遥感图像分类方法_文献综述

遥感图像分类方法_文献综述
遥感图像分类方法_文献综述

遥感图像分类方法研究综述

摘要

本文概述了遥感图像分类的概念和原理,详细探讨了传统的遥感分类方法,对各种方法的进行了定性的比较与分析。然后介绍了分别基于GPU、计算机集群和刀片机服务器的三种加快分类速度的途径,最后展望了遥感图像分类方法的发展方向和研究热点。

关键词:遥感;图像分类;监督分类;非监督分类;GPU;机群系统;刀片机

1.引言

在遥感图像处理的研究中,无论是专业信息提取,地物变化预测,还是专题地图制作等都离不开分类。遥感图像分类有类别多,混合度大和计算量大的特点,分类方法的优劣直接关系到分类的精度和速度。由于遥感图像本身的空间分辨率以及“同物异谱”和“异物同谱”现象的存在,往往出现较多的错分、漏分现象,导致分类精度不高[1],如何实现图像分类识别并满足一定的分类精度,是当前遥感图像研究中的一个关键问题, 也是研究的焦点[2]。

2.遥感图像分类原理

遥感图像通过亮度值或像素值的高低差异及空间变化表示不同地物的差异,如不同类型的植被、土壤、建筑物及水体等,这也是区分不同地物的理论依据。利用光谱特征(地物电磁波辐射的多波段测量值)或纹理等空间结构特征,按照某种规则就能对地物在遥感图像上的信息进行识别与分类。图像分类的目标就是通过对各类地物波谱特征的分析选择特征参数,将特征空间划分为不相重叠的子空间,进而把影像诸像元划分到各子空间去,从而实现分类[3]。

3.传统分类方法

遥感影像的计算机分类方法可分为两种:统计判决分类和句法模式识别。前者通过对研究对象进行大量的统计分析, 抽出反映模式的本质特点、特征而进行识别。后者则需要了解图像结构信息, 从而对其进行分类。传统的分类方法一般为统计判决分类, 如最大似然法、K均值法等。近年来发展的分类新方法则多采用句法方法, 如专家系统法和决策树分类法等。

根据是否已知训练样本的分类数据,统计模式方法可分为监督分类、非监督分类。下面将具体介绍监督分类、非监督分类以及其它分类(如模糊分类和人工神经网络分类)的典型算法及其主要步骤。

3.1 监督分类

监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,把图像中的各个像元点划归到各个给定类[4-7]。常用的监督分类方法有最小距离分类、平行六面体分类、最大似然分类等。主要步骤包括:(1)选择特征波段;(2)选择训练区;(3)选择或构造训练分类器;(4)对分类精度进行评价。

3.1.1 最小距离分类

最小距离分类的基本思想是按照距离判决函数计算象素点与每一个聚类中心的光谱距离,将该像素点归到距离最近的类别。该分类方法的距离判决函数是建立在欧氏距离的基础上的,公式如下:

d(x,M i)=[∑(x K?M iK)2

n

K=1] 1 2

其中n为波段数(维数),K是某一特征波段,i是聚类中心数,M i是第i类样本均值,M iK是第i类中心第k波段的象素值,d(x,M i)是象素点x到第i类中心M i的距离。

最小距离判别方法的具体步骤如下:

(1)确定地区和波段;

(2)选择训练区;

(3)根据各训练区图像数据,计算M M;

(4)将训练区外图像像元逐类代入等式计算M(M,M M),按判别规则比较大小,将像元归到距离最小的类别;

(5)产生分类图像;

(6)检验结果,如果错误较多,重新选择训练区;

(7)输出专题图像。

最小距离分类有计算量相对较小,分类速度快的优点并能适用于样本较少的情况。缺点是分类精度相对其它监督分类方法较低。

3.1.2 平行六面体分类

平行六面体分类是通过设定在各轴上的一系列分割点,将多维特征划分成对应不同类别的互不重叠的特征子空间的分类方法。通过选取训练区详细了解分类类别的特征,并以较高的精度设定每个分类类别的光谱特征上限值和下限值,构成特征子空间[8]。对于一个未知类别的像素点,它的分类取决于它落入哪个类别特征子空间中。如落入某个特征子空间中,则属于该类,如落入所有特征子空间中,则属于未知类型。因此平行六面体分类要求训练区样本的选择必须覆盖所有的类型。

这种方法的优点有:快捷简单,因为对每一个本的每一波段与数据文件值进行对比的上下限都是常量;对于一个首次进行的跨度较大的分类,这一判别规则可以很快缩小分类数,避免了更多的耗时计算,节省了处理时间。缺点是由于平行六面体有“角”,因此象素点在光谱意义上与模板的平均值相差很远时也可能被分类。

3.1.3 最大似然分类

最大似然分类利用了遥感数据的统计特征,假定各类别的分布函数为正态分布,在多变量空间中形成椭圆或椭球分布,根据各方向上散布情况不同按正态分布规律用最大似然判别规则进行判决,得到较高准确率的分类结果。

分类公式如下:

D=ln(a c)?[0.5ln(|Cov c|)]?[T(Cov c?1)(X?M C)]

其中,D是加权距离(可能性),C是某一特征类型,X为象素的测量向量,M C是类型C 的样本平均向量,a c是任一象素属于类型C的百分概率(缺省为1.0,或根据先验知识输入),Cov c是类型C的样本中的象素的协方差矩阵。具体的分类流程如下:

(1)确定需要分类的地区和使用的波段和特征分类数,检查所用各波段或特征分量是否相互已经位置配准;

(2)根据已掌握的典型地区的地面情况,在图像上选择训练区;

(3)计算参数:根据选出的各类训练区的图像数据,计算M C和Cov C,确定先验概率a c;

(4)分类:将训练区以外的图像像元逐个代入公式,对于每个像元,分几类就计算几次,最后比较大小,选择最大值得出类别;

(5)产生分类图:给每一类别规定一个值,如分成10类,可规定每一类对应的值分别为1,2,3,···,10。分类后的像元值便用类别值代替并进行着色,最后得到的分类图像就是专

题图像;

(6)检验结果,如果分类中错误较多,需要重新选择训练区再作以上各步,直到结果满意为止。

虽然最大似然法的分类精度较高,但是计算量大,分类时间长,而且对输入的数据有一定要求(最大似然是参数形式的,意味着每一输入波段必须符合正态分布)。

3.2 非监督分类

非监督分类是在没有先验类别知识的情况下,根据图像本身的统计特征及自然点群的分布情况来划分地物类别的分类处理。这类方法以图像的统计特征为基础,能够获得图像数据在的分布规律。因为非监督分类不需要对待分类的地区有已知知识或进行实地考察,相对监督分类而言有更广的应用围。主要的方法有K均值分类和ISODATA分类。

3.2.1 K均值分类

K均值分类的基本思想是通过迭代,逐次移动各类的中心,直至得到最好的分类结果为止。需要预先设定聚类中心的个数(这在一定程度上限制了该算法的应用),逐次移动各类的中心,使聚类域中所有样本到聚类中心的距离平方和最小,直至各类的中心不再移动(或移动的围小于设定的阈值)或达到规定的迭代次数时停止分类。其主要步骤如下:(1)确定类别数并各类的初始中心:M1(0),M2(0),…, M M(0),K为类别数。初始中心的选择对聚类结果有一定影响,一般通过以下方法选取:

①根据问题的性质,用经验的方法确定类别数K,从数据中找出直观上看来比较适合的K个类的初始中心;

②将全部数据随机地分为K个类别,将这些类别的重心作为K个类的初始中心;

(2)择近归类:将所有像元按照与各中心的距离最小的原则分到K个聚类中心;

(3)计算新中心:待所有样本第i次划分完毕后,重新计算新的集群中心Z j(i+1), j=1, 2, …,K;

(4)如果聚类中心不变或小于设定的阈值,则算法收敛,聚类结束;否则回到步骤(2),进入下一次迭代;

下图描述了K均值分类过程中各类中心移动的过程。

聚类中心数K、初始聚类中心的选择、样本输入的次序,以及样本的几何特性等均可能影响k均值算法的进行过程。对这种算法虽然无法证明其收敛性,但当各类之间彼此远离时这个算法所得的结果是令人满意的。由于K均值分类有实现过程简单,分类速度较快的优点,在遥感图像分类应用中有着重要的作用。

3.2.2 ISODATA分类

ISODATA(Iterative Self-Organizing Data Analxsis Techniques A)分类也称为迭代自组数据分析算法,它与K均值分类类似,都是通过迭代移动各类的中心,直到得到最好

的分类结果。差别在于:第一,它不是调整一个样本的类别就重新计算一次各类样本的均值,而是在每次把所有样本都分类完毕之后才重新计算一次各样本的均值。所以,K均值分类可看作逐个样本修正法,ISODATA分类可看作成批样本修正法;第二,该算法不仅可以通过调整样本所属类别完成样本的聚类分析,而且可以自动地进行类别的“合并”与“分裂”,从而得到类别数比较合理的聚类结果。

这种方法不受初始聚类组的影响,对识别蕴含于数据中的光谱聚类组非常有效,前提是重复足够的次数。缺点是比较费时,因为可能要迭代上百次[9]。

3.3 其它分类方法

3.3.1 模糊分类

遥感图像中的像元不一定由单纯的一种地物信息构成,因此,用传统的“硬”分类方法(如前面提到的监督分类和非监督分类,每个像元归为单一类别)进行图像分类,无法获得较高的精度。一种较好的解决办法就是采用以模糊理论为基础的模糊分类法。

模糊分类允许根据各类型的百分比函数,将一个像元归到几个类别。模糊分类具有过程灵活简便、主观影响小、适应面广等优点。但仍存在如下问题: (1)算法性能依赖于参数的初始化;(2)大数据量时算法严重耗时。针对于这些问题学者们进行了很多研究,并取得了重要成果,主要研究容有隶属函数确定、模糊模式识别匹配(分类)、模糊推理、模糊方法与统计方法的结合、模糊方法与人工神经网络的结合、模糊动态识别等[10]。

3.3.2 人工神经网络分类

人工神经网络分类是利用计算机模拟人类学习的过程,建立输入与输出数据之间联系的程序。在模仿人脑学习的过程中,通过进行重复的输入和输出训练来增强和修改输入和输出数据之间的联系[11]。所以,人工神经网络分类也可归为监督分类。

人工神经网络主要由3个基本要素构成,即处理单元、网络拓扑结构及训练规则,是由大量简单的处理单元(神经元)连接成的复杂网络,能够模仿人的大脑进行数据接收、处理、贮存和传输。神经网络方法具有极强的非线性映射能力,可高速并行处理大量数据,而且具有自学习、自适应和自组织能力。下图为三层神经网络的典型结构图。

三层神经网络的典型结构图[12]

目前,人工神经网络技术在遥感图像分类处理中的应用主要有单一的BP(Back Propagation,反向传播)网络、模糊神经网络、多层感知器、径向基函数(RBF)网络、Kohonen

自组织特征分类器、Hybrid学习向量分层网络等多种分类器。

3.4 各种传统分类方法的比较

监督分类的关键是训练样本的选择, 训练样本的质量直接关系到分类能否取得良好的效果。在选择训练样本时要充分考虑研究区地物的光谱特征和分布区域特征并结合大量的野外调查, 才能保证所选取的训练样本具有较好的代表性。

非监督分类不需要对地面信息有详细的了解,也不需要选择训练样本。能根据地物的光谱特征进行分类,受人为因素的影响较少,而且算法成熟, 操作简单。在初步分析图像时,用非监督分类的方法来研究数据的自然集群分布情况是很有价值的。

两种分类方法各有特点,实际应用中应充分考虑分类要求,如分类精度和速度,选择合适的分类方法作为基础算法。下表是上述分类方法的特点的总结。

像数据的复杂性决定的。从前面的叙述笔者得出了下面的结论:

(1)与其它分类方法相比,监督分类和非监督分类算法最为简单,应用最为成熟。针

对这些方法已经开发出了应用软件,使用方便。

(2)神经网络分类方法属于非参数分类器,不需要统计分布的假设,因此要比传统统计分类方法的应用围广泛。近年来,神经网络分类方法有了较大的发展,尤其是BP网络分类方法,神经网络分类结果与传统统计分类方法相比,分类结果精度有了明显提高[13]。但其对样本数量有一定要求,在样本数量多时,精度较高,但耗费时间长,在样本数量少时因无法很好进行参数的学习和调整,精度收到影响,因而仍未能在实际分类中广泛应用。

(3)各种分类方法各有特点,在处理图像分类问题时没有唯一的“正确”方法。在具体分类时,需要根据被用来分析的数据的性质、可获得的计算机资源及分类数据的应用采用特定的方法。必要时可综合应用多种方法,以提高分类的准确率与精度。如敏基于模糊C均值算法的遥感图像变化检测的研究提出了一种山函数与密度函数结合的聚类中心初始化算法;王崇倡等采用动量——自适应学习速率调整算法对BP网络算法进行改进,取得了良好效果;曾建潮构建了一种全局收敛的改进算法,对算法的速度进化迭代方程作了相关的改进。

4.三种硬件加速方法简介

遥感图像处理具有数据量大、运算密集、算法复杂等特点,如何快速、高效地处理遥感图像成为遥感图像处理技术研究的目标之一。本文简要介绍了从三种硬件的方向加快分类的方法,分别是GPU加速、机群系统加速和刀片机服务器加速,并对这些研究工作的特点进行了简要分析,最后总结了研究中存在的问题。

4.1 GPU加速

GPU(Graphics Processing Unit,图形处理器),是一种专门在个人电脑、工作站和一些移动设备(如平板电脑、智能手机等)上进行图像运算工作的微处理器。作为通用大规模并行处理器,GPU具有运算密集、高度并行、体积小等特点,为加速遥感图像处理提供了新的技术手段。

4.1.1 GPU与CPU的差异

GPU在计算能力上相对于CPU有明显优势的原因在于两者的设计目标与体系结构不同。如下图所示,CPU的执行单元采用了复杂的控制与分支预测以及大量的缓存来提高执行效率,能够面对尽可能多的通用处理事务,用于计算的算术逻辑单元ALU(Arithmetic Logic Unit)只占很小一部分。

CPU与GPU架构比较

GPU则在有限的而积上提供更多的计算单元和很高的数据带宽,通过大量计算单元的并行处理实现了更强大的计算能力。2007年,NVIDIA推出了CUDA(Compute Unified Device Architecture),它是第一种通过使用类C语言对GPU进行编程开发的通用计算开发环境及其软件体系[14],提升了GPU的可编程性。

4.1.2 GPU加速的三个方向

从加速原理角度,大致可分为下面三种方法

(1)基于数据分块的多线程并行技术

该技术的主要特点是对图像数据进行分块和线程任务分配,让每个线程负责处理其中一个数据块,通过多线程并行工作的方式共同完成整个遥感图像数据处理,下图为示意图。

基于数据分块的多线程并行示意图

(2)基于CUDA库的并行加速技术

通过调用CUDA函数库中并行处理算法来实现遥感图像的并行处理。

(3)基于算法分解的协同并行技术

对算法进行拆分,将具有高密度数据计算特征的处理部分交给GPU处理,其他不宜GPU 处理的部分(处理过程中存在较多的判断、分支等逻辑处理步骤)交给CPU处理。

4.1.3 GPU应用存在的问题

综上所述,尽管GPU有强大的计算能力,对大多数遥感图像处理算法适应性较好,但由于GPU本质上仍属于协处理器性质,但系统应用中存在一些问题[15]:

(1)数据存储问题:遥感图像GPU并行处理流程一般需要将数据一次性载入GPU显存,其处理数据量受限于GPU显存容量;

(2)数据载入问题:GPU显存包括全局存储器、共享存储器、纹理存储器和常数存储器,不同类型的存储器具有不同的容量和读写速率,处理速度受限于所采用的存储器类型;

(3)数据I/O问题:GPU数据处理需要在显存和存之间来回传输数据,处理性能受限于显存与存之间的总线带宽等。

4.1.4 小结

在很多科研领域,随着对处理速度要求的提高和处理系统环境的限制(如外场作业),GPU 和CPU协同工作不失为一种有效提升计算机运算能力的途径。有研究者提出了集群CPU并行处理系统的设想,通过将多个GPU集成为GPU处理服务器来加快运算速度。但是,如何使GPU与CPU更协调地工作,从系统角度获得更为优化的整体处理流程,形成高效的快速处理系统,仍有待于未来的进一步研究。

4.2 机群系统加速

从字面上理解,机群就是一组协同工作的计算机。它能够将工作负载从一个超载的系统(或节点)迁移到机群中的另一个系统(或节点)上,从而大大的提高了它的处理能力,甚至可以和专用计算机(小型机和大型机)相媲美,性价比却远高于专用计算机[16]。

在机群中,常见的硬件有:结点、网络、存储。软件有:机群系统、节点系统、应用支撑软件。下图为机群系统的结构示意图。

典型的机群系统体系结构

4.2.1 机群系统的优点

显而易见的是,机群系统能够将不同型号、不同操作系统的计算机组合成机群对图像分类进行并行运算,相对于一台计算机而言,极大的提升了运算的速度。除此之外,机群系统还有下列优点:

(1)系统开发周期短:计算机系统大多采用商用工作站和通用LAN网络,使主控节点管理系统相对容易上手,可靠性高。

(2)系统总价低:构成集群的工作站或PC机都是批量生产的,价格低廉。

(3)节约系统资源:由于集群系统的结构比较灵活,它可以将不同体系结构,不同性能的工作站或PC机连在一起,用户可以充分利用现有设备,节约系统资源,提高工作效率。

(4)系统扩展性好:机群系统大多使用通用网络,系统扩展性很强,而且对大小不同的颗粒度并行应用都具有很好的效率。

(5)易于升级:机群计算机在结点性能上可以同处理器发展保持同步,降低系统升级的费用。

4.2.2 机群系统的一些限制因素

基于机群的高性能遥感处理技术需要将遥感处理的过程中的多任务合理拆分或者是将一个处理任务分解成几个能独立运行的子任务,分配到集群的节点上,并行地执行各个任务,进而快速高效地处理遥感数据。所以,要进行遥感机群处理有下面几个限制因素:(1)通信开销大:机群系统中每台机器都有独立的存储器,各节点机器的存不共享,如果要进行全局共享数据读写操作,必须通过机器间的通信来进行数据传输;

(2)体积大,不便于移动;

(3)有些任务不能进行分解和并行化处理。

4.2.3 小结

快速贪吃算法、最小-最小算法、最大-最小算法和最大时间跨度算法都是较为常用的机群调度算法[17]。然而无论使用哪种调度算法,都有一个无法解决的问题。因为一个机群管理系统可以控制的节点的总数是有限的,当某个机群所拥有的计算机的总数接近或者达到极限时,运算量也将达到极限,很难再提高整个机群的效率。

为了解决上述问题,有研究者引入了异构多机群系统的概念。将不同种类的机群结合起来,形成一个统一的,异构的(这里提到的异构是指机群管理系统之间的异构,或者说调度异构,而不是指计算机、操作系统、平台之间异构),更大的机群系统[16],较好的解决了机群算法的问题。但是调度算法也变得更加复杂,这也是日后深入研究的方向之一。

4.3 刀片机服务器加速

刀片服务器是指在标准高度的机架式机箱可插装多个卡式的服务器单元,是一种实现

HAHD(High Availability High Density,高可用高密度)的低成本服务器平台,为特殊应用行业和高密度计算环境专门设计。下图为刀片机服务器的示意图。

刀片机服务器

“刀片”们可以通过板载硬盘启动各自的操作系统(Windows NT/2000、Linux等),类似于一个个独立的服务器。管理员可以使用系统软件将这些母板集合成一个服务器集群,在集群模式下,所有的母板可以连接起来提供高速的网络环境,并同时共享资源,为相同的用户群服务。

4.3.1刀片机服务器的优点

通过集合多个“刀片”,刀片机服务器便可在集群模式下集合这些母版的计算能力。由于结构合理,刀片机服务器有以下优点:

(1)便于升级与维护:在集群中插入新的"刀片",就可以提高整体性能。由于每块刀片都支持热插拔的,系统可以轻松地进行替换,将维护时间减少到最小;

(2)规模小:由于省去了机箱及交互设备,其重量、体积较计算机或服务器小得多;

(3)稳定性较高:置的负载均衡技术能有效提高服务器的稳定性和核心网络性能。4.3.2 刀片机服务器的不足

尽管前面列举了刀片机服务器的许多优点,但是高密度的“刀片”设置也带来了不少问题,主要如下:

(1)发热严重:一个刀片机箱的最大耗电量是8000瓦,需要额外提供良好的散热和冷却系统;

(2)厂商标准不一:刀片机服务器没有统一的标准,服务器刀片常常设计成只能在某家厂商自己的机箱里面运行,通常只能使用同一家公司的全套设备;

(3)密度高才有经济意义:算上机箱和通用服务的成本,每台服务器的成本就会超过同等处理能力的独立服务器系统。所以,只有通过增加刀片数分摊机箱的成本,才能有更好的经济意义。

4.3.3 小结

本章简单介绍了三种加快分类速度的途径:GPU、机群系统和刀片机服务器。三种途径各有其特点:将具有高密度数据计算特征的处理部分交给GPU处理,GPU加速法属于单个计算机级别的硬件加速;机群系统利用高速互联网络联系一组或多组计算机进行并行运算,提升效果更明显,但体积过大,不适用于野外工作;刀片机服务器体积小,运算能力强大,但

发热严重,也是提升分类速度的一种有效方法。在实践中,我们可以根据实际需要选择合适的加速方法。

5.结语

传统的遥感图像分类方法如目视解译、监督分类和非监督分类,算法成熟、操作简单, 仍然是目前应用较多的方法。近年来发展起来的分类新方法, 如决策树分类法、综合阈值法、专家系统分类法、多特征融合法以及基于频谱特征的分类法等, 能够更准确地提取出目标地物, 对图像分类有不同程度的改进, 在实际应用常和传统分类方法结合起来使用。

随着计算机技术的不断发展,我们还可以从硬件角度去改善遥感图像分类技术。本文介绍的GPU、机群系统和刀片机服务器是三种应用较多,比较成熟的方法,主要从并行运算的方向提升硬件设备的运算能力。尽管这些方法已被实践证明有效,但是如何确定调度算法,使硬件设备高效率地协同工作仍然是待解决的问题。

遥感图像的分辨率已有了很大提高, 但图像分类技术还跟不上遥感技术的发展。虽然不少研究者从不同角度出发提出了很多新的分类方法和改进的途径, 但是没有哪一种是普适高效的。随着遥感技术和计算机技术的进一步发展及相互渗透,遥感获得的信息将越来越多、越来越全面,新算法和新理论的研究也将不断深入,再结合其他辅助信息与特征,遥感图像的分类精度必将得到显著的提高。

参考文献

[1]凯.遥感图像处理原理和方法[M].:测绘

[2]爽,丁圣彦,许叔明.遥感影像分类方法研究[J].大学学报(自然科学版),2002, 32

(2):70-73

[3]王一达,熙玲, 炯. 遥感图像分类方法综述[J].遥感信息,2006,(5):67-70.

[4]傅肃性.遥感专题分析与地学图谱[M].:科学,2002.

[5]家抦.遥感原理与应用[M].:大学,2002.

[6]林培.农业遥感[M].:农业大学,1991.

[7]梅安新,望琭,其明,等,遥感导论[M].:高等教育出社,2001.

[8]钱茹茹.遥感影像分类方法比较研究[D].:长安大学.2007.

[9]建刚,文吉,宫辉力.遥感图像分类方法的研究[J].首都师大学学报(自然科学

版),2004,25(3):86-91.

[10] Pedrycz,W.;Waletzky, J.,Fuzzy clustering with partial supervision, Systems,

Man and Cybernetics, Part B, IEEE Transactions on,Volume: 27,lssue:5,Oct.

1997 Pages:787一795.

[11] 英时等.遥感应用分析原理与方法(第二版)[M]. :科学,2013.

[12] 辉.基于BP神经网络的遥感影像分类研究[D].:师大学.2013.

[13] 弦.基于数据并行的BP神经网络训练算法[D].:华中科技大学.2008.

[14] 舒,褚艳丽.CPU高性能运算之CUDA[M].:中国水利水电.2009

[15] 袁涛.GPU在遥感图像处理中的应用综述[J].遥感信息,2012,第27卷,110-117.

[16] 肖寒.异构多机群系统中全局调度的设计与实现[D].:大学.2006.

[17] A. Zomaya, R. Kazman. Simulated Annealing Techniques, In: M. Atallah

(editor), Algorithms and Theory of Computation Handbook, CRC Press, 1999, pp.37-1一37-19.

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

6-遥感图像特征和解译标志

上次课主要内容 4.4简单自然地物可识别性分析 4.5复杂地物识别概率(重点理解) ①要素t 的价值②要素总和(t 1,t 2,…,t m )t 的价值 K -K E ∑ = ③复杂地物识别概率的计算理解p70~71例子

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 5.2 遥感图像特征与解译标志的关系 5.3 遥感图像的时空特性 5.4 遥感图像中的独立变量 5.5 地物统计特征的构造

第五章遥感图像特征和解译标志 地物特征 电磁波特性 影像特征 遥感图像记录过程 n 图像解译就是建立在研究地物性质、电磁波性质 及影像特征三者的关系之上 n 图像要素或特征,分“色”和“形”两大类:?色:色调、颜色、阴影、反差; ?形:形状、大小、空间分布、纹理等。“形”只有依靠“色”来解译才有意义。

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n两个定义: ?解译标志定义:遥感图像光谱、辐射、空间和时间特征决定 图像的视觉效果、表现形式和计算特点,并导致物体在图像上 的差别。 l给出了区分遥感图像中物体或现象的可能性; l解译标志包括:色调与色彩、形状、尺寸、阴影、细部(图 案)、以及结构(纹理)等; l解译标志是以遥感图像的形式传递的揭示标志; ?揭示标志定义:在目视观察时借以将物体彼此分开的被感知 对象的典型特征。 l揭示标志包括:形状、尺寸、细部、光谱辐射特性、物体的阴 影、位置、相互关系和人类活动的痕迹; l揭示标志的等级决定于物体的性质、他们的相对位置及与周围 环境的相互作用等;

第五章遥感图像特征和解译标志 5.1 解译标志的定义和分类 n解译标志和揭示标志的关系: ?解译标志是以遥感图像的形式传递的揭示标志; ?虽然我们是通过遥感图像识别地物目标的,但是大多数情况 下,基于遥感图像识别地物并作出决定时,似乎并不是利用解 译标志,而是利用揭示标志。 例如,很多解译人员刚看到图像就差不多在脑海中形成地物的形象, 然后仅仅分析这个形象就能作出一定的决定。实际上,有经验的解译人 员,在研究图像的解译标志并估计到传递信息的传感系统的影响以后, 思想中就建立起地物的揭示标志,并在这些标志的基础上识别被感知物 体。解译人员在实地或图像上都没见过的地物或现象是例外。 n解译标志和揭示标志可以按两种方式进行划分:?直接标志和间接标志; ?永久标志和临时标志;

遥感图像分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

遥感图像分类方法综述

龙源期刊网 https://www.360docs.net/doc/6e1434307.html, 遥感图像分类方法综述 作者:胡伟强鹿艳晶 来源:《中小企业管理与科技·下旬刊》2015年第08期 摘要:对传统图像监督分类方法和非监督分类方法在遥感图像分类中的应用进行总结, 对基于人工神经网络、模糊理论、小波分析、支持向量机等理论的新的遥感图像分类方法进行了介绍,并对遥感图像分类方法研究的发展趋势做了展望。 关键词:遥感图像;监督分类;分类精度 1 概述 遥感就是远离地表,借助于电磁波来收集、获取地表的地学、生物学、资源环境等过程和现象的科学技术。遥感技术系统由四部分组成:遥感平台、传感器、遥感数据接收及处理系统、分析系统。遥感数据就是用遥感器探测来自地表的电磁波,通过采样及量化后获得的数字化数据。 2 传统遥感图像分类方法 2.1 非监督分类方法 非监督分类方法也称为聚类分析。进行非监督分类时,不必对遥感图像影像地物获取先验类别知识,仅依靠遥感图像上不同类别地物光谱信息进行特征提取,根据图像本身的统计特征的差别来达到分类的目的。主要的算法有:K-均值聚类(K-means)算法和迭代自组织数据分析法(Iterative Self-organizing Data Analysis Techniques A, ISODATA)等。 2.2 监督分类方法 对于监督分类,训练区的选择要求有代表性,训练样本的选择要考虑到遥感图像的地物光谱特征,而且样本数目应能够满足分类的要求,否则,一旦样本数目超过一定的阈值时,分类器的精度便会下降。主要的算法有:最大似然分类(Maximum Likelihood classification,MLC)、最小距离分类、K-近邻分类等。 3 基于新理论的遥感图像分类方法 3.1 基于人工神经网络的遥感图像分类 在遥感图像的分类处理中,人工神经网络的输入层神经元表征遥感图像的输入模式。每一个输入层神经元对应于一个光谱波段,每一个输出层神经元则对应于一种土地覆盖类型。其

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感图像的监督分类与处理_赵文彪

杭州师范大学《遥感原理与应用》实验报告 题目:遥感图像的监督分类与处理实验姓名:赵文彪 学号: 2014212425 班级:地信141 学院:理学院

1实验目的 运用envi软件对自己家乡的遥感影像经行分类和分类后操作。 2概述 分类方法:监督分类和非监督分类 监督分类——从遥感数据中找到能够代表已知地面覆盖类型的均质样本区域(训练样区),然后用这些已知区域的光谱特征(包括均值、标准差、协方差矩阵和相关矩阵等)来训练分类算法,完成影像剩余部分的地面覆盖制图(将训练样区外的每个像元划分到具有最大相似性的类别中)。 非监督分类——依据一些统计判别准则将具有相似光谱特征的像元组分分为特定的光谱类;然后,再对这些光谱类进行标识并合并成信息类。 光谱特征空间 同名地物点在丌同波段图像中亮度的观测量将构成一个多维的随机向量X,称为光谱特征向量。而这些向量在直角坐标系中分布的情况为光谱特征空间。 同类地物在光谱特征空间中不可能是一个点,而是形成一个相对聚集的点群。丌同地物的点群在特征空间内一般具有不同的分布。 特征点集群的分布情况: 理想情况:至少在一个子空间中可以相互区分 典型情况:任一子空间都有相互重叠,总的特征空间可以区分 一般情况:任一子空间都存在重叠现象 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。在分类乊前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决凼数迚行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决凼数去对其他待分数据迚行分类。使每个像元和训练样本做比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 3实验步骤 3.1遥感影像图的剪切 用envi打开下载的遥感影像图,剪切出一个地貌信息丰富的区域(因为一景遥感影像太大,分类时间较长,故而采用剪切的方法,剪切一个地貌丰富的遥感影像图。既便于分类也使得分类种数不至于减小的太多) 以下为剪切出来的遥感影像

遥感图像分类方法研究综述

第2期,总第64期国 土 资 源 遥 感No.2,2005 2005年6月15日RE MOTE SENSI N G F OR LAND&RES OURCES Jun.,2005  遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明 650092;2.云南省寄生虫病防治所,思茅 665000; 3.云南开远市第一中学,开远 661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751 文献标识码:A 文章编号:1001-070X(2005)02-0001-06 0 引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节———图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1 遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I S OM I X)、循环集群 法(I S ODAT A)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及“同物异谱”、 “异物同谱”现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Balstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2], 孙家对M.A.Friedl(1992)和 C.E.B r odley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2 基于统计分析的遥感图像分类方法 2.1 监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-Nearest Neighbor)、决策树法(Decisi on Tree Classifi2 er)和贝叶斯分类法(Bayesian Classifier)。主要步骤包括:①选择特征波段;②选择训练区;③选择或构造训练分类器;④对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre ma等提出的启发式像素分类估计先验概率法。Mclachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

envi遥感图像监督分类与非监督分类

envi遥感图像监督分类 监督分类,又称训练分类法,用被确认类别的样本像元去识别其他未知类别像元的过程。它就是在分类之前通过目视判读和野外调查,对遥感图像上某些样区中影像地物的类别属性有了先验知识,对每一种类别选取一定数量的训练样本,计算机计算每种训练样区的统计或其他信息,同时用这些种子类别对判决函数进行训练,使其符合于对各种子类别分类的要求,随后用训练好的判决函数去对其他待分数据进行分类。使每个像元和训练样本作比较,按不同的规则将其划分到和其最相似的样本类,以此完成对整个图像的分类。 遥感影像的监督分类一般包括以下6个步骤,如下图所示: 详细操作步骤 第一步:类别定义/特征判别 根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理。这个过程主要是一个目视查看的过程,为后面样本的选择打下基础。

启动ENVI5.1,打开待分类数据:can_tmr.img。以R:TM Band 5,G: TM Band 4,B:TM Band 3波段组合显示。 通过目视可分辨六类地物:林地、草地/灌木、耕地、裸地、沙地、其他六类。 第二步:样本选择 (1)在图层管理器Layer Manager中,can_tmr.img图层上右键,选择"New Region Of Interest",打开Region of Interest (ROI) Tool面板,下面学习利用选择样本。 1)在Region of Interest (ROI) Tool面板上,设置以下参数: ROI Name:林地 ROI Color: 2)默认ROIs绘制类型为多边形,在影像上辨别林地区域并单击鼠标左键开始绘制多边形样本,一个多边形绘制结束后,双击鼠标左键或者点击鼠标右键,选择Complete and Accept Polygon,完成一个多边形样本的选择; 3)同样方法,在图像别的区域绘制其他样本,样本尽量均匀分布在整个图像上; 4)这样就为林地选好了训练样本。 注:1、如果要对某个样本进行编辑,可将鼠标移到样本上点击右键,选择Edit record是修改样本,点击Delete record是删除样本。 2、一个样本ROI里面可以包含n个多边形或者其他形状的记录(record)。 3、如果不小心关闭了Region of Interest (ROI) Tool面板,可在图层管理器Layer Manager上的某一类样本(感兴趣区)双击鼠标。 (2)在图像上右键选择New ROI,或者在Region of Interest (ROI) Tool面板上,选择工具。重复"林地"样本选择的方法,分别为草地/灌木、耕地、裸地、沙地、其他5类选择样本; (3)如下图为选好好的样本。

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

遥感影像云识别方法综述

遥感影像云识别方法综述 国内外对云的检测与分类研究较多,有较多的研究成果报道。其方法大致可以分为两类,一类是基于光谱的方法,主要利用云在不同的光谱波段有不同反射特征,大部分以灰度阈值或灰度聚类的方法实现,主要用于多光谱影像,早期研究较多。如用于A VHRR的ISCCR 法(ROSSOW,1989)、CLA VR法(STOWE,1991)和用于的C02法(WGLIE,1994),近期亦研究用于MODIS的一些云识别与分类的方法,主要为以前方法的改造。另一类是基于纹理的方法主要应用云影像的灰度空间分布特征。纹理特征常以统计模型法、结构法、场模型法或频域/空域联合分析法来度量。其中尤以传统的统计模型研究较多,如灰度共生矩阵(GLCM)、灰度差分矩阵(GLDM)、灰度差分矢量(GLDV)、和差直方图(SADH)等,新近提出的一些方法如场模型法中的分形分维、马尔可夫随机场方法,频域/空域联合分析法中的Gabor变换、小波变换等,有不少的研究成果报道。 1. 基于光谱特征的方法: 主要有ISCCP方法、APLOOL方法、CO薄片法、CLAVR方法等。 ISCCP方法主要由Rossow(1989)Seze和Rossow(1991a)及RossowG和arder(1993)和等开发研制,检测方法中公用到窄的可见光波段(0.6)和红外窗区波段的资料。它假定观测辐射办一自晴空和云两种情况(这两种大气状况相联系的辐射值变化并不相互重叠),把每一个像元的观测辐射值与晴空辐射值比较,若两者的差大于晴空辐射值本身的变化时,定该像元点为云点。因此算法依赖于阈值,阈值勤的大小就确定了晴空计值中不确定性的大小,当像元的车射值明显有别于晴空像元时,认为像元被云覆盖,但当像元部分被云覆盖时,会发生误判。 算法主要由有五部分组成: (1)单一红外图像的空间对比试验。 (2)三个连续红处图像的时间对比试验。 (3)可见光和红外图像的空间/时间的累计统计合成。 (4)每5天的可见光和红处辐射的晴空合成。 (5)每个像元的可见光和红外辐射阈值勤的选取。 APOLLO(The A VHRR Processing scheme Over cloud Land and Ocean)算法主要由Saunders和Kriebel(1988),Kriebel等(1989)和Gesell(1989)研制开发,它利用了A VHRR 五个全分辨探测通道资料。在五个通道资料的基础上,像元被认为是有云像元,必须满足几个条件:像元的反射率比所设定的阈值高或温度比所设定的阈值低;通道2与通道1的比值介于0.7和1.1之间;通道4和通道5的亮度温差大于所设定的阈值;若像元在海洋上,其空间均一性还要大于设定的阈值。若像元通过了所有的多光谱云检测,像元为晴空,只要有一个未通过,就认为像元被云污染,因此这个检测方法具有保守性。利用其中的两个检测,。设定不同的阈值,可区分完全云覆盖像元和部分云覆盖像元。 CKA VR(The NOAA Cloud Advanced Very High Resolution Radiometer)算法(Phase I)(Stowe et al.,1991)利用A VHRR五个通道资料在全球范围内进行云检测。它同样采用了一系列判识阈值,不同之处在于采用2*2的像元矩阵作为判识单位。当2*2的像素点数列中4个像素点全不通过有云判识时,像元矩阵为无云;4个像素点全通过有云识别时,像素点矩阵为完全云盖;4个像素点中有1至3个像元通过有云判识时,认为像元矩阵是混合型。如果被判识为云或混合型的像元矩阵中的4个像元,满足另类晴空检测条件,像元矩阵被重新判别为晴空像元。根据下垫面性质和观测时间的不同,把算法分为白天海洋、白天陆地、夜间海洋和夜间陆地四类。在后来的改进方案中,用9天的合成晴空辐射作为晴空辐射值,并对云污染的像元进行分类。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

遥感影像中建筑物提取研究综述

基于遥感影像的建筑物提取研究方法综述 摘要:遥感影像上建筑物提取的基础理论研究始于20世纪80年代,随着遥感技术的不断进步,遥感影像的分辨率及精确度越来越高以及快速发展的城市在城市空间数据库方面的巨大要求。现在城市空间数据库需要对数据快速获取更新,又因为遥感影像本身具有的现时性,更新速度快的特点。在城市空间数据库的更新、城市动态监测、城市变化监测以及“智慧城市”建设等方面有着重要的使用价值。本文介绍基于不同遥感影像提取建筑物的基本方法和几个发展趋势。主要包括SAR图像,LIDAR点云数据,高光谱影像,航空影像等多种源数据不同的提取方法,以及不同数据来源的优缺点。同时对建筑物提取研究中需要解决的问题和研究趋势进行了总结。 1.引言 城市地区的遥感影像中,超过8成的目标是建筑物和道路,所以对建筑物和道路的识别和提取式遥感影像地物提取的主要研究方向,除道路和建筑物以外,剩下的大部分都是植被,在城市中绿地的面积占了一定的比例,在建筑物的提取中,建筑物在遥感影像中容易受到植被的干扰,如何高效率、高质量的剔除植被对建筑物的影响成了建筑物提取的关键。进行建筑物提取的主要应用有城区自动提取、 地图更新、城市变化监测、城市规划、三维建模、数字化城市建立等诸多方面,如何实现建筑物的快速、高精度、自动化提取成为目前的研究热点。目前对绿地和水体的自动提取已经比较成熟,而道路和建筑物由于其自身的复杂性导致自动提取困难,本文主要提出了目前遥感影像建筑物提取研究的热点及其发展趋势。 2.建筑物提取的历史发展 快速准确地获取不同类型城市建筑的空间位置、形状等信息具有极其重要的意义,在城市规划、城市动态监测、城市三维建模、地形图更新、地籍调查等方面有广泛的应用。目前,对自动建立城市三维模型和实现城市虚拟现实的需求越来越多,利用大比例尺航空影像获取城市建筑物的三维几何信息和表面纹理,是实现“三维城市”建模的有效途径之一。 到目前为止,利用高分辨率航空相片或卫星影像提取建筑物等人工地物信息的方法大体分为两类:其一,利用图像信息结合高程信息进行建筑物信息提取,因为城市里的建筑物有一定的高度信息,通过建筑物与周围环境(地面)之间的高差进行屋顶边界的提取,这种方法大多需要一定的辅助数据如DEM、DSM等一类具有地物高程数据的影像。其二,利用高空间分辨率遥感影像数据结合计算

遥感图像分类方法_文献综述

遥感图像分类方法研究综述 摘要 本文概述了遥感图像分类的概念和原理,详细探讨了传统的遥感分类方法,对各种方法的进行了定性的比较与分析。然后介绍了分别基于GPU、计算机集群和刀片机服务器的三种加快分类速度的途径,最后展望了遥感图像分类方法的发展方向和研究热点。 关键词:遥感;图像分类;监督分类;非监督分类;GPU;机群系统;刀片机 1.引言 在遥感图像处理的研究中,无论是专业信息提取,地物变化预测,还是专题地图制作等都离不开分类。遥感图像分类有类别多,混合度大和计算量大的特点,分类方法的优劣直接关系到分类的精度和速度。由于遥感图像本身的空间分辨率以及“同物异谱”和“异物同谱”现象的存在,往往出现较多的错分、漏分现象,导致分类精度不高[1],如何实现图像分类识别并满足一定的分类精度,是当前遥感图像研究中的一个关键问题, 也是研究的焦点[2]。 2.遥感图像分类原理 遥感图像通过亮度值或像素值的高低差异及空间变化表示不同地物的差异,如不同类型的植被、土壤、建筑物及水体等,这也是区分不同地物的理论依据。利用光谱特征(地物电磁波辐射的多波段测量值)或纹理等空间结构特征,按照某种规则就能对地物在遥感图像上的信息进行识别与分类。图像分类的目标就是通过对各类地物波谱特征的分析选择特征参数,将特征空间划分为不相重叠的子空间,进而把影像诸像元划分到各子空间去,从而实现分类[3]。 3.传统分类方法 遥感影像的计算机分类方法可分为两种:统计判决分类和句法模式识别。前者通过对研究对象进行大量的统计分析, 抽出反映模式的本质特点、特征而进行识别。后者则需要了解图像结构信息, 从而对其进行分类。传统的分类方法一般为统计判决分类, 如最大似然法、K均值法等。近年来发展的分类新方法则多采用句法方法, 如专家系统法和决策树分类法等。 根据是否已知训练样本的分类数据,统计模式方法可分为监督分类、非监督分类。下面将具体介绍监督分类、非监督分类以及其它分类(如模糊分类和人工神经网络分类)的典型算法及其主要步骤。 3.1 监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,把图像中的各个像元点划归到各个给定类[4-7]。常用的监督分类方法有最小距离分类、平行六面体分类、最大似然分类等。主要步骤包括:(1)选择特征波段;(2)选择训练区;(3)选择或构造训练分类器;(4)对分类精度进行评价。 3.1.1 最小距离分类 最小距离分类的基本思想是按照距离判决函数计算象素点与每一个聚类中心的光谱距离,将该像素点归到距离最近的类别。该分类方法的距离判决函数是建立在欧氏距离的基础上的,公式如下:

遥感影像分类实验报告

面向对象分类实验报告 姓名: 学号: 指导老师: 地球科学与环境工程学院

一、实验目的 面向对象法模拟人类大脑认知过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先我们要用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 二、实验意义 1、使用eCognition进行面向对象的影像分类的流程; 2、体会面向对象思想的内涵,学会将大脑认知过程转变为机器语言; 三、实验内容 3.1、影像的预处理 利用ERDAS软件将所给的全色影像和多光谱遥感影像进行融合,达到既满足高空间分辨率,又保留光谱信息。Image interperter-> spatial enhancement-> resolution merge.输入融合前的两幅影像,完成影像的预处理过程。 图 1 图像融合步骤

图 2 融合后的图像 3.2、使用eCongition 创建工程 a、使用规则集模式创建工程 图 3 模式选择 b、file->new projection ,打开Create Project和Import Image Layers两个

对话框,将上面的实验数据导入。(注意,数据以及工程文件保存路径不要有中文) 图 4 导入数据 c、选择数据修改波段名称,并设置Nodata选项。

相关文档
最新文档