纹波对电路的影响

纹波对电路的影响
纹波对电路的影响

开关电源纹波的产生

我们最终的目的是要把输出纹波降低到可以忍受的程度,达到这个目的最根本的解决方法就是要尽量避免纹波的产生,首先要清楚开关电源纹波的种类和产生原因。

上图是开关电源中最简单的拓扑结构-buck降压型电源。

随着SWITCH的开关,电感L中的电流也是在输出电流的有效值上下波动的。所以在输出端也会出现一个与SWITCH同频率的纹波,一般所说的纹波就是指这个。它与输出电容的容量和ESR有关系。这个纹波的频率与开关电源相同,为几十到几百KHz。

另外,SWITCH一般选用双极性晶体管或者MOSFET,不管是哪种,在其导通和截止的时候,都会有一个上升时间和下降时间。这时候在电路中就会出现一个与SWITCH上升下降时间的频率相同或者奇数倍频的噪声,一般为几十MHz。同样二极管D在反向恢复瞬间,其等效电路为电阻电容和电感的串联,会引起谐振,产生的噪声频率也为几十MHz。这两种噪声一般叫做高频噪声,幅值通常要比纹波大得多。

如果是AC/DC变换器,除了上述两种纹波(噪声)以外,还有AC噪声,频率是输入AC 电源的频率,为50~60Hz左右。还有一种共模噪声,是由于很多开关电源的功率器件使用外壳作为散热器,产生的等效电容导致的。

因为本人是做汽车电子研发的,对于后两种噪声接触较少,所以暂不考虑。开关电源纹波的抑制

对于开关纹波,理论上和实际上都是一定存在的。通常抑制或减少它的做法有三种:1,加大电感和输出电容滤波

根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

左图是开关电源电感L内的电流波形,其纹波电流△I可由下式算出:

可以看出,增加L值,或者提高开关频率可以减小电感内的电流波动。

同样,输出纹波与输出电容的关系:vripple=Imax/(Co×f)。可以看出,加大输出电容值可以减小纹波。

通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。但是电解电容在抑制高频噪声方面效果不是很好,而且ESR也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。

同时,开关电源工作时,输入端的电压Vin不变,但是电流是随开关变化的。这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK型为例,是SWITcH附近),并联电容来提供电流。

应用该对策后,BUCK型开关电源如下图所示:

1 小时前上传

下载附件(18.55 KB)

上面这种做法对减小纹波的作用是有限的。因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。所以在要求比较严格时,这种方法并不是很好。

关于开关电源的原理等,可以参考各类开关电源设计手册。2,二级滤波,就是再加一级LC滤波器

LC滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。

但是,这种情况下需要考虑反馈比较电压的采样点。(如下图所示)

采样点选在LC滤波器之前(Pa),输出电压会降低。因为任何电感都有一个直流电阻,当有电流输出时,在电感上会有压降产生,导致电源的输出电压降低。而且这个压降是随输出电流变化的。

采样点选在LC滤波器之后(Pb),这样输出电压就是我们所希望得到的电压。但是这样在电源系统内部引入了一个电感和一个电容,有可能会导致系统不稳定。关于系统稳定,很多资料有介绍,这里不详细写了。

3,开关电源输出之后,接LDO滤波

这是减少纹波和噪声最有效的办法,输出电压恒定,不需要改变原有的反馈系统,但也是成本最高,功耗最高的办法。

任何一款LDO都有一项指标:噪音抑制比。是一条频率-dB曲线,如右图是凌特公司LT3024的曲线。

经过LDO之后,开关纹波一般在10mV以下。

下图是LDO前后的纹波对比:

对比曲线上图的曲线和左图的波形,可以看出对几百KHz的开关纹波,LDO的抑制效果非常好。但在高频范围内,该LDO的效果就不那么理想了。

对减小纹波。开关电源的PCB布线也非常关键,这是个很赫手的问题。有专门的开关电源PCB 工程师,简单的可以参考美国国半公司的AN1229:SIMPLE SWITCHER PCB Layout Guidelines, (网上有翻译的中文摘要)

对于高频噪声,由于频率高幅值较大,后级滤波虽然有一定作用,但效果不明显。这方面有专门的研究,简单的做法是在二极管上并电容C或RC,或串联电感。

4,在二极管上并电容C或RC

左图是实际用二极管的等效电路。二极管高速导通截止时,要考虑寄生参数。在二极管反向恢复期间,等效电感和等效电容成为一个RC振荡器,产生高频振荡。为了抑制这种高频振荡,需在二极管两端并联电容C或RC缓冲网络。电阻一般取10Ω-100 Ω,电容取4.7pF-2.2nF。

详细的解释可参考资料1和2。

在二极管上并联的电容C或者RC,其取值要经过反复试验才能确定。如果选用不当,反而会造成更严重的振荡。

对高频噪声要求严格的话,可以采用软开关技术。关于软开关,有很多书专门介绍。

5,二极管后接电感(EMI滤波)

这也是常用的抑制高频噪声的方法。针对产生噪声的频率,选择合适的电感元件,同样能够有效地抑制噪声。需要注意的是,电感的额定电流要满足实际的要求。比较简单的做法,不再详细解释。

小结

以上是关于开关电源纹波,总结的一些内容,如果能加些波形就更好了。虽然可能不太全,但对一般的应用已经足够了。关于噪声抑制,实际中并不一定全部应用,重要的是根据自己的设计要求,比如产品体积,成本,开发周期等,选择合适的方法。

变频器中直流母线电容的纹波电流计算

變頻器中直流母線電容的紋波電流計算 1 引言 各類電動機是我們發電量的主要消耗設備,而變頻器作為電動機的驅動裝置成為當前“節能減排”的主力設備之一。它一方面可以起到節約能源消耗的作用,另一方面也可以實現對原有生產或處理工藝過程的優化。目前應用最多也最廣的是交-直-交電壓型變頻器,即中間存在直流儲能濾波環節,一般採用大容量電解電容器實現此功能。 使用電解電容器的作用主要有以下幾個[1]: (1)補償以電源頻率兩倍或六倍變化的逆變器所需功率與整流橋輸出功率之差; (2)提供逆變器開關頻率的輸入電流; (3)減小開關頻率的電流諧波進入電網; (4)吸收急停狀態時所有功率開關器件關斷下的電機去磁能量;(5)提供暫態峰值功率; (6)保護逆變器免受電網暫態峰值衝擊。 電解電容器設計選型所需要考慮的主要因素有以下幾個:電容器的電壓、電容器量、電容器的紋波電流、電容器的溫升與散熱、電容器的壽命等等。這些因素對變頻器滿足要求的平均無故障時間(MTBF)十分重要。然而電解電容器的紋波電流的計算如何能明確給出計算依據,這是本文所要解決的問題。

2 直流母線電容紋波電流的計算 紋波電流指的是流過電解電容器的交流電流,它使得電解電容器發熱。紋波電流額定值的確定方法是在額定工作溫度下規定一個允許的溫升值,在此條件下電容器符合規定的使用壽命要求。當工作溫度小於額定溫度時,額定紋波電流可以加大。但過大的紋波電流會大大縮短電容器的耐久性,當紋波電流超過額定值,紋波電流所引起的內部發熱每升高5℃,電容器器的壽命將減少50%。因此當要求電容器器具有長壽命性能時,控制與降低紋波電流尤其重要。 但在實際設計過程中,電解電容器的紋波電流由於受變頻器輸入輸出各物理量變化以及控制方式等的影響很難直接計算得到[2],一般多採用根據實際經驗估算大小,如每μf電容器要求20ma紋波電流之類的經驗值,或者通過電腦模擬來估算[3~6]。 本文根據對變頻器電路拓撲與開關調製方式的分析,並借鑒已有文獻資料,歸納出一個直接的計算電解電容器紋波電流的方法,供大家參考。 圖1 變頻器拓撲示意圖 由圖1可以得到直流母線電容的紋波電流ic=il-i,il和i分別是整流器

开电源纹波噪声的产生及抑制

电源纹波噪声的产生及抑制 一、纹波 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。它主要有以下害处: 1.1.容易在用电器上产生谐波,而谐波会产生更多的危害; 1.2.降低了电源的效率; 1.3.较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 1.4.会干扰数字电路的逻辑关系,影响其正常工作; 1.5.会带来噪音干扰,使图像设备、音响设备不能正常工作。 二、纹波的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 单位通常为:mV 例如: 一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV 就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。 三、纹波的测试方法 3.1.以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面: 4.1.输入低频纹波; 4.2.高频纹波; 4.3.寄生参数引起的共模纹波噪声; 4.4.功率器件开关过程中产生的超高频谐振噪声;

4.5.闭环调节控制引起的纹波噪声。 4.1、输入低频纹波: 低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。 交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。 电流型控制DC/DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。要实现开关电源的低纹波输出,必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC/DC变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数。 △●电容上的纹波有两个成分,一个是充放电时的电压升降量,一个是电流进出电容时ESR上的I*R电压降量。 △●通过输出纹波与输出电容的关系式:vripple=Imax/(Co×f)可以看出,加大输出电容值可以减小纹波。 △●或者考虑采用并联的方式减小ESR值,或者使用LOW ESR电容。 b、采用前馈控制方法,降低低频纹波分量。 △●feed forward control(FFC)前馈控制是按照扰动产生校正作用的一种调节方式,主要用于一些纯滞后或容量滞后较大的被控参数的控制。 △●其目的是加速系统响应速度,改善系统的调节品质。 4.2、高频纹波: 高频纹波噪声来源于高频功率开关变换电路 在电路中,通过功率器件对输入直流电压进行高频开关变换后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关; 设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。高频纹波抑制常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,其纹波电流△I可由下式算 出: 可以看出,增加L值,或者提高开关频率可以减小电感内的电流波动。 b、加大输出高频滤波器,可以抑制输出高频纹波。 c、采用多级滤波。 一般滤波多采用C型、LC型、CLC型,为了更好的抑制纹波,可以采用增加多一级LC滤波。 4.3、寄生参数引起的共模纹波噪声: 由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生

变频器直流母线电容纹波电流计算方法

变频器直流母线电容纹波电流计算方法 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

开关电源纹波分析及抑制(精华)

主题: 开关电源纹波的产生与控制 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。电流型控制DC / DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC / DC变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。 b、采用前馈控制方法,降低低频纹波分量。 2、高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。 高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波 b、加大输出高频滤波器,可以抑制输出高频纹波。 C、采用多级滤波。 3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声。 减小输出共模纹波噪声的常用方法: a、输出采用专门设计的EMI滤波器。 b、降低开关毛刺幅度。 4、超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器件结电容与线路寄生电感的谐振,频率一般为1-10MHz,通过选用软恢复特性二

最有效的开关电源纹波计算方法

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV=C*di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise,如下图: 一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。 以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。 若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整。 电解电容的选择很重要 在输出端采用高频性能好、ESR低的电容,高频下ESR阻抗低,允许纹波电流大。可以在高频下使用,如采用普通的铝电解电容作输出电容,无法在高频(100kHz以上的频率)下工作,即使电容量也无效,因为超过10kHz时,它已成电感特性了。

最少拍无纹波控制器的设计

目录 前言 0 1.题目分析 0 2.最少拍无纹波控制原理 (1) 3.最少拍无纹波控制器设计步骤 (2) 4.用MATLAB软件仿真 (3) 单位阶跃输入信号 (3) 单位速度输入信号 (4) 单位加速度输入信号 (5) 参考文献 (5) 附录 (6) 课设体会 (7)

最少拍无纹波控制器的设计1 任甜甜沈阳航空航天大学北方科技学院 摘要:本次课程的目的是学习并熟悉使用计算机软件matlab去建模、分析、设计和仿真最少拍无纹波控制器。最少拍控制器的设计应首先根据零阶保持器将传递函数离散化,解出待定系数,然后求出相应的闭环脉冲传递函数和数字控制器。得出的闭环脉冲传递函数在后续工作中还需要进行多次调整,从而获得最佳表达形式。最后分别使用程序仿真方法和simulink去分析系统在速度和加速度两种输入信号下的动态性能和稳定性能。关键词:离散化;数字控制器;程序仿真 前言 最少拍设计,是指系统在典型输入信号的作用下,经过最少拍使系统输出的系统误差为零。最少拍控制器是基于准确的被控对象而建立的一种控制算法,设计一个数字控制器,使系统到达稳定所需要的采样周期最少,而且在采样点的输出值能准确地跟踪输入信号,不存在静差。应用数字控制器设计的随动系统的快速性一般以系统需要多少个采样周期数来表征。通常称一个采样周期为一拍,那么在越少的拍数内,系统的输出能跟上给定值,则系统的快速性越好。最少拍控制就是为满足这一要求的一种离散化设计方法。 1.题目分析 根据题目要求,设计无波纹最小拍控制器。采用零阶保持器的单位反馈离散系统,被控对象要求系统在单位阶跃输入时,实现无波纹最小拍控制,用离散设计法设计数字控制器。通过对最少拍数字控制器的设计与仿真,让自己对最少拍数字控制器有更好的理解与认识,透切理解最少拍、最少拍有纹波数字控制器、最少拍无纹波数字控制器的概念,分清最少拍有纹波与无纹波控制系统的优缺点,熟练掌握最少拍数字控制器的设计方法、步骤,并能灵巧地应用matlab平台对最少派控制器进行系统仿真。

DCDC Buck Converter输入电容纹波电流有效值

输入电容纹波电流有效值 相信很多人都知道Buck Converter 电路中输入电容纹波电流有效值,在连续工作模式下可以用一下两个公式来计算: Icin.rms =Io × ()D D ×?1 或Icin.rms =Io × 2 )(Vin Vo Vo Vin ? 然而,相信也有很多人并不一定知道上面的计算公式是如何推导出来的,下文将完成这一过程。 众所周知,在Buck Converter 电路中Q1的电流(Iq1)波形基本如右图所示(或见第二页Q1电流波形):0~DTs 期间为一半梯形,DTs ~Ts 期间为零。当0~DT 期间Iq1⊿足够小时,则Iq1波形为近似为一个高为Io 、宽为DTs 的矩形,则有: ?? ?=<<<<)() (01DTs t o Io Ts t DTs Iq 而对于Iin ,只要Cin 容量足够大,则在整个周期中是基本恒定的【见输入电流(Iin)波形】,Iin 值由下式得出: Iin =(V o/Vin)*Io =DIo 由KCL 得:Iin+Icin =Iq1,这里定义Icin 流出电容为正向。所以在整个周期中有: 输入电流(Iin)波形: Icin =Iq1-Iin 即: { )0() (DTs t DIo Io T t DTs DIo Icin <

的,所以有Icin =-DIo 根据有效值的定义,不难得出输入电容的纹波电流有效值Icin.rms 的计算公式: ])()([1.022 ∫∫ ?+?=DTs Ts DTs dt DIo dt DIo Io Ts rms Icin )]()()[(1 .22DTs Ts DIo DTs DIo Io Ts rms Icin ?×+×?= 即: 又因为有D D Io rms Icin ×?=)1(.Vin Vo D =,所以得: 2 )(.Vin Vo Vo Vin Io rms Icin ?= Q1电流(Iq1)波形:

纹波抑制IC方案优势解析

纹波抑制IC方案优势解析 在室内中小功率照明领域,凭借低功耗、长寿命等优势,LED技术已经开始取代传统照明技术,逐渐成为照明解决方案的首选。一方面,室内照明市场需求量极大,前景广阔,对LED照明厂商有巨大的吸引力;另一方面,客户需求种类繁多、成本要求高等特点,也是对LED照明产品提出的严苛考验。为了获得符合要求的照明效果,作为LED照明系统“心脏”的驱动方案必须具备稳定、可靠、优越的性能。 现在,人们对健康的要求越来越高,纹波频闪问题对人体的危害也逐渐被人重视,针对此问题许多厂商已提出相应驱动解决方案,下文将会具体加以分析。 一款理想的驱动器应该具备如下的特性: 1.高PF值、低THD值; 2.低输出纹波电流; 3.整体成本低; 4.宽输入电压范围设计; 5.低功耗,长寿命; 6.电路设计简单; 7.体积小; 8.电磁干扰低; 当然,满足所有要求的完美方案是不存在的,只有针对不同的使用环境选择最适合的方案。 下表就主要关注的几个方面评估当今应用比较广泛的中小功率室内照明低纹波驱动解决方案: 单级PFC+纹波抑制IC 单级PFC+纹波抑制分离电路主动式PFC+DC/DC 填谷式PFC+DC/DC 设计复杂度中等高高低成本中等高高低 效率较主动式PFC低2-3% 较低较主动式PFC低2-3% 高交流输入电压范 宽宽宽窄围(PF>0.9) 电磁干扰低低高低 纹波电流小小小中等 综合考虑后,不难看出在室内低纹波照明应用条件下,最有竞争力的方案是单级PFC+纹波抑制IC。该方案在PF值、THD 值、纹波电流、成本、交流输入电压范围等参数上取得比较好的折衷,是一种具有整体优势的解决方案。 纹波抑制电路实现的方式有两种:一种是完全使用分离器件搭建出的电路,另一种是把核心器件集成为纹波抑制芯片并配以一些外围元器件形成的电路。就市面上得采用较多的一种纹波抑制分离电路来说,对比英飞特电子研发的纹波抑制IC方案,有以下几个缺点:1、分离方案设计复杂度较高,且其存在短路开机时易炸机的风险;2、分离方案功耗大,保护功能不齐全;3、方案不具备参数调整能力,导致灵活度不够难以适应厂商不同需要。反观IC方案,功能良好且具备完善的保护功能,成本虽然现在略高,但随着技术更加成熟,产能不断增加,会逐步下降,此消彼长之下,纹波抑制IC方案会成为主流。 总的来说,在室内照明能够实现低纹波的各项方案中,单级PFC+纹波抑制IC方案具有非常显著的综合优势。随着人们逐渐意识到纹波的危害,在该细分市场逐渐成熟的情况下,此方案将会成为各厂商的首选。

如何降低电源纹波噪声的分析与应用

如何降低电源纹波噪声的分析与应用 一、什么叫纹波? 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量; 它主要有以下害处: 1、容易在用电器上产生谐波,而谐波会产生更多的危害; 2、降低了电源的效率; 3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 4、会干扰数字电路的逻辑关系,影响其正常工作; 5、会带来噪音干扰,使图像设备、音响设备不能正常工作。 二、纹波的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 例如:一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压 =10mv/12V=0.12 %; 三、纹波的测试方法 以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹波经DC/DC变换器衰减后,在开关

关于纹波系数的确定和计算

关于纹波系数的确定和计算 工频50Hz全波整流 全波整流输出为100Hz脉动直流,此时直流电压平均值为交流电压的0.9倍。也就是说交流100V 全波整流输出电压为90V。此时直流脉动系数为0.67,也就是说在这90V直流中交流电压分量为 60.3V。此时纹波系数为: 0.707X0.67=0.47=47% 【注:纹波的表示方法可以用有效值或峰值来表示;这里用的是有效值】 1:C型滤波: 在全波整流电路后面增加一个电容就构成了C型滤波。此时输出直流电压平均值上升为交流电压的1.2倍。纹波系数大小与滤波电容、纹波频率、负载电阻成反比。 纹波系数r=0。072/(f/C*RL) (C=F)r=1440/(C*RL) (C=uF) (新建)例:RL=2700欧f=50Hz C=40uF r=0。072/50/(0。00004x2700)=0。013% 2:LC型滤波: 整流器与电容之间增加一个电感就构成LC型滤波。这是利用电感对交流有感抗的特性。由于电感 有抑制电流突变特性使滤波电容两端的电压不能充到峰值。因此LC型滤波输出直流电压平均值小于交流电压的1.2倍,大约0.95。相位差接近180度。 电感临界值=RL/942 LC型滤波电路滤波系数=0.4*L*C LC型纹波系数r=0.47 / 滤波系数r=1。175/L*C (C=uF) 假设负载电阻RL=4700欧,4700/942约等于5.11H是临界电感量。 L常规应用时取该值大于或等于2RL/942 例:电流I=170mA,DC=420V,根据U=IR此时电路负载电阻R=U/I=2470欧。 电感临界值=2470/942约等于2.62H。电感取2XL=4.940H或以上 设L=5H,C=40uF,滤波系数为0.4*5*40=80。 LC型滤波电路纹波系数r=0.47/ 滤波系数=0.47/80=0。005875=0。5875% 或直接用r=1。175/LC=1。175/(5X80)=0。005875=0。5875% 3:CLC型滤波: CLC型滤波是在LC型滤波基础上改良的兀型滤波 CLC滤波系数:130*L*C1*C2*RL/1000000 CLC纹波系数r=0.47 / 滤波系数r=3615/(C1*L*C1*RL)(C=uF) C滤波 LC滤波 CLC滤波

BUCK电路降纹波的详解

详细解析Buck电路开关电源纹波的有效抑制方法 2013-10-11 09:51 来源:电源网作者:云际 开关电源具有效率高、输出电压可调范围大、损耗小、体积小、重量轻等特点,得到了广泛的应用。由于开关电源体积小,输出直流电压的纹波含量比同功率线性电源大,如何降低纹波含量成为开关电源应用及制造技术中的一个关键技术难点。本文通过对Buck电路的分析,找出对纹波的产生有影响的因素及改善的措施。 纹波的定义 Buck类型开关电源的拓扑结构如图1所示。 通常情况下,开关电源首先把电网电压全波整流变为直流电,经高频开关变换由变压器降压,经高频二极管整流滤波后,得到稳定的直流电压输出。其自身含有大量的谐波干扰,同时由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰都形成了电磁干扰源,这些尖峰就是输出纹波。输出纹波主要来源于4个方面:低频纹波、高频纹波、共模纹波、功率器件开关过程中产生的超高频谐振等。 Buck电路产生纹波的机理及计算 1、纹波电流计算 电感的定义:

λ为线圈磁链、N为线圈匝数、i为流经线圈的电流、Φ为线圈磁通。如果式(1)两端以时间t为变量进行微分计算,可得: 这便是大家所熟知的电感电压降回路方程。 现在假设对于每个单独的开关周期,在开关管导通状态和关断状态,输入输出电压都基本没有变化,可以写出导通状态和关断状态时的L两端的电压。 导通状态L两端的电压: 关断状态L两端的电压: Vsat为开关管的导通压降;VF为二极管的导通压降。 由于Vsat和VF相对于Vi和Vo很小,这里忽略不计,可以得到: 可以看出Von和Voff都是常数,即对于 不论在导通状态还是在关断状态都有:

纹波对电路的影响

纹波对电路的影响 The manuscript was revised on the evening of 2021

开关电源纹波的产生 我们最终的目的是要把输出纹波降低到可以忍受的程度,达到这个目的最根本的解决方法就是要尽量避免纹波的产生,首先要清楚开关电源纹波的种类和产生原因。 上图是开关电源中最简单的拓扑-buck降压型电源。 随着SWITCH的开关,电感L中的电流也是在输出电流的有效值上下波动的。所以在输出端也会出现一个与SWITCH同频率的纹波,一般所说的纹波就是指这个。它与输出电容的容量和ESR有关系。这个纹波的频率与开关电源相同,为几十到几百KHz。 另外,SWITCH一般选用双极性晶体管或者MOSFET,不管是哪种,在其导通和截止的时候,都会有一个上升时间和下降时间。这时候在电路中就会出现一个与SWITCH上升下降时间的频率相同或者奇数倍频的噪声,一般为几十MHz。同样二极管D在反向恢复瞬间,其等效电路为电阻电容和电感的串联,会引起谐振,产生的噪声频率也为几十MHz。这两种噪声一般叫做高频噪声,幅值通常要比纹波大得多。 如果是AC/DC变换器,除了上述两种纹波(噪声)以外,还有AC噪声,频率是输入AC电源的频率,为50~60Hz左右。还有一种共模噪声,是由于很多开关电源的功率器件使用外壳作为散热器,产生的等效电容导致的。 因为本人是做汽车电子研发的,对于后两种噪声接触较少,所以暂不考虑。开关电源纹波的抑制 对于开关纹波,理论上和实际上都是一定存在的。通常抑制或减少它的做法有三种: 1,加大电感和输出电容滤波

根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。 左图是开关电源电感L内的电流波形,其纹波电流△I可由下式算出: 可以看出,增加L值,或者提高开关频率可以减小电感内的电流波动。 同样,输出纹波与输出电容的关系:vripple=Imax/(Co×f)。 可以看出,加大输出电容值可以减小纹波。 通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。但是电解电容在抑制高频噪声方面效果不是很好,而且ESR也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。 同时,开关电源工作时,输入端的电压Vin不变,但是电流是随开关变化的。这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK型为例,是SWITcH附近),并联电容来提供电流。 应用该对策后,BUCK型开关电源如下图所示: 1?小时前上传 上面这种做法对减小纹波的作用是有限的。因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。所以在要求比较严格时,这种方法并不是很好。 关于开关电源的原理等,可以参考各类开关电源设计手册。2,二级滤波,就是再加一级LC滤波器 LC滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。

最少拍无纹波控制器的设计

目录 前言:.................................................... 错误!未定义书签。 1 课题简介................................................ 错误!未定义书签。课程设计目的....................................................... 错误!未定义书签。课程设计内容....................................................... 错误!未定义书签。 2 最小拍无纹波系统控制算法设计............................ 错误!未定义书签。设计原理........................................................... 错误!未定义书签。算法实现........................................................... 错误!未定义书签。 3 最小拍无纹波控制软件编程设计............................ 错误!未定义书签。运用simulink进行仿真.............................................. 错误!未定义书签。程序仿真........................................................... 错误!未定义书签。 4 结果分析................................................ 错误!未定义书签。5最少拍无纹波控制系统对典型输入的适应性问题 .............. 错误!未定义书签。6设计总结 ................................................ 错误!未定义书签。参考文献.................................................. 错误!未定义书签。

纹波电容计算

本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位 W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为: 充电电流的峰值为 dU 是纹波电压( U max – U min)

则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度: 其中: Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。 Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。 P Loss 为纹波电流的中损耗。 4 、计算电容寿命 得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:

纹波对电路的影响

开关电源纹波的产生 我们最终的目的是要把输出纹波降低到可以忍受的程度,达到这个目的最根本的解决方法就是要尽量避免纹波的产生,首先要清楚开关电源纹波的种类和产生原因。 上图是开关电源中最简单的拓扑结构-buck降压型电源。 随着SWITCH的开关,电感L中的电流也是在输出电流的有效值上下波动的。所以在输出端也会出现一个与SWITCH同频率的纹波,一般所说的纹波就是指这个。它与输出电容的容量和ESR有关系。这个纹波的频率与开关电源相同,为几十到几百KHz。 另外,SWITCH一般选用双极性晶体管或者MOSFET,不管是哪种,在其导通和截止的时候,都会有一个上升时间和下降时间。这时候在电路中就会出现一个与SWITCH上升下降时间的频率相同或者奇数倍频的噪声,一般为几十MHz。同样二极管D在反向恢复瞬间,其等效电路为电阻电容和电感的串联,会引起谐振,产生的噪声频率也为几十MHz。这两种噪声一般叫做高频噪声,幅值通常要比纹波大得多。 如果是AC/DC变换器,除了上述两种纹波(噪声)以外,还有AC噪声,频率是输入AC 电源的频率,为50~60Hz左右。还有一种共模噪声,是由于很多开关电源的功率器件使用外壳作为散热器,产生的等效电容导致的。 因为本人是做汽车电子研发的,对于后两种噪声接触较少,所以暂不考虑。开关电源纹波的抑制 对于开关纹波,理论上和实际上都是一定存在的。通常抑制或减少它的做法有三种:1,加大电感和输出电容滤波 根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

左图是开关电源电感L内的电流波形,其纹波电流△I可由下式算出: 可以看出,增加L值,或者提高开关频率可以减小电感内的电流波动。 同样,输出纹波与输出电容的关系:vripple=Imax/(Co×f)。可以看出,加大输出电容值可以减小纹波。 通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。但是电解电容在抑制高频噪声方面效果不是很好,而且ESR也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。 同时,开关电源工作时,输入端的电压Vin不变,但是电流是随开关变化的。这时输入电源不会很好地提供电流,通常在靠近电流输入端(以BucK型为例,是SWITcH附近),并联电容来提供电流。 应用该对策后,BUCK型开关电源如下图所示: 1 小时前上传 下载附件(18.55 KB) 上面这种做法对减小纹波的作用是有限的。因为体积限制,电感不会做的很大;输出电容增加到一定程度,对减小纹波就没有明显的效果了;增加开关频率,又会增加开关损失。所以在要求比较严格时,这种方法并不是很好。 关于开关电源的原理等,可以参考各类开关电源设计手册。2,二级滤波,就是再加一级LC滤波器 LC滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。 但是,这种情况下需要考虑反馈比较电压的采样点。(如下图所示)

纹波电流计算例子

电容器纹波电流有效值的计算 要正确计算纹波电流有效值,理论上应将电容器纹波电流波形进行傅利叶分析,得出各次频率下流过电容的纹波电流值。然后求出各次频率下的电容等效串联电阻ESR。最后根据损耗相等的原则求出总的纹波电流有效值。 图1-1 图1-2 图1-1为某一电路中流过电容100μF /420V的纹波电流波形,图1-2为在某点展开时的高频电流波形,求解该电容的纹波电流有效值。 从图1-1中将高频分量去除可以得出100Hz时的电流波形,如图1-3所示: 图1-3 根据曲线可以将其分为三段来进行积分计算,具体的纹波电流有效值为: 6.068 rms I A = 其中T1=1ms(第一段的维持时间),I1=-2.6A(第一段的起始电流),I rp1=19.825+2.6=22.425A (第一段的脉动电流); T2=1.75ms(第二段的维持时间),I2=19.825A(第二段的起始电流),I rp2=-22.425A(第二段的脉动电流); T3=7.25ms(第三段的维持时间),I1=-2.6A(第三段的起始电流),I rp1=0A(第三段的脉动电流); T=10ms(总周期) 查电容手册可知CD294 400V/470μF电容在120Hz下的ESR为0.22欧。 图1-2为58.8KHz下的纹波电流叠加了一个低频电流,因此只需去除图1-2中的低频直

流分量就可以得到58.8KHz 下的纹波电流波形,如图1-4所示: 图 1-4 计算出有效值 4.863rms I A = 其中T 1=10μs (第一段的维持时间),I 1=4A (第一段的起始电流),I rp 1=0A (第一段的脉动电流) T 2=7μs (第二段的维持时间),I 1=-3.2A (第二段的起始电流),I rp 1=-5A (第二段的脉动电流) T =17μs (总周期) 考虑到在高频情况下,纹波电流波形存在毛刺,因此取有效值电流为5A 。在此频率下ESR 为20.220.1531.2 =Ω,其中1.2为频率系数,可以查电容手册得到。 两种频率下的纹波电流总共产生的损耗为:226.0680.2250.15311.925W ?+?= 根据损耗相等原则将两种频率下的纹波电流值折合成120Hz 时 的电流值7.36A =。 注:理论上计算纹波电流有效值的方法(如上所示)比较繁琐,在工程上可以通过示波器直接读出该波形的有效值,该值与理论计算出来的值相差不多。在本例中示波器读出的纹波电流有效值为6.27A 。

纹波系数

纹波就是一个直流电压中的交流成分。直流电压本来应该是一个固定的值,但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不彻底,就会有剩余的交流成分,即使采用电池供电也会因负载的波动而产生波纹。事实上,即便是最好的基准电压源器件,其输出电压也是有波纹的。 狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。 我国工频频率是50Hz,所以纹波电压以工频50Hz或50Hz的整数倍计取。具体取50Hz 还是50Hz的倍数,取决于整流电路的类型。对于半波整流,取50Hz;对于全波整流,取50Hz 的2倍即100Hz;对于三相半波整流,取50Hz的3倍即150Hz;对于三相全波整流,取50Hz 的6倍即300Hz。 对于日本、欧美等国家,使用60Hz工频,计取方式只需把上述的50改为60即可。 纹波电压通常用有效值或峰值表示。

相关测量 可以先用示波器将整个波形捕获,然后将关心的纹波部分放大来观察和测量(自动测量或光标测量均可),同时还要利用示波器的FFT功能从频域进行分析。 1.最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既 y=Urms/Uo x100% 3.纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输入电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即: 纹波电压抑制比=Ui~/Uo~ 。 这里声明一下:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下

电解电容器中的纹波电流和额定纹波电流

电解电容詣中的纹波电流和颔定纹波电流 电解电容器在使用过程。加在电解电容器两端的电压随时间波动变化,忽高忽低,电容器就产生充放电,有电荷流动,形成电流,电解电容器上这个高低不停变化的电压,其随时间变化的曲线类似在平静的池塘面投下一块石子,石子在水面激起的一圈圈链漪有波峰也有波谷。于是人们形象的把电解电容器两端的这种电压称纹波电压,由纹波电压所加在电容器上,电容器就进行充放电,由此在电容器中形成的电流就形象的称之为纹波电流。电解电容器中的纹波电流I和其两端的纹波电压V及容量C,其上的电量Q有下面的关系:???C=Q∕V=( dQ∕dt)∕(dV∕dt) dQ∕dt=l ???I= C*(dV∕dt) 电解电容器在使用过程中有一个重要参数:电解电容器 的额定纹波电流,该参数不同的厂家有不同的值,就是同一厂家同一规格不同系列的产品,其额定的纹波电流也不一定相同。它是由电解电容器制造商给出的。电解电容器中的纹波电流和其额定纹波电流是两个不同的概念。 电解电容器的额定纹波电流的确定,主要是根据该规格电解电容 器的用途及使用条件及工作时间(俗称寿命)来和电容器自身的材料性能由电解电容制造商来确定的O 在确定某一规格电解电容器的额定纹波电流需要考虑的因素有以 下几点。 K电解电容器的寿命,它是电解电容器制造商对用户的承诺,简单点讲就 是电容器在一定使用条件所能有效工作的时间,也是用户进行电解电容选型

的重要观注点之一,这个一般各制造商在其产品手册上者0会给出O 2、电解电容的等效串联电阻ESR, ESR大小决定了纹波电流在电解电容器中的发热量的大小。 理论上讲纹波电流在电解电容器中产生的热量(单位时间里): Q-I2*ESR 这里I是纹波电流的有效值。ESR是电容器的等效串联电阻。 3、电解电容在上限温度时,电解电容内部的压力。 当工作时,电解电容工作时所处的环境温度比较高。由于电解电容器自身的损耗发热,其内部的温度比处的环境温度要高,一般的湿式电解电容器的液态电解液都会产汽化,产生一定的蒸汽压,该蒸汽压和被封在电解电容器内部的空气所产生的压力构成了电解电容内部的总压力,各种分压的大小遵从道尔顿分压定理。内部总压力不能大于电解电容器铝壳安全阀的抗压强度,否则安全阀会开启,电解电容器失效。电解电容器内部压力和外部压力差是造成电解液泄漏的原因。 4、电解电容的密封特性。 由于电解电容的电解液是液态的,电解电容在工作时,电解液汽化产生蒸汽压,为防止电解液逃逸造成电解失效,就用铝壳和胶盖将芯子密封起来,胶盖与铝壳和芯子铝梗的密封,是一种非匹配密封,都会有一定的泄露,泄露的大小除与胶盖材质封接表面光洁度,铝壳铝梗表面光洁度,封口工艺,铝

相关文档
最新文档