变压器保护校验方法概要

变压器保护校验方法概要
变压器保护校验方法概要

RCS-978系列变压器保护测试

一、RCS-978型超高压线路成套保护

RCS-978配置:

主保护:稳态比率差动,工频变化量比率差动,零序比率差动,

谐波制动,

后备保护:复合电压闭锁(启动)方向过流

零序方向过流保护

间隙零序过流过压保护

零序过压

稳态比率差动

一、保护原理

基尔霍夫电流定律,流入=流出

(1)差动元件的动作特性

在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图:

在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流;

I res.min 为最小制动电流,又称为拐点电流;

K=tan α为制动特性斜率,也称为比率制动系数。

微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为:

拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+->

式中 I op ——差动电流的幅值

I res ——制动电流的幅值

也有某些变压器差动保护采用三折线的制动曲线。

(2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取

差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例,

op h l I I I =+

在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式:

① /2res h l I I I =-

② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =--

⑤ res l I I =

二、测试要点:标么值的概念

另:注意,978可以自动辅助计算当前的差流,

但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前

X 相制动电流下的动作电流边界!!!

三、试验举例:

保护定值:动作门槛:0.3

差动速断电流:4

I 侧(Y 接线)二次侧额定电流:3.935;

II 侧(Y 接线)二次侧额定电流:3.765;

III 侧(D 接线)二次侧额定电流:3.955

由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

K2×I2”;“制动电流Ir ”为“(|K1×I1|+|K2×I2|)/K ”;“K1=”“K2=”分别为各二次侧额定电流的倒数;“K =”为2。

3.选择高压侧对低压侧Y/D ,补偿系数k1=1/3.935=0.2541,补偿系数k2=1/3.955=0.2528

4.在“I1,2接线”页面,选择“变压器方式”为“Y/D-11”。

5.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“4.0A ”;设置“步长”为“0.1A ”。

6.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“0.3”;有些保护需要复归,则设置“间断时间”大于复归时间。(注:以上电流值的单位没有意义,都是标么值)

7.开始试验

工频变化量比率差动

一、保护原理

12max{|||...|}r m I I I I φφφ?=?+?++?

12...d m I I I I ?=?+?++?

1......

m I ?分别为变压器各侧电流的工频变化量。d I ?为差动电流的工频变化量。r I ?为制动电流的工频变化量,取最大相制动。

二、试验举例

南京南瑞继保RCS -978系列变压器成套保护装置

工频变化量比率差动不需要用户整定。

保护定值清单:动作门槛:0.2标么值

I 侧(Y 接线)二次侧额定电流:3.935;

II 侧(Y 接线)二次侧额定电流:3.765;

III 侧(D 接线)二次侧额定电流:3.955 由于该保护使用变化量启动,则如果负荷电流为零时,和稳态比率差动相同。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+K2×I2”;“制动电流Ir ”为“Max(|K1×I1|,|K2×I2|)”;“K1=”“K2=”分别为各二次

侧额定电流的倒数。

3.在“I1,2接线”页面,选择“变压器方式”为“Y/D-11”。

4.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“4.0A ”;设置“步长”为“0.1A ”。

5.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“0.2A ”;有些保护需要复归,则设置“间断时间”大于复归时间。

6.开始试验

零序比率差动

一、保护原理

零序比率差动保护主要应用于自耦变压器。动作、制动方程如下:

001020max{,,}r cw I I I I =

001020d cw I I I I =++

其中01020,,cw I I I 分别为I 侧、II 侧和公共绕组侧零序电流;0d I 为零序差动电流;0r I 为零序差动制动电流。

二、试验举例

南京南瑞继保RCS -978系列变压器成套保护装置

保护定值清单:零序比率差动启动定值:5.0A (1.0In,In=5.0A )

零差I 侧平衡系数:1

零差II 侧平衡系数:2

零差公共侧平衡系数:2

由于该保护的补偿系数。由于单相故障时的故障电流就是零序电流,则测试仪输出给保护的电流,在高压侧和低压侧都只接A (x )相电流。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+K2×I2”;“制动电流Ir ”为“Max(|K1×I1|,|K2×I2|)”;“K1=”“K2=”分别为各侧零差补偿系数。

3.在“I1,2接线”页面,选择“变压器方式”为“Y/Y-12”,没有相位补偿。

4.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“6.0A ”;设置“步长”为“0.1A ”。

5.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“5.0A ”;有些保护需要复归,则设置“间断时间”大于复归时间。

6.开始试验

注:如果零序比率差动启动定值大于0.5In ,则其拐点电流自动设为In 。否则拐点电流为0.5In

分侧差动保护原理

一、保护原理

12max{,,}r cw I I I I =

12d cw I I I I =++

其中12,,cw I I I 分别为I 侧、II 侧和公共绕组侧零序电流;d I 为零序差动电流;r I 为零序差动制动电流。

二、试验举例

南京南瑞继保RCS -978系列变压器成套保护装置

保护定值清单:分侧差动启动定值:1.5A

分侧差动比率制动系数:

由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。

1.选择“差动菜单”——“扩展差动”

2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+K2×I2”;“制动电流Ir ”为“Max(|K1×I1|,|K2×I2|)”;“K1=”“K2=”分别为各二次侧额定电流的倒数。

3.在“I1,2接线”页面,选择“变压器方式”为“Y/Y-12”。

4.在“固定Ir ”页面,设置“变化范围”为“0.0A ”至“12.0A ”;设置“步长”为“1.0A ”。

5.在“搜索Id ”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“1.5A ”;有些保护需要复归,则设置“间断时间”大于复归时间。

6.开始试验

注:如果分侧差动启动定值大于0.5In ,则其拐点电流自动设为In 。否则拐点电流为0.5In

谐波制动

一、保护原理

RCS-978系列变压器成套保护装置采用三相差动电流中二次谐波、三次谐波的含量来识别励磁涌流。当谐波的大小超过一定的差流基波含量时,判别为励磁涌流。当三相中某一相被判别为励磁涌流,只闭锁该相比率差动元件。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:二次谐波制动系数:0.15

动作门槛:0.3标么值

1.选择“差动菜单”——“扩展差动”

2.在“Id,r定义”页面,选择“测试项目”为“谐波制动”;

3.在“I1,2接线”页面,选择“变压器方式”为“Y/D-11”。

4.在“搜索Id”页面,设置“搜索起点”为“10.0”;“终点”为“100.0”;“动作门槛”为“1.5A”;有些保护需要复归,则设置“间断时间”大于复归时间。

5.开始试验

(注:需要将A与x相,B与y相,C与z相电流并起来,加到测试仪的一侧输出)

复合电压闭锁(启动)方向过流

一、保护原理

过流保护主要作为变压器相间故障的后备保护。复合电压指相间电压低启动过流或负序电压高启动过流,即满足以上条件时保护闭锁。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:复压闭锁负序电压:8V

复压闭锁低相间电压:60V(相当于相电压35V)

过流I段定值:3A

1.“本侧退电压硬压板”退出,“本侧退电压软压板”退出

2.选择“整组试验”菜单

3.选择“故障类型”为“任意故障”。设置故障电压为57V,三相对称,设置A相故障电流为4A,B、C相电流为零,三相对称。

4.开始试验。

5.开始试验后,等待TV断线告警结束后,进入故障状态。由于复合电压闭锁,虽然电流大于过流I段定值,保护不动作。

6.试验结束后,重新选择“故障类型”为“任意故障”。设置故障电压为20V,三相对称,设置A相故障电流为4A,B、C相电流为零,三相对称。

7.开始试验后,等待TV断线告警结束后,进入故障状态。此时复合电压闭锁解除,过流I段动作。

零序方向过流保护

一、保护原理

零序过流保护,主要作为变压器中性点接地运行时接地故障后备保护。通过整定控制字可控制各段零序过流是否经方向闭锁,是否经零序电压闭锁,是否经谐波闭锁,是否投入,跳哪几侧开关。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:零序I段定值:2A

零序电压闭锁定值:10V

1.“本侧退电压硬压板”退出,“本侧退电压软压板”退出。“零序I段的方向指向”置1。2.选择“整组试验”菜单

3.选择“故障类型”为“A相接地”。设置“整定阻抗”为1Ω,78°,使得零序电压大于10V。选择“故障方向”为“正向故障”。

4.开始试验。等到TV断线告警结束后进入故障,零序过流I段动作。

5.选择“故障类型”为“A相接地”。设置“整定阻抗”为1Ω,78°,使得零序电压大于10V。选择“故障方向”为“反向故障”。

6.开始试验。等到TV断线告警结束后进入故障,零序过流I段经方向闭锁,不动作。7.试验结束后,开始第三次试验。选择“故障类型”为“A相接地”。设置“整定阻抗”为15Ω,78°,使得零序电压小于10V。选择“故障方向”为“正向故障”。

8.开始试验。等到TV断线告警结束后进入故障,零序过流I段经零序电压闭锁,不动作。谐波制动测试:

1.必须使用外接零序,“零序I段用自产零序电流”置0;谐波制动含量定值为7%

2.选择“状态序列”菜单,状态1为稳态,电压为57.735V,三相对称,三相电流均为0;

状态2为故障状态,通过短路计算设置故障。短路阻抗为0.95Ω,78°,短路电流为2.5A,正向故障;Ux为54.315V,-180°。将Ix与Ia两并输出。Ix电流为0.1A,频率100Hz 3.开始试验。零序过流动作。

4.试验结束后,将Ix电流改为0.5A。开始试验,由于谐波制动,零序过流不动作。

间隙零序过流过压保护

一、保护原理

装置设有一段两时限间隙零序过流保护和一段两时限零序过压保护,来作为变压器中性点经间隙接地运行时的接地故障后备保护。间隙零序过流保护、零序过压保护动作并展宽20ms后计时。考虑到在间隙击穿过程中,零序过流和零序过压可能交替出现,装置设有“间隙保护方式”控制字。当“间隙保护方式”控制字为“1”时,零序过压和零序过流元件动作后相互保持,此时间隙保护的动作时间整定值和跳闸控制字的整定值均以间隙零序过流保护的整定值为准。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:间隙零序起动电流:1.0A

间隙过流定值:2.0A

间隙零序第一时限:0.0S

1.接上“间隙零序电流”线,Ia接I侧间隙零序电流

2.选择“电流电压”菜单

3.设置电压57.735三相对称。设置电流A相为3.0A,B、C相为0.0A.。

4.开始试验。间隙零序过流动作。

零序过压

一、保护原理

由于220kV~500kV变压器低压侧常为不接地系统,装置设有一段零序过压保护作为变压器低压侧接地故障保护。

二、试验举例

南京南瑞继保RCS-978系列变压器成套保护装置

保护定值清单:III侧零序过压启动值:10V

III侧零序过压定值:40V

III侧零序过压报警定值:20V

III侧零序过压第一时限:0.0S

III侧零序过压报警时限:0.0S

1.III侧零序电压接Ua

2.选择“电流电压”菜单

3.设置Ua为25.0V,其他相电压为零;三相电流为零;

4.开始试验。零序过压告警。

5.试验结束后,开始第二次试验。设置Ua为50.0V,其他相电压为零;三相电流为零;6.开始试验。零序过压动作。

1 母线差动保护的带负荷校验

1 母线差动保护的带负荷校验 发电厂和变电所的母线是电力系统的重要设备。如果母线故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。因此,母线差动保护正常时均需投入运行。但在新投断路器时,则应在断路器充电前将母差保护停用,带负荷后,测量保护回路的电流极性正确后再加用。因此,母线差动保护回路的电流极性正确后再加用。因此,母线差动保护带负荷校验,具体的步骤如下:①将母线差动保护停用。②进行充电操作。③使断路器带上负荷后,由继电保护人员进行检验工作。④检验保护回路的电流极性正确后,将母线差动保护加用。 母线差动保护带负荷校验时的注意事项:①母线差动保护停用的方法要正确。应先停用母差保护断路出口联接片,再停用保护直流电源。取直流电源熔断器时,应先取正极,后取负极,也可根据现场需要不停用保护直流电源。②带负荷校验时险除测定三相电路及差回路电流外,必须测中性线的不平衡电流,以确保回路的完整正确。③校验完毕,母线差动保护加用的操作要正确。先加直流电源,在检查整个保护装置正常后,使用高内阻电压表测量出口联接片两端无电压后,使用高内阻电压表测量出口联接片两端无电压后,逐一加用各断路器出口联接片。④根据母线的运行方式、母差保护的类型正确将母线差动保护投入。要特别注意断路器电压回路切换和母差失灵保护出口联接片的切换。采用隔离开关重动继电器自动切换的,要注意检查重动继电器状态,防止重动继电器不励磁或不返回。 2 主变差动保护的带负荷校验 纵联差动保护是将变压器各侧的电流互感器按差接法接线。在变压器正常和外部短路时,其各侧流入和流出的一次电流之和为零,差动继电器不动作;内部故障时,各侧所供短路电流之和,流入差动继电器,差动继电器动作切除故障。 因此,对主变差动保护带负荷校验步骤如下:①主变差动保护在主变充电时应加用,因此即使某电流回路极性不正确,在主变充电时,仍能起到保护作用。但带上负荷后,若极性不正确,就会因有差流而误动作,所以,必须在带负荷前停用;停用后,再使主变带上负荷,检测各侧电流、二次接线及极性是否正确和检测差动继电器关压是否满足要求。②检验电流极性是否正确的方法一般采用测量电流相应(通称测六角图)的方法,高压侧对中压侧(低压侧断开)和高压侧对低压侧(中压侧断开)同相电流的相互差180°为正确。③六角图正确,还不能保证差动保护 继电器内部接线正确,因此,还应测差回路的不平衡电流或电压,证实二次接线及极性正确无误后,方可将差动保护投入运行。 主变差动保护校验时的注意事项:①变压器空载投入时,励磁涌流的值可达6 ~倍额定电流。励磁涌流的大小、波形与合闸前铁心内剩磁、合闸初相角、铁心饱 和磁通、系统电压和联系阻抗、变压器三相接线方式和铁心结构形式、电流互感器饱和特性和二次三相接线方式等因素有关。变压器空载合闸时的励磁涌流有可能使主变差动保护动作,但这不能用来判断就是电流回路或继电器内部接线错误,相反可以用来检查差动继电器的选型、整定、接线是否符合要求。②新投变压器充电,应将变压器的所有保护全部加用,差动保护、零序保护即使不能保证其极性正确也应加用。轻瓦斯保护采用短接线接跳闸回路,充电完毕后拆除短接线,恢复到原信号位置。③差动保护带负荷测试内容有两项:一是差动回路“六角相位”,以判别 差另回路接线的正确性,如TA极性接错与否,联接线别或相位正确与否,其二是继

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

变压器保护校验方法

RCS-978系列变压器保护测试 一、RCS-978型超高压线路成套保护 RCS-978配置: 主保护:稳态比率差动,工频变化量比率差动,零序比率差动, 谐波制动, 后备保护:复合电压闭锁(启动)方向过流 零序方向过流保护 间隙零序过流过压保护 零序过压 稳态比率差动 一、保护原理 基尔霍夫电流定律,流入=流出 (1)差动元件的动作特性 在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图: 在上图中,I op.min 为差动元件起始动作电流幅值,也称为最小动作电流; I res.min 为最小制动电流,又称为拐点电流; K=tan α为制动特性斜率,也称为比率制动系数。 微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。 动作特性为: 拐点前(含拐点): .min .min ()op op res res I I I I ≥≤

拐点后: .min .min .min () ()op op res res res res I I K I I I I ≥+-> 式中 I op ——差动电流的幅值 I res ——制动电流的幅值 也有某些变压器差动保护采用三折线的制动曲线。 (2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取 差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。 以双绕组变压器为例, op h l I I I =+ 在微机保护中,变压器制动电流的取得方法比较灵活。国内微机保护有以下几种取得方式: ① /2res h l I I I =- ② ()/2res h l I I I =+ ③ max{,}res h l I I I = ④ ()/2res op h l I I I I =-- ⑤ res l I I = 二、测试要点:标么值的概念 另:注意,978可以自动辅助计算当前的差流, 但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前 X 相制动电流下的动作电流边界!!! 三、试验举例: 保护定值:动作门槛:0.3 差动速断电流:4 I 侧(Y 接线)二次侧额定电流:3.935; II 侧(Y 接线)二次侧额定电流:3.765; III 侧(D 接线)二次侧额定电流:3.955 由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定电流的倒数。 1.选择“差动菜单”——“扩展差动” 2.在“Id,r 定义”页面,选择“测试项目”为“比例制动”;“动作电流Id ”为“K1×I1+

继电保护校验规程.

继 电 保 护 校 验 规 程 无为严桥风电场2016年5月

目录 1范围 (1) 2规范性引用文件 (1) 3总则 (1) 4检验种类及周期 (2) 5检验工作应具备的条件 (4) 6现场检验 (5) 7本厂自动化系统、继电保护及故障信息管理系统的检验 (13) 8装置投运 (13) 9极化继电器的检验 (15) 10电磁型保护的检验 (24) 12 厂站自动化系统中的各种测量、控制装置的检验项目 (26)

继电保护校验规程 1范围 本标准规定了华电福新安徽新能源有限公司无为严桥风电场继电保护及其二次回路接线(以下简称装置)检验的周期、内容及要求。本标准适用于华电福新安徽新能源有限公司无为严桥风电场继电保护运行的维护和管理。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7261—2000 继电器及装置基本试验方法 GB/T 14285—2006 继电保护及安全自动装置技术规程 DL/527—2002 静态继电保护装置逆变电源技术条件 3总则 3.1本标准是继电保护及电网安全自动装置在检验过程中应遵守的基本原则。 3.2本标准中的电网安全自动装置,是指在电力网中发生故障或出现异常运行时,为确保电网安全与稳定运行,起控制作用的自动装置,如自动重合闸、备用电源或备用设备自动投入、自动切负荷、低频和低压自动减载、电厂事故减出力、切机等。 3.3各级继电保护管理及运行维护部门,应根据当地电网具体情况并结合一次设备的检修合理地安排年、季、月的保护装置检验计划。相关调度部门应予支持配合,并作统筹安排。 3.4装置检验工作应制定标准化的作业指导书及实施方案,其内容应符合本标准。 3.5检验用仪器、仪表的准确级及技术特性应符合要求,并应定期校验。 3.6微机型装置的检验,应充分利用其“自检”功能,着重检验“自检”功

浅论变压器电量保护(微机保护继电器)调试及计算方法

浅论变压器电量保护(微机保护继电器)调试及计算方法 【摘要】随着变压器保护装置种类的不断增多,保护功能的不断强大,微机继电保护装置正日趋完善,变压器的电量保护作为大容量变压器的主要保护类型,其调试和计算则成为整个继电保护调试中的重要环节。电量保护主要分为差动保护、复合电压闭锁过电流保护、速断保护、过负荷保护等,这些保护对变压器的稳定运行起着至关重要的作用,是电力系统正常运行的重要保障。因此,如何对变压器电量保护进行正确调试和计算,使继电保护装置正常运行,则成为我们所探讨的重要技术论题。本文将重点论述变压器差动、复合电压闭锁过电流、过负荷等变压器电量保护的调试和计算方法,以在交接和预防性试验中保证继电保护装置的正确调试。 【关键词】差动保护比率制动复合电压闭锁过流调试计算差动继电器后备保护 随着电网系统运行方式的不断更新,电气设备及各种用电负荷的继电保护类型也逐渐增多,其中变压器保护在各种继电保护中显得格外重要,变压器保护的项目、类型及计算方法决定了被保护的设备或电网系统是否能正常运行。下面将就各种变压器保护项目、调试和计算方法进行详细说明。 1 变压器差动保护的原理及特点 双绕组变压器的纵联差动保护单相原理接线如图1所示,它是按比较被保护变压器两侧电流的大小和相位的原理来实现的。变压器两侧各装设一组电流互感器1TA、2TA,其二次侧按环流法接线,即若变压器两端的电流互感器一次侧的正极性的线圈并联接入,构成纵联差动保护。其保护范围为两侧电流互感器1TA、2TA的全部区域,包括变压器的高、低压绕组、引出线及套管等。 从图1中可见,正常运行和外部短路时,因变压器两侧绕组接线不同而产生电流流过电流继电器(差动保护继电器)。流过差动继电器的电流,在理想情况下,其值等于零。但实际上由于两侧电流互感器特性不可能完全一致等原因,仍有差动电流流过差动回路,即为不平衡电流,此时流过差动继电器的电流为=(此公式表示相量之差),要求不平衡电流应尽可能小,保证保护装置不会误动作。当变压器内部发生相间短路时,在差动回路中由于改变了方向或等于零(无电源侧),这时流过差动继电器的电流为与之和,即=+(此公式表示相量之和) 由于Yd11接线变压器两侧线电流之间有30°的相位差,如果两侧的电流互感器采用相同的接线方式,将会在差动回路中产生很大的不平衡电流。 该电流为短路点的短路电流,使差动继电器KD可靠动作,并作用于变压器两侧断路器跳闸。 补偿方法为:将变压器星形侧的电流互感器接成三角形,而将变压器三角形

高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项 差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。 差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。微机保护一般采用分相比差流方式。 图1 电动机差动保护单线原理接线图 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。图1所示为电动机纵差保护单线原理接线图。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置

差动保护校验

高压侧平衡系数为1; 中压侧平衡系数为MTA/HTA(即中压侧的TA变比与高压侧TA变比的比值); 中性点平衡系数为LTA/HTA(即中性点TA变比与高压侧TA变比的比值); 3.3 零序差动保护调试步骤 3.3.1 电流通道采样精度的校验 3.3.1.1分别从保护装置各侧电流端子处通入三相对称电流,校验装置三相电流及零序电流的采样精度。 3.3.2.2分别从保护装置各侧电流端子处通入单相电流,察看零序电流显示是否精确。 3.3.2 差动电流定值及差速电流定值的校验 3.3.2.1从保护装置高压侧电流端子处通入单相电流,电流大小为1.05倍的I0cd(I0sd)以及0.95倍的I0cd(I0sd),校验1.05倍定值可靠动作,0.95倍的定值可靠不动作。 3.3.2.2从保护装置中压侧电流端子处通入单相电流,电流大小为1.05倍的I0cd*中压侧平衡系数(I0sd*中压侧平衡系数)以及0.95倍的I0cd*中压侧平衡系数(I0sd*中压侧平衡系数),校验1.05倍定值可靠动作,0.95倍的定值可靠不动作。 3.3.2.3从保护装置中性点电流端子处通入单相电流,电流大小为1.05倍的I0cd*中性点平衡系数(I0sd*中性点平衡系数)以及0.95倍的I0cd*中性点平衡系数(I0sd*中性点平衡系数),校验1.05倍定值可靠动作,0.95倍的定值可靠不动作。 3.3.3 零序比率制动元件的校验 分别以高压侧对中压侧、高压侧对中性点、中压侧对中性点两侧比率制动校验比率制动特性曲线。

图4 特性曲线标注 3.3.3.1如图4所示,在横坐标上(制动电流)分别取几个点例如取Ir1= I0zd,Ir2=2 I0zd,Ir3=3 I0zd,Ir4=3.2 I0zd,根据曲线特性计算相对应的 Id1,Id2,Id3,Id4,由Id=|I01+ I02 |;Ir=max(|I01|,|I02|),已知Id 、Ir,可求出I01 和I02。 3.3.3.2将求出的一组值加入装置,校验正确性。例如,若校验中压侧制动高压侧时,当I01 >I02时,将I01加入中压侧电流通道中(此电流加入前需乘以中压侧平衡系数),在高压侧电流通道中加入比I02小的一个电流值,此时,零序差动保护不动作,将此值设为变量并逐渐抬高,当抬高到I02附近值时,零序差动保护动作,证明这组值是正确的。 3.3.3.3按照上述方法校验其他几组值,通过这几组值可以确定曲线,进而校验比率特性的正确性。 以上在校验差动定值时,中性点应保证始终有流,所以在做中压侧零序电流制动高压侧零序电流时,应考虑中性点电流的影响。

继电保护装置带电负荷校验的步骤及注意事项.docx

继电保护装置带电负荷校验的步骤及注意事项摘要:继电保护对于电力设备及变电站的安全、可靠运行具有重要意义,因此要重视校验电力系统中的继电装置,以确保继电装置的保护作用能够得到充分的发挥。为了提高继电装置校验水平,本文结合实际工作经验,对带电符合校验的具体步骤以及注意事项进行了分析,以供参考。 一、带电负荷校验的作用 带电负荷校验是建设电力系统时必须开展的一项工作,只有进行负荷校验才能够有效判断竣工后的输电工程、投入使用的新型电力设备是否处于正常工作状态。在进行负荷校验的过程中,控制好继电装置,使其处于可靠运行以及安全运行状态,是保障电力工程当中的一次设备能够投入使用的前提条件,同时也是校验二次设备运行质量的重要途径。此外,在建设电力基础设施的过程中,也必须开展负荷校验工作,只有校验带电负荷,才能够对电力系统当中的接线方式以及保护装置设计方案进行有效检查,便于及时找出错误的接线方式,并完善保护装置设计方案。 二、继电保护装置带电负荷校验的步骤及注意事项分析 1.母线差动保护的带负荷校验 发电厂和变电所的母线是电力系统的重要设备。如果母线故障不能迅速地被切除,将会引起事故扩大,破坏电力系统的稳定运行,造成电力系统的瓦解事故。因此,母线差动保护正常时均需投入运行。但在新投断路器时,则应在断路器充电前将母差保护停用,带负荷后,测量保护回路的电流极性正确后再加用。因此,母线差动保护回路的电流极性正确后再加用。因此,母线差动保护带负荷校验,具体的步骤如下: ①母线差动保护停用。 ②进行充电操作。

③使断路器带上负荷后,由继电保护人员进行检验工作。 ④检验保护回路的电流极性正确后,将母线差动保护加用。 ⑤母线差动保护带负荷校验时的注意事项: ⑥母线差动保护停用的方法要正确。应先停用母差保护断路出口联接片,再停用保护 直流电源。取直流电源熔断器时,应先取正极,后取负极,也可根据现场需要不停 用保护直流电源。 ⑦带负荷校验时险除测定三相电路及差回路电流外,必须测中性线的不平衡电流,以 确保回路的完整正确。 ⑧校验完毕,母线差动保护加用的操作要正确。先加直流电源,在检查整个保护装置 正常后,使用高内阻电压表测量出口联接片两端无电压后,使用高内阻电压表测量 出口联接片两端无电压后,逐一加用各断路器出口联接片。 ⑨根据母线的运行方式、母差保护的类型正确将母线差动保护投入。要特别注意断路 器电压回路切换和母差失灵保护出口联接片的切换。采用隔离开关重动继电器自动 切换的,要注意检查重动继电器状态,防止重动继电器不励磁或不返回。 2.主变差动保护的带负荷校验 纵联差动保护是将变压器各侧的电流互感器按差接法接线。在变压器正常和外部短路时,其各侧流入和流出的一次电流之和为零,差动继电器不动作;内部故障时,各侧所供短路电流之和,流入差动继电器,差动继电器动作切除故障。 因此,对主变差动保护带负荷校验步骤如下: ①变差动保护在主变充电时应加用,因此即使某电流回路极性不正确,在主变充电时, 仍能起到保护作用。但带上负荷后,若极性不正确,就会因有差流而误动作,所以, 必须在带负荷前停用;停用后,再使主变带上负荷,检测各侧电流、二次接线及极

母线差动保护原理及说明书。

3.2 原理说明 3.2.1 母线差动保护 母线差动保护由分相式比率差动元件构成,TA 极性要求支路TA 同名端在母线侧,母联TA 同名端在Ⅰ母侧。差动回路包括母线大差回路和各段母线小差回路。母线大差是指除母联开关和分段开关外所有支路电流所构成的差动回路。某段母线的小差是指该段母线上所连接的所有支路(包括母联和分段开关)电流所构成的差动回路。母线大差比率差动用于判别母线区内和区外故障,小差比率差动用于故障母线的选择。 1)起动元件 a )电压工频变化量元件,当两段母线任一相电压工频变化量大于门坎(由浮动门坎和固定门坎构成)时电压工频变化量元件动作,其判据为: △u >△U T +0.05U N 其中:△u 为相电压工频变化量瞬时值;0.05U N 为固定门坎;△U T 是浮动门坎,随着变化量输出变化而逐步自动调整。 b )差流元件,当任一相差动电流大于差流起动值时差流元件动作,其判据为: Id > I cdzd 其中:Id 为大差动相电流;I cdzd 为差动电流起动定值。 母线差动保护电压工频变化量元件或差流元件起动后展宽500ms 。 2)比率差动元件 a ) 常规比率差动元件 动作判据为: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2)

其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。) 其动作特性曲线如图3.2所示。 ∑j I j I cdzd I 图3.2 比例差动元件动作特性曲线 为防止在母联开关断开的情况下,弱电源侧母线发生故障时大差比率差动元件的灵敏度不够,大差比例差动元件的比率制动系数有高低两个定值。母联开关处于合闸位置以及投单母或刀闸双跨时大差比率差动元件采用比率制动系数高值,而当母线分列运行时自动转用比率制动系数低值。 小差比例差动元件则固定取比率制动系数高值。 b ) 工频变化量比例差动元件 为提高保护抗过渡电阻能力,减少保护性能受故障前系统功角关系的影响,本保护除采用由差流构成的常规比率差动元件外,还采用工频变化量电流构成了工频变化量比率差动元件,与制动系数固定为0.2的常规比率差动元件配合构成快速差动保护。其动作判据为: cdzd T m j j DI DI I +?>?∑=1 (1) ∑∑==?'>?m j j m j j I K I 1 1 (2) 其中K '为工频变化量比例制动系数,母联开关处于合闸位置以及投单母或刀闸双跨时K '取0.75,而当母线分列运行时则自动转用比率制动系数低值,小差则固定取0.75;△I j 为第j 个连接元件的工频变化量电流;△DI T 为差动电流起动浮动门坎;DI cdzd 为差流起动的固定门坎,由I cdzd 得出。 3)故障母线选择元件

220kV线路保护检验方法

注意:在试验接线中,将试验仪的UZ接于保护的开口三角电压回路L。 1、纵联方向保护检验:仅投入主保护压板1LP18 (1)短接11D8—11D36,11D9—11D37;1D48—1D55(如有收发信机则将收发信机电源给上,然后将短接片置于“负载”下。 (2)模拟A相接地故障 故障前正常负荷状态为12秒; 直接用阻抗界面时,使Z=0.95*Zzdp2=0.95*2.18=2.07Ω,Φ=Φlm,故障时间=0.1s; 用电流电压界面时,使I=3A,U=0.95*(1+0.83)*3* Zzdp2=11.37V,故障相电压超前故障相电流为零序灵敏角Ps0=80°。(非故障相电压为正常电压,非故障相电流为0A); ( (4)模拟AB相间故障 故障前正常负荷状态为12秒; 直接用阻抗界面时,使Z=0.95*Zzdpp2=0.95*4.6=4.37Ω,Φ=Φlm,故障时间=0.1s; 用电流电压界面时,使IA=3A,Uab=0.95*2*3* Zzdpp2=26.22V,故障相间电流的超前相IA滞后故障相电压超前相UA为正序灵敏角Ps1=80°,滞后相电流IB与IA 相差180°。(非故障相电压为正常电压,非故障相电流为0A); (5)模拟BC、CA相间故障,方法同上。 (6)保护信息为D++。 2、纵联零序方向保护。投入主保护压板1LP18和零序保护压板1LP17 (1)短接1D48—1D55、11D8—11D36,11D9—11D37;(如有收发信机则将收发信机电源给上,然后将短接片置于“负载”下。 (2)模拟A相接地故障 故障前正常负荷状态为12秒; 用电流电压界面时,使I=(I0zdF*1.05)A,U=53V,故障相电压超前故障相电流为零序灵敏角Ps0=80°。(非故障相电压为正常电压,非故障相电流为0A); 故障时间为0.1s 保护发单跳令。

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

一种简单验证变压器差动保护方法

一种简单验证变压器差动保护方法 发表时间:2018-11-19T10:01:19.267Z 来源:《建筑学研究前沿》2018年第19期作者:陈官喜戴景王旭峰 [导读] 变压器一次通流试验,主要是在变压器的一次侧通入一个低电压(要求容量足够大),在变压器二次侧进行三相短接。 中国核工业第五建设有限公司上海 201512 摘要:差动保护是变压器的主保护,通过在变压器高低压侧安装电流互感器,将大电流转化成小电流,再连接到保护装置里。由于电流互感器都是带极性的,互感器方向安装错误和电缆接线错误都会引起变压器差动保护误动作。为了验证差动保护的正确性,一般在变压器投用前需做一次通流试验。然而对于容量大、电压等级高的大型变压器,进行一次通流时,对试验电源的容量要求高,且由于要在变压器二次侧进行短路试验,对试验电源输出电压要求线性可调。在某国外项目部,启备变联结组别为YNyn0-yn0+d,由于试验电源无法满足启备变的一次通流试验,针对该类型变压器,采用了一种简易的通流方法验证变压器差动保护。 关键词:变压器;差动保护;一次通流 变压器一次通流试验,主要是在变压器的一次侧通入一个低电压(要求容量足够大),在变压器二次侧进行三相短接,使在变压器的高低压侧都产生一个比较大的电流,经过变压器两侧的电流互感器转化成一个可以通过仪器检测的小电流,在变压器保护机柜中验证差动保护动作的正确性。但在试验过程中,往往会由于变压器两侧一次或二次接线错误,造成在实施一次通流过程会产生很大的风险。本文介绍某国外核电厂启备变保护一次通流校验方法,通过一个很小容量的试验电源就完成了YNyn0-yn0+d型启备变通流试验,成功的解决了现场无大容量试验电源问题、减少了试验工作量和极大的降低试验风险。 1.一次通流方案设计 1.1变压器参数 图1 变压器差动保护配置形式 1.3变压器一次通流方案 根据变压器参数及差动保护配置形式,发现此类型变压器两侧的电气量方向一致,且用于差动保护电流互感器不在变压器内部。根据这些特点,可以采用电缆将变压器高低压侧短接,在开关站接地刀处通入连续可调电压,在低压侧中压开关柜里依次进行三相短接,通过电缆备用芯线将高压侧输入的电压特征量引入到低压侧,通过用高精度双钳相位表检查高低压侧电流互感器二次侧电流值与高压侧电压方向角来验证电流互感器二次接线正确性。 图2 变压器一次通流接线图 2.变压器一次通流试验验证 2.1试验准备 在一次通流试验开始前,应检查电流互感器二次接线是否准备牢靠准确,应进行电流互感器二次通流。 由于电流互感器变比较大,高压侧电流互感器变比为1200/1A,低压侧电流互感器变比为4000/1A,根据双钳相位表的测量精度,应保证电流互感器二次侧的电流要在5mA左右,折算成一次侧电流应在20A以上。在该项目部调试设备中,正好有一台15KVA三相自耦调压变压器,该变压器输出额定电流为25A,电压为0到400V。根据上述通流方案,线路中主要是感性阻抗,且阻抗非常小,通过计算发现调压变压器输出电压为7V时,三相电流为25A,折算到二次侧电流分别为20mA和5mA。 基准电压的选择。应选择一个基准电压作为参考,检查每个电流互感器二次电流与基准电压的相位角,三个相位角差值应为正序差120度。

线路保护校验方法

RCS-900系列线路保护测试 一、RCS-901A 型超高压线路成套保护 RCS-901A 配置: 主保护:纵联变化量方向,纵联零序,工频变化量阻抗; 后备保护:两段(四段)式零序,三段式接地/相间距离; 1) 工频变化量阻抗继电器: 保护原理: 故障后 F 点的电压 Uf = 0,等价于两个方向相反的电压源串联, 如果不考虑故障瞬间的暂态分量,则根据叠加定律,有 根据保护安装处的电压变化量U ?和电流变化量I ?,保护构造出一个工作电压op U ?来反映U ?和I ?,其定义为 set op Z I U U ??-?=? ,物理意义如下图所示 当故障点位于不同的位置时,工作电压op U ?具有不同的特征

正向故障: 区内 f op U U ?>? 区外 f op U U ?

)Z Z (I Z I Z I Z I U U set s set s set op +??-=??-??-=??-?=? 短路点处的电压变化量(注意:f U ?的方向!) )Z Z (I U f s f +??=? 所以:动作判据 f op U U ?≥? 等价于 s set s f Z Z Z Z +≤+, 结论:正向保护区是以(-Zs )为圆心,以 |Zset + Zs| 为半径的圆。 当测量到的短路阻抗 Zf 位于圆内(正向区内)则动作, 位于圆外(正向区外)不动; 反向故障时: 工作电压 )Z Z (I Z I Z I Z I U U set R set R set op -??=??-??-=??-?=? 短路点处的电压变化量(注意:f U ?的方向!) )Z Z (I U f R f +??-=? 所以:动作判据 f op U U ?≥? 等价于 R set R f Z Z Z )Z (-≤--, 结论:反向保护区是以 ZR 为圆心,以 |ZR –Zset|为半径的圆。 测量到的短路阻抗(-Zf )永远不可能进入位于第1象限内的动作区, 所以反向不会动作。 测试要点:由于工频变化量阻抗继电器的阻抗特性边界受电源侧等值阻抗Zs 的控制,所以不

继电保护二次核相、带负荷试验方法

核相、带负荷实验报告 一、实验介绍 核相:新发电站并网,新变电站投产前,经常要做核相试验,现场所说的核相,包括核对相序和核对相位。核对相序,主要是为了发电机、电动机的正常工作。在电力生产实践中,发电机并网前必须核对相序的试验,相序不对,发电机是无法并网的,强行并网会造成设备损坏。在电网的改造中,也应该注意保持电网原有的相序,以免给用户带来麻烦。(变电站常见的二次核相主要是指在一次同源电压下,核准不同电压互感器感应出的二次电压幅值、相序符合要求,验证电压二次回路接线正确性。) 带负荷:带电负荷校验是建设电力系统时必须开展的一项工作,只有进行负荷校验才能够有效判断竣工后的输电工程、投入使用的新型电力设备是否处于正常工作状态。在进行负荷校验的过程中,控制好继电装置,使其处于可靠运行以及安全运行状态,是保障电力工程当中的一次设备能够投入使用的前提条件,同时也是校验二次设备运行质量的重要途径。此外,在建设电力基础设施的过程中,也必须开展负荷校验工作,只有校验带电负荷,才能够对电力系统当中的接线方式以及保护装置设计方案进行有效检查,便于及时找出错误的接线方式,并完善保护装置设计方案。带负荷试验也是验证电流二次回路接线正确性的重要手段,电流回路有改动的工作在投运前均需进行带负荷试验。 二、实验目的 1. 110kV莫宁变110KV I母PT核相试验; 2. 110kV莫宁变新莫1375线带负荷试验; 3. 220kV乐新变110KV I母线PT进行核相试验,并分析故障的类型。 三、实验器材 万用表、核相矢量分析仪、钳形表、一字螺丝刀 四、实验方法 1.110kV莫宁变110KV I母PT核相试验。对110kV莫宁变110kV母设/PT 并列屏进行操作,先了解并列屏电压、电流回路接线,通过母线压变,使用万用表取莫宁变两条母线三相及三相之间的二次电压,得到数据进行分析。 2. 110kV莫宁变新莫1375线带负荷试验。先记录新莫线1375的功率流动情况,以从母线流到线路为正方向,P=-3 3.44MW,Q=8.56Mvar,线路电流为I=252.57A。对110kV莫宁变#1主变保护屏进行操作。使用核相分析仪分别测量高压侧ABC三相新莫线1375电流以及莫宁变低压侧三相电压以及同相电流与电压的角度差。测试原理图如图1所示。

线路保护检验作业指导书

(工程名称) 110kv~500kV线路保护检验作业指导书 编码:BDECSY-01 二○一○年十月

作业指导书签名页

目录 1.适用范围 (1) 2. 编写依据 (1) 3. 作业流程............................................................................................. 错误!未定义书签。 作业(工序)流程图 ..................................................................................... 错误!未定义书签。 4. 安全风险辨析与预控 (3) 5. 作业准备 (4) 5.1 人员配备 (4) 5.2 工器具及仪器仪表配置 (4) 6. 作业方法 (4) 6.1作业条件检查 (4) 6.2通电前检查: (5) 6.3绝缘检查 (5) 6.4通电检查 (5) 6.5保护装置校验 (5) 6.6 保护通道联调: (7) 6.6整组传动试验: (7) 6.7电流电压回路检查: (8) 6.9受电前检查: (8) 7. 质量控制措施及检验标准 (8) 7.1质量控制措施 (8) 7.2质量控制表单 (9) 7.3检验标准 (9)

1.适用范围 本作业指导书适用变电工程110kV~500kV线路保护调试,编写时按110kV~500kV线路保护功能编制,现场可根据实际情况进行删减和补充。 2. 编写依据

3. 作业流程 作业(工序)流程图 图3-1 线路保护作业流程图

继电保护检验项目及要求.(DOC)

继电保护检验项目及要求 7.1 检验种类及期限 所有继电保护装置与电网安全自动保护装置及其回路接线(以后简称保护装置),必须按《继电保护及电网安全自动保护装置检验条例》的要求进行检验,以确保保护装置的元件良好,回路接线、定值及特性等正确。 7.1.1 检验分为三种: ⑴新安装保护装置的验收检验。 ⑵运行中保护装置的定期检验(简称定期检验)。 ⑶运行中保护装置的补充检验(简称补充检验)。 ⑷对新型的保护装置(指未经部级鉴定的产品),一般不能使用。必须进行全面的检查试验,并经电网(省)局继电保护运行部门审查,其技术性满足电网安全要求时,才能在系统中投入试用。 7.1.2 定期检验分为三种: ⑴全部检验:按保护装置的全部检验项目进行检验。 ⑵部分检验。按保护装置的部分重点检验项目进行检验。 ⑶用保护装置进行断路器跳合闸试验。 7.1.3 补充检验分为四种: ⑴保护装置改造后的检验。 ⑵检修或更换一次设备后的检验。 ⑶运行中发现异常情况后的检验。 ⑷相关设备故障后的检验。 7.1.4 新安装保护装置的验收检验,在下列情况时进行: ⑴当新装的一次设备投入运行时。 ⑵当在现有的设备上投入新安装的保护装置时。 ⑶当对运行中的保护装置进行较大的更改或增设新的回路时,其检验范围由公司总工办根据具体情况确定。

由于制造质量不良,不能满足检验要求的保护装置,原则上应由制造厂负责解决,属于普遍性的问题,应向有关上级部门报告。 7.1.5定期检验期限 定期检验应根据《继电保护及电网安全自动保护装置检验条例》所规定的期限、项目和部颁试验规程所规定的内容进行。检验期限如下表33: 7.1.6对保护装置检验的一般要求 ⑴利用保护装置进行断路器跳闸试验,一般每年至少一次。 ⑵一次设备(断路器、电流和电压互感器等)检修后,分公司根据一次设备检修的性质和内容,确定保护装置的检验项目。 ⑶保护装置的二次回路检修后,均应由继电保护机构进行保护装置的检验,并按其工作性质,由分公司确定其检验项目。 ⑷凡保护装置拒绝动作、误动作或动作原因不明时,均应由公司总工办根据事故情况,有目的地拟定具体检验项目及检验顺序,

差动保护调试方法

微机变压器差动保护 一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器 常采用Y/D-11接线方式,因此,变压器两侧电流的相位差为30°。如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流。必需消除这种不平衡电流。 (中华人民共和国行业标准DL —400—91《继电保护和安全自 动装置技术规程》2.3.32条:对6.3MVA及以上厂用工作变压器和并联运行变压器。10MVA 及上厂用变压器和备用变压器和单独运行的变压器。以及2MVA及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。) (一)用电流互感器二次接线进行相位补偿 其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器 接成星形,如图1所示 图1变压器为Y o/ △ -11连接和TA/Y连接的差动保护原理接线

采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流 I A2、丨B2、I C2 , 刚好与三角形侧的电流互感器二次回路中的电流 I a 2、I b2、I c2同相位,如图2所示。 (二) 用保护内部算法进行相位补偿 当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从 而简化了 TA 二次接线,增加了电流回路的可靠性。但是如图 3当变压器为Y 。/ △ -11连接 时,高、低两侧TA 二次电流之间将存在30°的角度差,图4(a )为TA 原边的电流相量 图2向量图 b

图3变压器为Y △ -11连接和TA 为Y/Y 连接的差动保护原理接线 为消除各侧TA 二次电流之间的角度差,由保护软件通过算法进行调整 1、常规差动保护中电流互感器二次电流的相位校正 大部分保护装置采用 Y -△变化调整差流平衡,如四方的 CST31南自厂的PST-12O0 WBZ-500H 南瑞的LFP-972、RCS-985等,其校正方法如下: Y 0侧: I A2 = ( I A2 — I B2 ) / 3 I B2= ( I B2 — I C2 ) / 3 I C 2 = ( I C2 — I A2 ) / 3 △侧: I a2=I a2 I b2 = I b2 I c2=I c2 式中: I A2、I B 2、I C2为Y 0侧TA 二次电流,*、?、I C 2为侧校正后的各相电流;、 I b2、I c2为△侧TA 二次电流,I a2、I b2、丨c2为△侧校正后的各相电流 经过软件校正后,差动回路两侧电流之间的相位一致,见图 4 (b )所示。同理,对于 三绕组变压器,若采用Y o / Y 。/ △ -11接线方式,Y o 侧的相位校正方法都是相同的。 2、RCS- 978中电流互感器二次电流的相位校正 RCS-978中电流互感器二次电流的相位校正方法与其它微机变压器保护有所不同,此

(完整版)简述保护装置校验方法

简述综合保护测控装置校验 一、合上断路器柜内直流电源空气开关 1.检查装置面板上运行指示灯是否正常。 2.装置带电正常。 二、所用设备 1. 继电保护校验仪。 2. 数字式万用表。 3.电流试验导线1组,电压试验导线1组 三、核准工作 1.分别核准保护装置定值,软压板投退情况与定值单一致。 2.检查保护装置出口跳闸压板、软压板投退情况并做好记录,软压板全部退 出、做那个保护就投对应压板。 3.清除保护装置原有动作报告。 4.将需要用到的模拟量端子连片全部打开。 四、保护装置采样检查。 1. 打开电流端子连接片。 2. 打开电压端子连接片。 3在2D(交流电流回路)2D-1(K01:C01),2D-5(K01:CO5),2D-7(KO1:CO2,N121)端子上用继保仪施加二相平衡电流(1A,— 5A)检查装置电流采样精度。 5. 在2D(交流电压回路)2D-25,2D-26,2D-27,2D-23(N600)端子上用继保仪 施加三相平衡电压(57.74V)检查装置电压采样精度。 五、保护性能校验 1.速断保护 (1)根据电动机速断保护逻辑框图选择正确的(电动机保护电流)模拟量,分别在2D-10(K01:C07),2D-14(K01:C11),2D-16(K01:C08,N111)内侧端子上插入前三相(A,C,N相)电流试验导线并与继保仪连接好 (2)投入电动机速断保护软压板,并将速断保护定制改小在10 A以内。 (3)在继保仪菜单内选择交流试验单元,将前三相电流(A,C相)设定为综保装置改小后的速断电流定值,并将相位设成正序,然后按下继保仪输出开关并开始实验,看综保装置保护电流显示值是否到速断动作电流,如果过大就手动减到定值,如果过小就手动加到定值(步长一般设为0.01或0.02),直到跳闸灯亮再观察综保装置速断保护是否可靠动作,可靠动作后记录动作电流,动作时间并将速断软压板退出。 2.过流保护 (1)根据电动机过流保护逻辑框图选择正确的(电动机保护电流)模拟量,分别在2D-10(K01:C07),2D-14(K01:C11),2D-16(K01:C08,N111)内侧端子上插入前三相(A,C,N相)电流试验导线并与继保仪连接好 (2)投入电动机过流保护软压板。 (3)在继保仪菜单内选择交流试验单元,将前三相电流(A,C相)设定为综保装置的过流保护定值,并将相位设成正序,然后按下继保仪输出开关并开始实验,看综保装置保护电流显示值是否到过流动作电流,如果过大就手动减到定值,如果过小就手动加到定值(步长一般设为0.01或0.02),直到跳闸灯亮再观察综保装置过流保护是否可靠动作,可靠动作后记录动作电流,动作时间并将过

相关文档
最新文档