【免费下载】大学物理实验仿真实验实验报告

【免费下载】大学物理实验仿真实验实验报告
【免费下载】大学物理实验仿真实验实验报告

仿真实验(单摆测重力加速度和单透镜焦距的测定)引言随着计算机应用的普及,在各个应用领域都采用计算机设计和仿真,在大学物理实验课教学中,除了实际操作外还可以进行计算机仿真实验,对有些内容采用仿真实验也可以起到很好的效果。一、实验目的:1、了解仿真实验特点2、学会用仿真实验完成单摆测重力加速度3、学会用仿真实验完成单透镜焦距的测定二、实验仪器:计算机、仿真软件三、实验原理1、单摆的工作原理单摆在摆动过程中,当摆角小于5度时,其运动为简谐运动,周期,通过测定摆长与可测定加速度

。2224L T g T ππ=?=L T g 详细请见:课本240-243页2、单透镜焦距测定的原理

凸透镜的成像规律为:像的大小和位置是依照物体离透镜的距离而决定的当时,极远处的物体经过透镜在后焦点附近成缩小的倒立实像。u f >>当时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变大。u f >当时,物体位于前焦点,像存在于无穷远处。u f =当时,物体位于前焦点以内,像为正立放大的虚像,与物体位于同侧,

u f <由于虚像点是光线反方向延长的交点,因此不能用像屏接收,只能通过透镜观察。(1)、自准直法测凸透镜的焦距光路图如下图1所示。当物体A 处在凸透镜的焦距平面时,物A 上各点发

出的光束,经透镜后成为不同方向的平行光束。若用一与主光轴垂直的平面镜M 将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。所成像是一个与原物等大的倒立实像A′。所以自准直法的特点是,物、像在同一焦平面上。自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

x 1x 2

图1自准直法光路图凸透镜焦距: (1)12f x x =-x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。(2)、贝塞尔法(共轭法,二次成像法)测凸透镜的焦距利用凸透镜物像共轭对称成像的性质测量凸透镜焦距的方法,叫共轭法。所谓“物像共轭”是指物与像的位置可以互换,透镜位置与像的大小一一对应。固定物与像屏间的距离不变,并使间距D 大于4f ,则当凸透镜置于物体与

像屏之间时,移动凸透镜可以找到两个位置,使白屏上都能得到清晰的实像。一个大像,一个小像。如图2。

透镜第一次位置透镜第二次位置理利用管线敷设技术。线缆敷设原则电压回路交叉时,应采用金属隔板进行隔并且进行过关运行高中资料试卷技术高中资料试卷技术问题,作为调试人员,试技术,要求电力保护装置做到准确装置高中资料试卷调试技术是指发电机一变

透镜移动的距离为,物屏、像屏之间的距离为,运23d x x =-14D x x =-用物像共轭的对称性质有: (2)224D d f D -=只要测出和,即可求出。d D f 以上两种方法,共轭法测出的焦距一般较为准确,它避免了物距像距法估计光心位置不准带来的误差,它毋须考虑透镜本身的厚度。

(3)、物距像距法测凹透镜的焦距

凹透镜是发散透镜,无法成实像,因而无法直接测量其焦距,往往采用一凸透镜作辅助透镜来测量。测量方法:辅助透镜成像法设物屏发出的光,经辅助凸透镜成实像于处,放入待测焦距的凹透

A 1L A '镜成实像于处,则和相对于来说分别是虚物和实像。分别测出2L A ''A 'A ''2L 到和的距离和,根据(1)式,就可以算出焦距。如图3所示。 2L A 'A ''u v f

图3测量凹透镜焦距光路图

实物AB 经凸透镜L 1成像于A′B′。在L 1和A′B′之间插入待测凹透镜L 2,就凹透镜L 2而言,虚物A’B′又成像于A″B″。实验中,调整L 2及像屏至合适的位置,就可找到透镜组所成的实像A″B″。因此可把O 2A′看为凹透镜的物距u ,O 2A″看为凹透镜的像距v ,则由成像公式可得 (虚物的物距为负)111u v f -+= (3)u v f u v ?=-料试卷调整试验;通电检查所有设备高中

由于,求出的凹透镜L 2的焦距f 为负值。 u v <四、实验内容1、单摆测重力加速度① 用游标卡尺测量钢球直径6次;

② 选择不同摆长,测量10个全振动所需要的时间;③ 计算重力加速度,并计算其平均值。2、单透镜焦距的测定① 自准直法测凸透镜的焦距;② 贝塞尔法(共轭法,二次成像法)测凸透镜的焦距;③ 物距像距法测凹透镜的焦距。五、实验步骤请留大约半面空白,在实验室完成(记录自己的实验过程)。六、数据记录与处理1、单摆测重力加速度①用游标卡尺测钢球直径:序号123456平均值

摆球直径(cm)② 摆长与周期关系摆线长(cm)l 50.0060.0070.0080.0090.00摆长(cm)L (S)10T (S)T 224L g T π== (注意计算过程中的单位换算,结果保留3位有效数

g 2/m s 字)2、单透镜焦距的测定表一、自准直法测凸透镜焦距(单位:cm)次数物屏1x 透镜2x 1

2x x f -=1通过管线敷设技术,不仅可以解决吊顶层配习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷

23 =f 表二 二次成像法测凸透镜焦距(单位:cm)次数

物屏1x 大像2x 小像3x 像屏4x 14x x D -=23x x d -=D d D f 422-=123 =f 表三 物距像距法测凹透镜焦距(单位:cm)次数凹透镜1x 像屏1 2x 像屏23

x 12x x u -=13x x v -=v u uv f -=1

23 =f 思考题:1、近视眼镜片和远视眼镜片各为何种透镜?2、比较测凸透镜焦距所用的方法,哪一种方法误差小?实验注意事项和存在的问题:1、要按照要求打开程序。2、若程序无法启动,可以将计算机注销一下。3、实验完成后请将电脑正常关闭。、管路敷设技术跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同、电气课件中调试备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进

大学物理仿真实验报告材料-碰撞与动量守恒

大学物理仿真实验报告 实验名称 碰撞与动量守恒 班级: : 学号: 日期:

碰撞和动量守恒 实验简介 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,

式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为 (5) (6) 如果v20=0,则有 (7) (8) 动量损失率为 (9) 能量损失率为 (10) 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差围可认为是守恒的。 2.完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 (11) 在实验中,让v20=0,则有 (12) (13) 动量损失率 (14) 动能损失率 (15) 3.一般非弹性碰撞

仿真实验报告

上海电力学院 本科课程设计 电路计算机辅助设计 院系:电力工程学院 专业年级(班级):电力工程与管理2011192 班 学生姓名:学号: 201129 指导教师:杨尔滨、杨欢红 成绩: 2013年07 月 06 日教师评语:

目录仿真实验一 仿真实验二仿真实验三仿真实验四仿真实验五仿真实验六仿真实验七仿真实验八仿真实验九节点电压法分析直流稳态电路..........................1 戴维宁定理的仿真设计................................5 叠加定理的验证.. (8) 正弦交流电路——谐振电路的仿真......................11 两表法测量三相电路的功率............................14 含受控源的RL 电路响应的研究........................18含有耦合互感的电路的仿真实验........................21 二阶电路零输入响应的三种状态轨迹....................27 二端口电路的设计与分析 (32)

实验一节点电压法分析电路 一、电路课程设计目的 ( 1)通过较简易的电路设计初步接触熟悉Multisim11.0 。 (2)学会用 Multisim11.0 获取某电路元件的某个参数。 (3)通过仿真实验加深对节点分析法的理解及应用。 二、实验原理及实例 节点分析法是在电路中任意选择一个节点为非独立节点,称此节点为参考点。其它独立节点与参考点之间的电压,称为该节点的节点电压。 节点分析法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n – 1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。然后进一步求出 各待求量。 下图所示是具有三个节点的电路,下面以该图为例说明用节点分析法进行的电路分析方 法和求解步骤,导出节点电压方程式的一般形式。 图1— 1 首先选择节点③为参考节点,则u3 = 0 。设节点①的电压为u1、节点②的电压为u2,各支 路电流及参考方向见图中的标示。应用基尔霍夫电流定律,对节点①、节点②分别列出节点电 流方程: 节点①i S1i S2i1i 20 节点②i S2i S 3i 2i30 用节点电压表示支路电流: u1 i1G1u1 R 1 u1u2 i 2R G 2(u1u2 ) 2 u2 i3G 3u2 R 3

数字电子技术实验报告

专业: 班级: 学号: 姓名: 指导教师: 电气学院

实验一集成门电路逻辑功能测试 一、实验目的 1. 验证常用集成门电路的逻辑功能; 2. 熟悉各种门电路的逻辑符号; 3. 熟悉TTL集成电路的特点,使用规则和使用方法。 二、实验设备及器件 1. 数字电路实验箱 2. 万用表 3. 74LS00四2输入与非门1片74LS86四2输入异或门1片 74LS11三3输入与门1片74LS32四2输入或门1片 74LS04反相器1片 三、实验原理 集成逻辑门电路是最简单,最基本的数字集成元件,目前已有种类齐全集成门电路。TTL集成电路由于工作速度高,输出幅度大,种类多,不宜损坏等特点而得到广泛使用,特别对学生进行实验论证,选用TTL电路较合适,因此这里使用了74LS系列的TTL成路,它的电源电压为5V+10%,逻辑高电平“1”时>2.4V,低电平“0”时<0.4V。实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口左,左下角第一脚为1脚,按逆时针方向顺序排布其管脚。 四、实验内容 ㈠根据接线图连接,测试各门电路逻辑功能 1. 利用Multisim画出以74LS11为测试器件的与门逻辑功能仿真图如下

按表1—1要求用开关改变输入端A,B,C的状态,借助指示灯观测各相应输出端F的状态,当电平指示灯亮时记为1,灭时记为0,把测试结果填入表1—1中。 表1-1 74LS11逻辑功能表 输入状态输出状态 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 悬空 1 1 1 悬空0 0 0 2. 利用Multisim画出以74LS32为测试器件的或门逻辑功能仿真图如下

电工和电子技术(A)1实验报告解读

实验一 电位、电压的测定及基尔霍夫定律 1.1电位、电压的测定及电路电位图的绘制 一、实验目的 1.验证电路中电位的相对性、电压的绝对性 2. 掌握电路电位图的绘制方法 三、实验内容 利用DVCC-03实验挂箱上的“基尔霍夫定律/叠加原理”实验电路板,按图1-1接线。 1. 分别将两路直流稳压电源接入电路,令 U 1=6V ,U 2=12V 。(先调准输出电压值,再接入实验线路中。) 2. 以图1-1中的A 点作为电位的参考点,分别测量B 、C 、D 、E 、F 各点的电位值φ及相邻两点之间的电压值U AB 、U BC 、U CD 、U DE 、U EF 及U FA ,数据列于表中。 3. 以D 点作为参考点,重复实验内容2的测量,测得数据列于表中。 图 1-1

四、思考题 若以F点为参考电位点,实验测得各点的电位值;现令E点作为参考电位点,试问此时各点的电位值应有何变化? 答: 五、实验报告 1.根据实验数据,绘制两个电位图形,并对照观察各对应两点间的电压情况。两个电位图的参考点不同,但各点的相对顺序应一致,以便对照。 答: 2. 完成数据表格中的计算,对误差作必要的分析。 答: 3. 总结电位相对性和电压绝对性的结论。 答:

1.2基尔霍夫定律的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 二、实验内容 实验线路与图1-1相同,用DVCC-03挂箱的“基尔霍夫定律/叠加原理”电路板。 1. 实验前先任意设定三条支路电流正方向。如图1-1中的I1、I2、I3的方向已设定。闭合回路的正方向可任意设定。 2. 分别将两路直流稳压源接入电路,令U1=6V,U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至数字电流表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5. 用直流数字电压表分别测量两路电源及电阻元件上的电压值,记录之。 三、预习思考题 1. 根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定电流表和电压表的量程。 答: 2. 实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字电流表进行测量时,则会有什么显示呢? 答:

大物实验模拟仿真实验报告

西安交通大学实验报告 课程:数据结构实验实验名称:利用单摆测量重力加速度 系别:实验日期: 专业班级:实验报告日期: 姓名:学号: 第 1页 / 共3页 一、实验简介 单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度。 三、实验内容 1、设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 2、可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用).

假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈ 0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 3、对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求. 4、自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小. 5、自拟试验步骤用单摆实验验证机械能守恒定律. 四、实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺 五、实验操作 1. 用米尺测量摆线长度; 2. 用游标卡尺测量小球直径; 3. 把摆线偏移中心不超过5度,释放单摆,开始计时,单摆摆过50个周期后停止计时,记录所用时间; 六、实验结果

仿真实验报告

实验报告 李文海 2014141223024 实验目的: 1)熟悉和掌握实现常用信号的产生方法;; 2)理解系统的单位冲激响应的概念,LTI 系统的卷积表达式及其物理意义,卷积的计算方法; 3)理解典型信号的频谱特征; 4)理解系统的频率响应的概念及其物理意义,理解具有不同频率响应特性的滤波器对信号的滤波作用; 5)学会利用编程实现卷积以求解系统响应,并绘制相应曲线; 6)学会利用编程实现一些典型信号的频谱分析,并绘制相应曲线。 实验内容: 1) 编程产生以下三个正弦信号,并画出波形图。 1122312[]cos(2), []cos(2), [][] +[], x n f n x n f n x n x n x n ππ=== 其中f1=1/8,f2=5/8; 用matlab 编程如下: n= [0:15]; x1=cos(2*pi*0.125*n); x2=cos(2*pi*0.625*n); x3=x1+x2; figure(1); subplot(3,1,1); stem(n,x1); subplot(3,1,2); stem(n,x2); subplot(3,1,3); stem(n,x3); 运行结果:(由上到下依次是x1,x2,x3)

2)编程计算下面卷积: 已知h1[n]={0.0031,0.0044, -0.0031, -0.0272,-0.0346,0.0374, 0.1921, 0.3279 0.3279,0.1921,0.0374,-0.0346,-0.0272,-0.0031, 0.0044,0.0031 },n=0,1, (15) a、当h [n]=h1[n]时,输入分别为x1[n], x2[n]和x3[n]时系统的输出y[n],并画出 波形图。 Matlab编程如下: h1=[ 0.0031 0.0044 -0.0031 -0.0272 -0.0346 0.0374 0.1921 0.3279 0.3279 0.1921 0.0374 -0.0346 -0.0272 -0.0031 0.0044 0.0031]; h2=[-0.0238 0.0562 -0.0575 -0.1302 0.5252 -0.6842 -0.3129 5.6197 5.6197 -0.3129 0.6842 0.5252 -0.1302 -0.0575 0.0562 -0.0238]; n1=[0:30]; y11=conv(x1,h1); y12=conv(x2,h1); y13=conv(x3,h1); figure(2); subplot(3,1,1); stem(n1,y11); subplot(3,1,2); stem(n1,y12); subplot(3,1,3); stem(n1,y13); 运行结果:

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

电子技术基础实验报告要点

电子技术实验报告 学号: 222014321092015 姓名:刘娟 专业:教育技术学

实验三单级交流放大器(二) 一、实验目的 1. 深入理解放大器的工作原理。 2. 学习测量输入电阻、输出电阻及最大不失真输出电压幅值的方法。 3. 观察电路参数对失真的影响. 4. 学习毫伏表、示波器及信号发生器的使用方法。 二. 实验设备: 1、实验台 2、示波器 3、数字万用表 三、预习要求 1、熟悉单管放大电路。 2、了解饱和失真、截止失真和固有失真的形成及波形。 3、掌握消除失真方法。 四、实验内容及步骤 ●实验前校准示波器,检查信号源。 ●按图3-1接线。 图3-1 1、测量电压参数,计算输入电阻和输出电阻。 ●调整RP2,使V C=Ec/2(取6~7伏),测试V B、V E、V b1的值,填入表3-1中。 表3-1 Array ●输入端接入f=1KHz、V i=20mV的正弦信号。 ●分别测出电阻R1两端对地信号电压V i及V i′按下式计算出输入电阻R i : ●测出负载电阻R L开路时的输出电压V∞,和接入R L(2K)时的输出电压V0 , 然后按下式计算出输 出电阻R0;

将测量数据及实验结果填入表3-2中。 2、观察静态工作点对放大器输出波形的影响,将观察结果分别填入表3-3,3-4中。 ●输入信号不变,用示波器观察正常工作时输出电压V o的波形并描画下来。 ●逐渐减小R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真的波形描 画下来,并说明是哪种失真。( 如果R P2=0Ω后,仍不出现失真,可以加大输入信号V i,或将R b1由100KΩ改为10KΩ,直到出现明显失真波形。) ●逐渐增大R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真波形描画 下来,并说明是哪种失真。如果R P2=1M后,仍不出现失真,可以加大输入信号V i,直到出现明显失真波形。 表 3-3 ●调节R P2使输出电压波形不失真且幅值为最大(这时的电压放大倍数最大),测量此时的静态工 作点V c、V B、V b1和V O 。 表 3-4 五、实验报告 1、分析输入电阻和输出电阻的测试方法。 按照电路图连接好电路后,调节RP2,使Vc的值在6-7V之间,此时使用万用表。接入输入信号1khz 20mv后,用示波器测试Vi与Vi’,记录数据。用公式计算出输入电阻的值。在接入负载RL和不接入负载时分别用示波器测试Vo的值,记录数据,用公式计算出输出电阻的值。 2、讨论静态工作点对放大器输出波形的影响。 静态工作点过低,波形会出现截止失真,即负半轴出现失真;静态工

仿真实验报告

大学物理仿真实验报告一一塞曼效应 一、实验简介 塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼(Zeeman)在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。 塞曼效应是法拉第磁致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的 电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解。 塞曼效应另一引人注目的发现是由谱线的变化来确定离子的荷质比的大小、符号。根据 洛仑兹(H.A?Lorentz)的电子论,测得光谱的波长,谱线的增宽及外加磁场强度,即可称得离子的荷质比。由塞曼效应和洛仑兹的电子论计算得到的这个结果极为重要,因为它发表在J、 J汤姆逊(J、J ThomSOn)宣布电子发现之前几个月,J、J汤姆逊正是借助于塞曼效应由洛仑 兹的理论算得的荷质比,与他自己所测得的阴极射线的荷质比进行比较具有相同的数量级,从而得到确实的证据,证明电子的存在。 塞曼效应被誉为继X射线之后物理学最重要的发现之一。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。至今,塞曼效应依然是研究原子内部能级结构的重要方法。 本实验通过观察并拍摄Hg(546.1 nm)谱线在磁场中的分裂情况,研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。 二、实验目的 1?学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2?观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3?利用塞曼分裂的裂距,计算电子的荷质比 e m e数值。 三、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为E0,相应的总角动量量子数、轨道量子数、 自旋量子数分别为J、L、S。当原子处于磁感应强度为B的外磁场中时,这一原子能级将 分裂为2J 1层。各层能量为 E = E o MgJ B B(1) 其中M为磁量子数,它的取值为J , J -1 ,…,-J共2J 1个;g为朗德因子;J B为 hc 玻尔磁矩(A B= );B为磁感应强度。 4兀m 对于L-S耦合

现代电子实验报告 电子科技大学

基于FPGA的现代电子实验设计报告 ——数字式秒表设计(VHDL)学院:物理电子学院 专业: 学号: 学生姓名: 指导教师:刘曦 实验地点:科研楼303 实验时间:

摘要: 通过使用VHDL语言开发FPGA的一般流程,重点介绍了秒表的基本原理和相应的设计方案,最终采用了一种基于FPGA 的数字频率的实现方法。该设计采用硬件描述语言VHDL,在软件开发平台ISE上完成。该设计的秒表能准确地完成启动,停止,分段,复位功能。使用ModelSim 仿真软件对VHDL 程序做了仿真,并完成了综合布局布线,最终下载到EEC-FPGA实验板上取得良好测试效果。 关键词:FPGA,VHDL,ISE,ModelSim

目录 绪论 (4) 第一章实验任务 (5) 第二章系统需求和解决方案计划 (5) 第三章设计思路 (6) 第四章系统组成和解决方案 (6) 第五章各分模块原理 (8) 第六章仿真结果与分析 (11) 第七章分配引脚和下载实现 (13) 第八章实验结论 (14)

绪论: 1.1课程介绍: 《现代电子技术综合实验》课程通过引入模拟电子技术和数字逻辑设计的综合应用、基于MCU/FPGA/EDA技术的系统设计等综合型设计型实验,对学生进行电子系统综合设计与实践能力的训练与培养。 通过《现代电子技术综合实验》课程的学习,使学生对系统设计原理、主要性能参数的选择原则、单元电路和系统电路设计方法及仿真技术、测试方案拟定及调测技术有所了解;使学生初步掌握电子技术中应用开发的一般流程,初步建立起有关系统设计的基本概念,掌握其基本设计方法,为将来从事电子技术应用和研究工作打下基础。 本文介绍了基于FPGA的数字式秒表的设计方法,设计采用硬件描述语言VHDL ,在软件开发平台ISE上完成,可以在较高速时钟频率(48MHz)下正常工作。该数字频率计采用测频的方法,能准确的测量频率在10Hz到100MHz之间的信号。使用ModelSim仿真软件对VHDL程序做了仿真,并完成了综合布局布线,最终下载到芯片Spartan3A上取得良好测试效果。 1.2VHDL语言简介:

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

物理仿真实验报告1

物理仿真实验报告1

物理仿真实验报告 受迫振动 班级应物01 姓名赵锦文 学号10093020

一、实验简介 在本实验中,我们将研究弹簧重物振动系统的运动。在这里,振动中系统除受弹性力和阻尼力作用外,另外还受到一个作正弦变化的力的作用。这种运动是一类广泛的实际运动,即一个振动着的力学体系还受到一个作周期变化的力的作用时的运动的一种简化模型。如我们将会看到的,可以使这个体系按照与施加力相同的频率振动,共振幅既取决于力的大小也取决于力的频率。当力的频率接近体系的固有振动频率时,“受迫振动”的振幅可以变得非常大,这种现象称为共振。共振现象是重要的,它普遍地存在于自然界,工程技术和物理学各领域中.共振概念具有广泛的应用,根据具体问题中共振是“利”还是“害”,再相应地进行趋利避害的处理。 两个相互耦合的简谐振子称为耦合振子,耦合振子乃是晶体中原子在其平衡位置附近振动的理想模型。 本实验目的在于研究阻尼振动和受迫振动的特性,要求学生测量弹簧重物振动系统的阻尼常数,共振频率。 二、实验原理 1.受迫振动 砝码和挂钩 弹簧 弹簧 振荡器 图13.1 受迫振动 质量M 的重物按图1放置在两个弹簧中间。静止平衡时,重物收到的合外力为0。当重物被偏离平衡位置时,系统开始振动。由于阻尼衰减(例如摩擦力),最终系统会停止振动。振动频率较低时,可以近似认为阻力与振动频率成线性关系。作用在重物上的合力: x M x Kx x x k x k F 21=--=---=ββ 其中k1, k2是弹簧的倔强系数。

K = k1+ k2是系统的等效倔强系数。 x 是重物偏离平衡位置的距离, β 是阻尼系数。 因此重物的运动方程可表示为: 22 0=++x x x ωγ 其中 γβ=M and ω02 =K M 。 在欠阻尼状态时(ωγ0>),方程解为: ) cos(22 0 φγωγ+-=-t Ae x t A, φ 由系统初始态决定。方程的解是一个幅度衰减的谐振动,如图2所示。 T 图13.2 衰减振动 振动频率是: f T = =-11202 2π ωγ (13.1) 如果重物下面的弹簧1k 由一个幅度为a 的振荡器驱动,那么这个弹簧作用于重物的力是) cos (1x t a k -ω。此时重物的运动方程为: M t a k x x x cos 212 0ωωγ= ++ . 方程的稳态解为: ) cos(4)(2 2 2 22 1θωω γωω-+-= t M a k x (13.2) 其中 )2(tan 2 201 ωωγω θ-=-。图13.3显示振动的幅度与频率的关系。

物流仿真实验报告

《物流仿真实验》 实验报告书 实验报告题目: 物流仿真实验学院名称: 管理学院 专业: 物流管理 班级: 物流1303 姓名: 孟颖颖 学号: 2 成绩: 2016年7月 实验报告 一、实验名称 物流仿真实验 二、实验要求 ⑴根据模型描述与模型数据对配送中心进行建模;

⑵分析仿真实验结果,进行利润分析,找出利润最大化的策略。 三、实验目的 1、掌握仿真软件Flexsim的操作与应用,熟悉通过软件进行物流仿真建模。 2、记录Flexsim软件仿真模拟的过程,得出仿真的结果。 3、总结Flexsim仿真软件学习过程中的感受与收获。 三、实验设备 (1)硬件及其网络环境 服务器一台:PII400/10、3G/128M以上配置、客户机100台、局域网或广域网。 (2)软件及其运行环境 Flexsim,Windows 2000 Server、SQL Server 7、0以上版本、IIS 5、0、SQL Server 数据库自动配置、IIS 虚拟目录自动配置 四、实验步骤 1 概念模型 1个Sink到操作区,如图:

第二步:连接端口 根据配送流程,对模型进行适宜的连接,所有端口连接均用A连接,如图: 第三步:Source的参数设置 为使Source产生实体不影响后面Processor的生产,尽可能的将时间间隔设置尽可能的小,并对三个Source做出同样的设定。 打开Source参数设置窗口,将时间到达间隔设置为常数1,同时为对三个实体进行区别,进行设置产品颜色,点击触发器,打开离开触发的下拉菜单,点击设置临时实体类型,设置不同实体类型,颜色自然发生变化。并对另外两个Source 进行同样的设置,如图:

数字电子技术实验报告汇总

《数字电子技术》实验报告 实验序号:01 实验项目名称:门电路逻辑功能及测试 学号姓名专业、班级 实验地点物联网实验室指导教师时间2016.9.19 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。线接好后经实验指导教师检查无误方可通电实验。实验中

1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显 图 1.1 示发光二极管D1~D4任意一个。 (2)将逻辑开关按表1.1的状态,分别测输出电压及逻辑状态。 表1.1 输入输出 1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v) H H H H 0 0 L H H H 1 1 L L H H 1 1 L L L H 1 1 L L L L 1 1 2. 异或门逻辑功能的测试

图 1.2 (1)选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接逻辑开关(K1~K4),输出端A、B、Y接电平显示发光二极管。 (2)将逻辑开关按表1.2的状态,将结果填入表中。 表1.2 输入输出 1(K1) 2(K2) 4(K35(K4) A B Y 电压(V) L H H H H L L L H H H H L L L H H L L L L L H H 1 1 1 1 1 1 1 1

西安交大物理仿真实验实验报告

西安交通大学实验报告 第 1 页(共10 页)课程:_____大学物理实验____ 实验日期 : 2014 年 11月 30日 专业班号______组别__无___ 交报告日期: 2012 年 12 月 4 日 姓名___ 学号______ 报告退发:(订正、重做) 同组者____________________________ 教师审批签字: 实验名称:超声波测声速 一、实验目的: 1。了解超声波的产生、发射、和接收方法; 2.用驻波法、相位比较法测量声速。 二、实验仪器: SV—DH系列声速测试仪,示波器,声速测试仪信号源. 三、实验原理: 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率 和波长就可以求出波速.本实验通过低频信号发生器控制换能器,信号发生器的 输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比 较法)测量.下图是超声波测声速实验装置图.

1。驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: 叠加后合成波为: 振幅最大的各点称为波腹,其对应位置: 振幅最小的各点称为波节,其对应位置: 因此只要测得相邻两波腹(或波节)的位置Xn、Xn—1即可得波长. 2。相位比较法测波长

从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:。因为x改变一个波长时,相位差就改变2π。利用李萨如图形就可以测得超声波的波长. 四、实验内容 1.接线 2.调整仪器 (1)示波器的使用与调整 使用示波器时候,请先调整好示波器的聚焦.然后鼠标单击示波器的输入信号的接口,把信号输入示波器.接着调节通道1,2的幅度微调,扫描信号的时基微调。最后选择合适的垂直方式选择开关,触发源选择开关,内触发源选择开关,Auto-Norm-X—Y开关,在示波器上显示出需要观察的信号波形。输入信道的信号是由实验线路的连接决定的。 (2)信号发生器的调整 根据实验的要求调整信号发生器,产生频率大概在35KHz左右,幅度为5V 的一个正弦信号。由于本实验测声速的方法需要通过换能器(压电陶瓷)共振把电信号转为声信号,然后再转为电信号进行的,所以在开始测量前需要调节信号的频率为换能器的共振频率。在寻找共振频率时,通过调节信号发生器的微调旋钮,观察示波器上信号幅度是否为最大来逐步寻找的。 (3)超声速测定仪的使用 在超声速测定仪中,左边的换能器是固定的,右边的换能器是与游标卡尺的滑动部分连接在一起的。这样,左右换能器间的距离就可以通过游标卡尺来测量出来,在上图的下半部分是一个放大的游标卡尺的读数图. 3.实验内容 寻找到超声波的频率(就是换能器的共振频率)后,只要测量到信号的波长就可以求得声速.我们采用驻波法和相位比较法来测量信号波长: (1)驻波法 信号发生器产生的信号通过超声速测定仪后,会在两个换能器件之间产生驻波。改变换能器之间的距离(移动右边的换能器)时,在接收端(把声信号转为电信号的换能器)的信号振幅会相应改变。当换能器之间的距离为信号波长的一

虚拟现实与仿真实验报告

合肥工业大学 计算机与信息学院 实验报告 课程:虚拟现实与仿真技术 专业班级:计算机科学与技术11-2班 学号: 姓名:谢云飞 实验一 一.实验名称

从3Dmax8中导出mesh并添加mesh到场景。 二.实验过程或实验程序(增加的代码及代码注解) 启动3Dmax 1.在安装有3Dmax8的计算机上,可以使用两种不同的方法来启动3Dmax8: (1)在桌面上双击“3Dmax8”图标 (2)点击“开始”菜单,在“程序”中的选择“3Dmax8” 2.观察3Dmax8主窗口的布局。3Dmax8主要由若干元素组成:菜单栏、工具栏、以及停靠在右边的命令面板和底部的各种工具窗口 使用3Dmax8建模并导出mesh 导出mesh的步骤如下: 1.启动3Dmax8 2.在停靠在右边的命令面板中,点击几何体按钮 3.选择标准几何体 4.在对象类型中选择对象(如:长方体),在“前”视口中,通过单击鼠标左键,创建出模型 5.在工具栏中单击“材质编辑器”按钮,通过上步操作,可开启“材质编辑器”对话框 6.在“材质编辑器”对话框中,点击漫反射旁方形按钮,进入到“材质/贴图浏览器” 7.在“材质/贴图浏览器”中选择位图,鼠标左键双击位图 8.弹出选择位图图像文件对话框,从本地电脑中选择一张图片 9.选择好图片,在材质编辑器对话框中,点击将材质指令给选定对象 10.点击菜单栏上的oFusion按钮,在弹出的菜单栏中选择Export Scene 11.选择文件夹并输入文件名qiu,点击保存,在弹出的对话框中勾选Copy Textures,点击Export按钮,此时mesh文件已成功导出 导出的mesh文件放入到指定位置 1.找到mesh文件,把mesh文件放到当前电脑的OgreSDK的models中,以我的电脑为例,OgerSDK放在C盘中 2.打开C盘,找到OgreSDK,打开OgreSDK,找到media,打开media文件夹,找到models,打开models文件夹,将mesh文件复制到此文件夹中 3.将导出mesh文件附带的材质文件放到OgreSDK的scripts (C:\OgreSDK\media\materials\scripts)中 4.将导出mesn文件时同时导出的图片放到OgreSDK的textures (C:\OgreSDK\media\materials\textures)中

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

电工电子技术实验报告

电工电子技术实验报告 学院 班级 学号 姓名 天津工业大学电气工程与自动化学院电工教学部 二零一三年九月

目录 第一项实验室规则------------------------------------------------------------------ i 第二项实验报告的要求------------------------------------------------------------ i 第三项学生课前应做的准备工作------------------------------------------------ii 第四项基本实验技能和要求----------------------------------------------------- ii 实验一叠加定理和戴维南定理的研究------------------------------------------ 1实验二串联交流电路和改善电路功率因数的研究--------------------------- 7实验三电动机的起动、点动、正反转和时间控制--------------------------- 14实验四继电接触器综合性-设计性实验----------------------------------------20 实验五常用电子仪器的使用---------------------------------------------------- 22实验六单管低频电压放大器---------------------------------------------------- 29实验七集成门电路及其应用---------------------------------------------------- 33 实验八组合逻辑电路------------------------------------------------------------- 37实验九触发器及其应用---------------------------------------------------------- 40 实验十四人抢答器---------------------------------------------------------------- 45附录实验用集成芯片---------------------------------------------------------- 50

大物仿真实验实验报告

学院数统学院专业信计21 姓名倪皓洋学号 2120602015 实验名称:刚体的转动惯量 一实验简介: 在研究摆的中心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。 二实验目的: 1.用实验方法验证转动惯量,并求转动惯量。 2.观察转动惯量与质量的分布关系。 3.学习作图的曲线改直法,并由作图法处理实验数据。 三实验原理: 1. 刚体的转动定律 具有确定转轴的刚体,在外力矩作用下,将获得较加速度β,其值与外力矩成正比,与刚体的转动惯量成反比即有刚体的转动定律: M=Iβ 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg-t=ma,在t时间内下落的高度为h=at2/2。刚体收到张力的力矩为T r和轴摩擦力力矩M f。由转动定律可得到刚体的转动运动方程:T r--M f=I β。绳与塔轮间无相对滑动时有a =rβ,上述四个方程得到: m(g - a)r - Mf = 2hI/rt2 (2) M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

的方法求得转动惯量I。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r 和砝码下落高度h,(3)式变为: M = K1/ t2 (4) 式中K1 =2hI/ gr2为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。 从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 =2hI/gr2求得刚体的I。 B.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。将式(3)写为: r = K2/ t (5) 式中K2 = (2hI/ mg)1/2是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。 从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)1/2求出刚体的I。 四实验仪器: 刚体转动仪,滑轮,秒表,砝码 其中刚体转动仪包括: A.、塔轮,由五个不同半径的圆盘组成。上面绕有挂小砝码的细线,由它对刚体施加外力矩。 B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。与A和配重物构成一个刚体。 C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。 此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分 。 双击刚体转动仪底座下方的旋钮,会弹出底座放大窗口和底座调节窗口,在底座调节窗口的旋钮上点击鼠标左、右键,可以调整底座水平。在底座放大窗口上单击右键可以转换视角。(如下图)

相关文档
最新文档