 答:目的是防止冷凝水回流到试管底部而使试管炸裂。 3、伸入试管中的导气管为什么刚刚露出橡皮塞即可呢? 答:导气管太长,不利于气体导出。 4、实验前,为什么要先给试管预热? 答:为了使试管底部均匀受热,防止破裂。 5、加热高锰酸钾制取氧气,试管口为什么要放一团棉花? 答:防止加热时,高锰酸钾颗粒随气流进入导气管。 6、用排水法收集氧气刚开始出现气泡时,为什么不能立即收集?而要等导管口有气泡连续均匀冒出时再收集? 答:刚开始出现的气泡中,混有空气;为了排尽装置内空气,使收集到的氧气更纯净。 7、用排水法收集氧气时什么时候开始收集氧气? 答:用排水法收集时,当导管口气泡连续均匀冒出时再收集。 8、用排水法收集氧气时什么时候代表收集满了? 答:当集气瓶口有大量气泡出现,说明气体收集满了 9、实验完毕为什么先把导气管从水槽中移出,然后熄灭酒精灯呢? 答:防止水槽里的水倒流到试管底部沿而使试管炸裂。 10、排水法收集气体不纯净的原因可能有哪些? 答:①未等导管口气泡连续均匀冒出时就收集气体②集气瓶内未装满水

制备氯乙烯方法比较

制备氯乙烯方法比较 班级:10化工(1)班姓名:吴倩学号2010115146 氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。1835年法国人V.勒尼奥用氢氧化钾在乙醇溶液中处理二氯乙烷首先得到氯乙烯。20世纪30年代,德国格里斯海姆电子公司基于氯化氢与乙炔加成,首先实现了氯乙烯的工业生产。初期,氯乙烯采用电石,乙炔与氯化氢催化加成的方法生产,简称乙炔法。以后,随着石油化工的发展,氯乙烯的合成迅速转向以乙烯为原料的工艺路线。1940年,美国联合碳化物公司开发了二氯乙烷法。为了平衡氯气的利用,日本吴羽化学工业公司又开发了将乙炔法和二氯乙烷法联合生产氯乙烯的联合法。1960年,美国陶氏化学公司开发了乙烯经氧氯化合成氯乙烯的方法,并和二氯乙烷法配合,开发成以乙烯为原料生产氯乙烯的完整方法,此法得到了迅速发展。 乙烯、乙炔和混合烯炔法的特点如下: 一.乙烯氧氯化法 氧氯化法是利用氯化氢合成有机物的一般称呼。其反应如下 CH2=CH2 +2HCl+1/2 O2→ClCH2CH2Cl+ H2O ClCH2CH2Cl→CH2=CHCl +HCl 二.乙炔法 在氯化汞催化剂存在下,乙炔与氯化氢加成直接合成氯乙烯: CH≡CH+H Cl→CH2=CHCl 其过程可分为乙炔的制取和精制,氯乙烯的合成以及产物精制三部分。 此法工艺和设备简单,投资低,收率高;但能耗大,原料成本高,催化剂汞盐毒性大,并受到安全生产、保护环境等条件限制,不宜大规模生产。电石乙炔法已基本被世界淘汰,但这是我国目前主要的氯乙烯的生产方法。该法的氯乙烯产量占总产量的50%以上。这种方法在我国煤炭和矿石资源丰富的地区,在当前石油涨价的世界经济背景下仍然可获得较高的经济效益。 三.乙烯直接氯化法 CH2=CH2+Cl2→CH2=CHCl+HCl 这是石油化工发展后以石油为基础开发的生产工艺。此法的最大缺点是伴随反应生成了大量的1,2-二氯乙烷,产率较低。该工艺比目前广泛采用的乙烯平衡氧氯化法流程短,能耗

第二单元-课题3-制取氧气[1]

制取氧气 考点清单 1、了解氧气的工业制法 2、知道实验室中制取氧气的主要方法和原理,初步了解通过化学实验制取新物质的方法; 3、认识分解反应、催化剂及催化作用。 知识点1:氧气的工业制法: 一)自然界氧气的获得:主要是来源于绿色植物的光合作用 二氧化碳 + 水 素 叶绿光照 葡萄糖 + 氧气 二)工业制法(分离液态空气法) (1)具体过程 (2)注意:该过程是物理变化还是化学变化? 【典型例题】 例1:工业上利用分离液态空气法制氧气的依据是 A 、氧气与氮气的化学性质不同 B 、氧气和氮气在水中的溶解性不同 C 、氧气与氮气的密度不同 D 、氧气与氮气的沸点不同 解析:空气是一种无色、无味的气体,它是由多种成分混合而成的,其中氧气和氮气的含量较高。工业上需用大量氧气时,就利用分离液态空气的方法得到氧气。氮气和氧气是两种不同的物质,二者的物理性质和化学性质均不相同,在工业制氧气时,主要利用两者的沸点不同,采用加压、降温的方法使空气液化,然后再蒸发氮气得到大量氧气。 答案:D 例2:将一根燃着的木条置于盛有液态空气的敞口容器上方时,观察到的现象是 A 、熄灭 B 、燃烧得更旺 C 、无明显变化 D 、先燃烧更旺后熄灭 解析:液氮的沸点低于液氧的沸点,液态空气敞口放置时液态氮气会先转化为气体逸散出来,而氮气具有不燃烧,也不支持燃烧的性质,此时容器上方燃着的木条会熄灭。 答案:A 知识点2:氧气的实验室制法 实验室制取氧气的反应原理: 1、药品:实验室里常使用(1)过氧化氢溶液、(2)氯酸钾、(3)高锰酸钾等含氧物质制取氧气。

药品过氧化氢二氧化锰氯酸钾高锰酸钾 化学式H2O2MnO2KClO3KMnO4 色、态无色、液黑、粉末白、固紫黑、固 溶水性溶(无色溶液)不溶溶(无色溶液)溶(紫色溶液) 【主要成分】过氧化氢 【含量规格】15% 【作用与用途】 本品在分解过程中释放出活泼的新生态氧,用于养殖池塘的 增氧,药性温和,使用方便,分解快,无残留,绿色环保。 【用法与用量】 用法:将本品以1000倍水稀释后直接泼洒于养殖池塘中。 用量:每亩水深1米用本品100~150mL,病情严重可加量使用。 过氧化氢分解只产生氧气、水 俗称双氧水,无色液体。家庭和医院用的消毒水就是其3%的溶液,它也是一种常用的消毒剂,药房均有售,每100mL大约1.80元。 小军同学上体育课时不小心磕破了腿,医生给他清洗伤口时,他发现伤口处出现了气泡。

家用制氧机使用注意事项

家用制氧机使用注意事项 家用制氧机使用注意事项有哪些?市面上有多种家用制氧机,由于制氧的原理不同,各家用制氧机的使用特点也就不同。下面为你介绍家用制氧机使用注意事项有哪些。 文章目录 家用制氧机使用注意事项 1、家用制氧机使用注意事项有哪些 1.1、家用制氧机主要用于保健,不可用于急救或重症病人;或请遵循医生的嘱咐来使用机器; 1.2、请勿在潮湿的环境下使用制氧机; 1.3、吸烟时请勿使用制氧机; 1.4、使用过程中,注意氧气连接管是否通畅,避免有折死的地方,以免出现故障; 1.5、切勿使用湿手插拔电源插头,以免触电危险。长时

间不使用氧气机请将插头拔下; 1.6、制氧机使用时请水平摆放,不能将机器倾斜,倒置或将散热排气口堵住; 1.7、定期清洗更换过滤棉; 1.8、制氧机工作时应远离火源; 1.9、湿化瓶中应按要求添加水。 2、家用制氧机是什么 家用制氧机,市面上有多种家用制氧机,由于制氧的原理

不同,各家用制氧机的使用特点也就不同。家用制氧机制氧原理有:分子筛原理;高分子富氧膜原理;电解水原理;化学反应制氧原理。而分子筛制氧机是目前唯一成熟的,具有国际标准和国家标准的制氧机。 3、家用制氧机的产品特点 家用制氧机使用方便,移动轻巧,适合广大保健者使用。车载家居两用型,既能适合家用,也能利用汽车电源放在车上使用。氧气为无色无味的气体,是人体赖以生存的重要物质,也是其它动植物赖以生存的重要物质。没有氧气自然界将没有生气,没有生命,它的重要性如同于水。它的应用非常广泛,各行各业都离不开氧气,包括医疗保健和美容护理等。 家用制氧机的结构特点与适用人群 1、家用制氧机结构特点 放在车上使用。氧气为无色无味的气体,是人体赖以生存的重要物质,也是其它动植物赖以生存的重要物质。没有氧气自然界将没有生气,缺少生命,它的重要性如同于水。

生产工艺流程及简述

生产工艺流程及简述 表面毡、短切毡无碱玻璃纤维浸胶 胶液配置→制衬→浸胶→螺旋、环向缠绕及夹砂→固化→修整→脱模→检验→成品 玻璃钢管道缠绕操作程序 1. 准备工作:将模具表面处理干净,做到光洁无毛刺、无伤害,装到制衬机上。配树脂:将促进剂(锌酸钴)按工艺配置1—2%与不饱和聚酯树脂混合搅拌1 小时左右,然后静置消除气泡,冬季可适当增加促进剂的用量。 2. 制衬:内衬层是制品直接与介质接触的内表层,它的主要作用是防腐、防渗漏、耐温,要求内衬材料有优良的气密性、耐腐蚀性和耐一定温度等。 3. 缠聚酯薄膜:开动制衬机,将薄膜滚架上的聚酯薄膜缠到模具上,缠时薄膜的第一圈与第二圈之间一定要搭界1—2cm,以保证内衬不泄露。 4. 缠表面毡:开动树脂泵,将以配置好的引发剂(过氧化甲乙酮)1—2%(冬季可加至4%左右),加到喷枪泵中混合后,通过树脂管道淋到已缠好的聚酯薄膜上,在淋树脂的同时将表面毡(如无纺布的形状,是细纤维连接成的,宽度为220mm)带状缠绕1 层,此层主要是防渗漏,需要注意的是,缠表面毡时,气泡一定要处理彻底,同时表面毡在缠绕的过程中,同缠绕聚酯布一样,必须搭界1—2cm 的叠合接口。 5. 缠短切毡:缠表面毡的作用是增加强度、增加防渗漏性,短切毡是根据管子的设计可缠1—2 层。短切毡是用粗纤维纺织成的强筋毡,边缠边淋树脂,再缠绕的同时必须用条状的压滚将气泡赶出。 6. 缠网格布:主要作用是赶走气泡,进一步增加强度。种类有玻璃纤维网格布、涤纶纤维网格布。网格布的方法与网格毡的方法一样,网格布缠好后,必须将气泡处理干净。

7. 固化:内衬层制好后,将缠在模具轴上的内衬层吊到固化机上进行固化,固化的时间以加入引发剂剂量及固化温度而定,(在制衬时加入引发剂的树脂一定要充分混合好才能使用与制衬,否则将形成带状固化。) 8. 缠结构层:结构层又称增强层,它的作用是保证制品在受力的作用下,具有足够的强度、刚度和稳定性,而增强材料玻璃纤维是主要的承载体,树脂是对纤维起均衡载荷的作用,采用夹层结构(加石英砂)纤维缠绕可有效的提高玻璃钢管的刚度。夹层管材的强度、刚度大、重量轻、造价低,使用寿命长、耐腐蚀、无毒无味等特点,石英加砂管也越来越体现出来。

氯乙烯的生产方法生产原理

氯乙烯的生产方法、生产原理 1生产方法 按其所用原料可大致分为下列几种: ⑴乙烯法 此法系以乙烯为原科,可通过三种不同途径进行,其中两种是先以乙烯氯化制成二氯乙烷:C2H4 + Cl2 → C2H4Cl2 然后从二氯乙烷出发,通过不同方法脱掉氯化氢来制取氯乙烯;另一种则直接从乙烯高温氯化来制取氯乙烯。现分述如下: ①二氯乙烷在碱的醇溶液中脱氯化氢(也称为皂化法) C2H4Cl2+ NaOH → C2H3Cl + NaCl + H2O 此法是生产氯乙烯最古老的方法。为了加快反应的进行,必须使反应在碱的醇溶液小进行。这个方法有严重的缺点:即生产过程间歇,并且要消耗大量的醇和碱,此外在生产二氯乙烷时所用的氯,最后成为氯化钠形式耗费了,所以只在小型的工业生产中采用。 ②二氯乙烷高温裂解 C2H4Cl2→ C2H3Cl + HCl 这个过程是将二氯乙烷蒸气加热到600℃以上时进行的,与此同时,还发生脱掉第二个氯化氢生成乙炔的反应,结果使氯乙烯产率降低。为了提高产率,必须使用催化剂。所用的催化剂为活性炭、硅胶、铝胶等,反应在480~520℃下进行,氯乙烯产率可达85%。 ③乙烯直接高温氯化 这一方法不走二氯乙烷的途径,直接按下式进行: C2H4 +Cl2→ C2H3Cl + HCl 由上式可以看出这一反应是取代反应,但实际上乙烯与氯在300℃以下主要是加成反应,生成二氯乙烷。要想使生成氯乙烯的取代反应成为唯一的反应,则必须使温度在450℃以上,而要避免在低温时的加成过程,可以采用将原科单独加温的方法来解决,但在高温下反应激烈,反应热难以移出,容易发生爆炸的问

题。目前一般用氯化钾和氯化锌的融熔盐类作裁热体,使反应热很快移出。 此法主要的缺点是副反应多,产品组成复杂,同时生成大量的炭黑,反应热的移出还有很多困难,所以大规模的工业生产还未实现。 ⑵乙炔法 这一方法是以下列反应为基础的: C2H2+ HCl → C2H3Cl 其生产方法又可分为液相法和气相法。 ①液相法 液相法系以氯化亚铜和氧化铵的酸性溶液为触媒,其反应过程是向装有含12~15%盐酸的触媒溶液的反应器中,同时通入乙炔和氯化氢,反应在60℃左右进行,反应后的合成气再经过净制手续将杂质除去。 液相法最主要的优点是不需要采用高温,但它也有严重的缺点,即乙炔的转化率低,产品的分离比较困难。 ②气相法 气相法是以活性炭为裁体,吸附氯化汞为触媒,亦即我们在下一节重点讨论的方法。此法是以乙炔和氯化氢气相加成为基础。反应是在装满触媒的转化器中进行。反应温度一般为120~180℃左右。此法最主要的优点是乙炔转化率很高,所需设备亦不太复杂,生产技术比较成熟,所以已为大规模工业生产所采用;其缺点是氯化汞触媒有毒,价格昂贵。另外,从长远的发展上看乙炔法成本要比乙烯法高。 ⑶乙烯乙炔法 此法是以乙烯和乙快同时为原料进行联合生产,它是以下列反应为基础的:C2H4 + Cl2→ C2H4Cl C2H4Cl → C2H3Cl + HCl C2H2+ HCl → C2H3Cl 按其生产方法,此法又可分为: ①联合法 联合法即二氯乙烷的脱氯化氢和乙炔的加成结合起来的方法。二氯乙烷裂解的副产物氯化氢,直接用作乙炔加成的原料,这免去了前者处理副产物的麻烦,又可以省去单独建立一套氯化氢合成系统,在经济上比较有利。在联合法中,氯乙烯的合成仍是在单独的设备中进行的,所以需要较大的投资。虽然如此,这种

相关文档
最新文档