DFB光纤激光器国内外发展状况

DFB光纤激光器国内外发展状况
DFB光纤激光器国内外发展状况

我国国内光纤激光器目前己经得到一定程度的发展,国内的一些单位如上海光机所、清华大学、北京邮电大学、华中科技大学、中国科技大学、天津大学等从八十年代末进入光纤激光器的研究领域,经过努力获得了一定进展。国内开展光纤激光器和放大器方面的研究是从80 年代末和90 年代初开始的,首先在上海硅酸盐研究所、天津46 所、上海光机所、西安光机所、清华大学、北京邮电大学等国内多见科研单位开展了掺饵光纤的研制及光纤激光器的研究,并取得了阶段性的成果[l5] 。南开大学、上海光学精密机械研究所在双包层光纤布拉格(Bragg)光栅激光器方面取得了开创性成果[16],烽火通信科技股份有限公司与上海光

机所于2005 年合作,顺利研制出输出功率高达440W 的掺臆双包层光纤激光器[17],随后中国兵器装备研究院报道了突破IKW 功率的光纤激光器,清华大学在多波长光纤激光器和锁模脉冲光纤激光器方面做了很多有进展性的工作[ 1 8-20] ,总体来说,由于国内光纤激光器的研究受到基础条件方面的制约,同国际的研究水平还有相当大的差距。国外有多个研究机构人员对DBR 和DFB 光纤激光器开展了全面的研究。其中G.A.Ball 所在的EastHartford 联合科技研究中心最先开展了将光栅直接写在掺杂光纤上形成腔结构,泵浦光源通过WDM 对

其进行泵浦而得到激光输出,从而实现所谓DBR 型光纤激光器[21-23] 。由于作为干涉光源以及传感等应用的背景,对单频操作DBR 的研究广泛的开展起来。利用短腔长高掺杂的DBR 、复合腔结构或DFB 结构等来实现稳定的单频操作一一被提出来。Sigurd 所在的澳大利亚的CRC 光子中心对DFB 光纤激光器进行了动态和多波长操作分析[24-25] ,同时探讨了利用DFB 光纤激光器对声响应的情况,并测试了DFB 光纤激光器对空气中声场的响应;Scott 所在的澳大利亚的国防科学科技组织从理论到实验研究了DFB 光纤激光器的空间模结构和

动态噪声[26-27] ,希望实现基于DFB 光纤激光器的水听器;英国的那安普顿大学的Kuthan 等人从理论上提出了改变DFB 光纤激光器对称结构从而实现提高输出效率降低泵浦域值目的[28] ,同时研究了混合掺杂的DFB 光纤激光器[29],同样希望将其应用于传感领域。在20 世纪90 年代,世界范围的光纤传感技术呈现出产业化发展的趋势,主要形成了军事和民用两大应用领域,其中包括:国土安全防卫系统、工业安全检测系统以及用于石油化工、生物医学和环境等领域的光纤检测系统。在此同时光纤激光传感技术也开始形成,在1995 年,美国海军实验室的K.P.Koo 等人[30]首次将光纤激光器应用到光纤传感领域,这不仅推动了光纤传感技术的发展,而且标准着光纤激光传感技术的诞生。在此之后许多机构对光纤激光传感技术就开始了深入的研究,并且积极的拓展其应用的领域,如美国海军实验室(NRL) 、英国国防研究局(DERA) 、澳大利亚国防科学与技术组织(DSTO) 和美国利通资源勘探仪器公司(Litto n)等。自从19%年起英国国防研究局(DERA)联合Ast on大学和Kent大学开展了光纤激光水听器的研究[31],并于2005年报道了8 点光纤激光水听器波分复用技术[32];2006 年澳大利亚国防科学与技术组织(DSTO) 报道的最大规模的单纤16点波分复用光纤激光传感器阵列[33];2007 年美国G.H.Ames 等报道了DFB 光纤激光加速度计[34];2008 年美国海军实验室G.A.Cranch 等报道了DFB 光纤激光磁力计[35] 可以应用于海底微弱磁场的探测。近年来国内光纤传感技术己经进入了工程应用的阶段,并且在光纤激光传感技术方面也取得了一些研究成果。

2011.3.1

DFB 光纤激光器作为本文研究的重点,下面对它的研究进展作一个简要介绍。1972 年美国贝尔实验

室的H.Kogelnik 和 C.V.Shank 两人采用电磁场的耦合波理论系统分析了分布反馈(DFB) 激光器的工作原理和特性,并在玻璃衬底上用染料胶制作光栅。在70 年代中期,H.A.HauS 指出,在分布反馈半导体激光器的内含光栅中引入非连续变化就能消除模式简并,而且能降低阂值。此后根据这一概念,在均匀光栅的中心引入四分之一波一长的相移,实现了激光器的单模工作。

1994 年,南安普敦大学的Kringlebotn 等人在3cm 的Er3+:Yb3+ 光纤上刻写了2cm 长的均匀光纤光栅,从而制得了第一个均匀分布反馈光纤激光器。1994 年Kringlebotn 在光纤分布反馈激光器的一端利用反射镜,或者在光纤光栅的中心采用加热的办法引入相移,得到在布拉格波长的单频输出,得到线宽为300kHZ ,输出功率为3mw 的单频输出,标志着光纤激光

器技术有了一个重要的突破,因为激光器的谐振腔只是由一段刻写有光栅的带有增益介质的光纤构成。1995 年,瑞士皇家技术学院的 A.Asseh 等人利用掺Yb3+ 光纤制作成10cm 的分布反馈激光器,该激光器在18mw 的抽运功率下得到了运行在1046.6nm 的7.5mW 的单纵模输出,他们先利用相位掩模板制作长度为10cm 的均匀光纤光栅,然后用紫外光对均匀光栅的一部分进行二次曝光得到永久的相移,这是一个技术上的主要的突破。同年,Sejka 制成2.5cm 长的掺Er3+ 光纤分布反馈激光器,引入相移后,激光器运行在单纵模下,阈值降低到

10mW。此外,W.H.Loh等也进行了类似的研究,他们制作了长为10cm,波长为1550nm的

单频相移DFB掺饵光纤激光器,线宽小于13kHz,输出功率达到1mW。

国内,上海光机所进行了这方面的研究,1999 年,瞿荣辉,丁浩报道了采用紫外辐照制备移相光纤光栅的实验结果,范薇,李学春等人对掺Yb3+的相移分布反馈光纤激光器进行了

理论分析,陈柏,陈嘉琳等人于2002年先用相位掩模法在掺Yb3+光纤上刻写光栅,然后采用二次曝光法进行紫外修整而研制出运行于1053nm 的单纵模光纤激光器得到了最大功率为32mw 的激光输出。2000 年北方交通大学的张劲松等也研制了10cm 长的相移分布反馈光纤激光器。

自1960 年第一台激光器问世至今,短短的半个世纪,激光器件和激光技术正以迅猛之势飞速发展着。激光器按其工作物质分类,可以分为气体激光器、固体激光器、半导体激光器、染料激光器、自由电子激光器、准分子激光器和化学激光器等[1] 。其中,半导体激光器以其轻质量、高效率、可直接调制和集成能力强等优点,在各种类型的激光器中逐渐崭露头角。半导体激光器理论的提出最早可以追溯到1953年9月。美国的科学家冯?纽曼提出,向

PN 结注入少量载流子可以使半导体激光器受激发射[2]。1970 年,双异质结半导体激光器

(DH-LD) 在Bell 实验室研制成功。这使半导体激光器彻底告别了液氨温度,可以在室温下进行连续工作,这对半导体激光器的发展有着跨时代的重要意义。至此以后,半导体激光器进入了突飞猛进的发展时期[3] 。目前,它的品种已达到300 多种,被广泛应用于光电子学、光通信、印刷业、医学和军事等领域。半导体激光器的研究和应用已成为国际上最活跃的研究领域之一。分布反馈式(Distributed Feedback,DFB)激光器作为半导体激光器的一种,也一直是科学家们研究的热点问题。DFB 激光器具有带宽窄、波长可调谐、频率稳定性好等突出优点,这是其它普通光源所无法比拟的。光通信技术的飞速发展,一方面,不断促进着DFB 激光器的快速进步;另一方面,也对DFB 激光器的性能提出了更高的要求。DFB 激光器作为光纤光栅信号窄带光源解调技术中的重要器件,提高输出功率、保持波长稳定性、增加波长可调谐范围、使光谱线宽变窄等一系列问题,都是DFB 激光器研究领域中需要继续探索和不断提高、进步的方面。多年来,我们课题组一直致力于光纤光栅信号解调技术的研究和应用,对光纤光栅信号的多种解调方法进行了实验、探索和创新。我们采用的主要解调方法有:粗波分复用器(CWDM)解调法[4]、自发辐射光源(ASE)解调法[5]、可调谐法布里—珀罗(Fabry-Perot,F-P)滤波器解调法[6]、分布反馈式激光器解调法。通过理论分析和实验研究相结合,我们积累了大量的宝贵经验。目前,基于DFB 激光器的光纤光栅信号解调技术是我们课题组的重点研究内容。

半导体激光器,也称半导体激光二极管(Laser Diode,LD) ,工作物质是半导体材料。由于它的良好性能和在光通信等领域的广泛应用,国内外的研究人员十分看好它的发展前景,对它的研究一直很活跃。可是在高速调制状态下,普通的半导体激光器会出现光谱展宽的情况,这就会导致信息传输速率受到影响。为了解决这个问题,研究人员研制出了DFB 激光器[7,8,9] 。DFB 激光器是通过内置光纤布拉格光栅来构成谐振腔,利用光栅的分布反馈来实现纵模选择。DFB 激光器与普通半导体激光器相比,具有单纵模、低损耗、窄线宽、高稳定性等优点,被广泛应用在长距离光通信领域[10]。DFB 激光器的概念产生于1970 年前

后。研究人员在染料激光器的研究过程中发现,谐振腔可以通过内置光栅的分布反馈来实现。

1971 年,美国贝尔实验室的C.V.Shank 和H.Kogelnik 在DFB 结构实验中首次看到激射现象[11]。次年,他们对DFB 激光器的工作原理和特性进行了理论分析。提出了DFB 激光器中存在折射率耦合和增益耦合两种反馈方式,而且DFB 激光器的谐振腔可以选择模式[12] 。1973 年,通过光泵砷化镓周期栅表面,中村制作了第一个分布反馈式激光器。1974 年,Scifres 制作了以GaAlAs/GaAs 为材料的单异质结电流注入型分布反馈式激光器。1975年,中村和凯西实现了室温下DFB 激光器的连续受激发射。70 年代中期,Shank 和Haus 在DFB 激光器的内置光栅中引入非连续变化,这样可以消除模式简并、降低阈值电流。这一理论具体到实践中就是给光栅的中心引入四分之一波长的相移[13,14] 。1977 年,Streifer.W 对DFB 激光器的理论进行了系统的阐述,并推导出了谐振波长和阈值的表达式。1979 年,研究人员开始将InGaAsP/InP 材料用于DFB 激光器的制作中。同年就做出了能在低温环境下工作的DFB 激光器。1981 年,第一支能在室温下连续工作的1550nm 单模稳定DFB 激光器问世。从此,可调谐半导体激光器受到了研究人员的广泛关注[15]。1988 年,我国的罗毅博士和日本的多田邦雄教授采用MOCVD 技术,实现了增益耦合DFB 激光器[16] 。21 世纪,

已经进入了40Gbit/s 的高速光通信时代,对信息的传送速度、储存容量和精确度等方面都提出了更高的要求。国外已研制出了调谐范围超过80nm 的可调谐半导体激光器。目前,各国研究人员都在努力地研制性能更优良的DFB 激光器,它将有着更加广阔的发展前景[17] 。

光纤通信的发展现状

则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤, 并常以某种功能器件的形式出现。光纤通信之所以发展迅猛, 主要缘于它具有以下特点: 通信容量大、传输距离远;信号串扰小、保密性能好;抗电磁干扰、传输质量佳;光纤尺寸小、重量轻, 便于敷设和运输;材料来源丰富, 环境保护好;无辐射, 难于窃听;光缆适应性强, 寿命长。 作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都经历着一个发展的过程。光纤通信技术的几种关键技术分为--- 波分复用技术。波分复用WDM(Wavelength Division Multiplexing) 技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率( 或波长) 不同, 将光纤的低损耗窗口划分成若干个信道, 把光波作为信号的载波, 在发送端采用波分复用器( 合波器) , 将不同规定波长的信号光载波

合并起来送入一根光纤进行传输。在接收端, 再由一波分复用器( 分波器) 将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立( 不考虑光纤非线性时) , 从而在一根光纤中可实现多路光信号的复用传输。自从上个世纪末, 波分复用技术出现以来, 由于它能极大地提高光纤传输系统的传输容量, 迅速得到了广泛的应用。 2. 光纤接入技术。光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化, 满足大众的需求, 不仅要有宽带的主干传输网络, 用户接入部分更是关键, 光纤接入是网高速信息流进千家万户的关键技术。在光纤宽带接入中, 由于光纤到达位置的不同, 有FTTB、FTTC、FTTCab 和FTTH 等不同的应用, 统称FTTx。 光纤通信技术发展的现状--- 1.市场需求的培育发展和产业链的形成尚需时日。FTTH除了提供高带宽外, 更重要的是运营商能提供什么具体服务内容让用户需求更高的带宽, 使得在既有宽带接入技术无法满足之下,推动用户走向光纤到户。然而用户上网经常使用的服务为看新闻, 搜寻引擎,电子信箱,这些

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

————————————————————————————————作者:————————————————————————————————日期: 2

学号:20085044013 本科学年论文 学院物理电子工程学院 专业电子科学与技术 年级2008级 姓名王震 论文题目光纤通信技术发展历程、特点及现状 指导教师张新伟职称讲师 成绩

2012年1月10日 目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特

高功率光纤激光器发展概况

2009年第12 期 中文核心期刊 高功率光纤激光器发展概况 Survey of high-power fiber lasers ZHANG Jing-song (Electronic communications technology department, Shenzhen Institute of Information Technology,Shenzhen Guangdong 518029,China) Abstract :High-power fiber lasers have wide applications in the filed of optical communication,printing,marking,material processing,medicine etc.High-power fiber lasers may substitute conventional lasers large-ly,have new application of laser,broaden the scope of laser industry.The history and recent development of high-power fiber lasers home and aboard are surveyed.The prospect of high-power fiber lasers is discussed.Key words :high-power fiber laser,double-clad fiber,cladding pump 张劲松 (深圳信息职业技术学院电子通信技术系,广东深圳518029) 摘要:高功率光纤激光器以其优越的性能和超值的价格,在光通信、印刷、打标、材料加工、医疗等领域 有着广阔的应用,将会很大程度上替代传统激光器,并开辟一些新的激光应用领域,扩大激光产业的规模。概述国内外高功率光纤激光器的发展历史与现状。展望了高功率光纤激光器的发展前景。 关键词:大功率光纤激光器;双包层光纤;包层泵浦中图分类号:TN248 文献标识码:A 文章编号:1002-5561(2009)12-0008-03 0引言 从1960年第一台激光器(美国Maiman 等首先用红宝石晶体获得了激光输出)问世到现在近50年过去了,激光技术确如人们所期,渗入了各行各业:通信、生物技术、医学、印刷、制造、军事、娱乐业等。在某些领域,它已经成为不可替代的核心技术。但是激光产业规模还不够大,究其原因,不是人类不需要激光,而是传统激光器不好用:成本高、效率低、故障多。 光纤激光器的出现带来了扩大激光产业规模的希望。光纤激光器激光光束质量好,电-光转换效率高,输出功率大;所有的半导体器件及光纤组件都可以融接成一体,避免了元件的分立,可靠性得到极大提高。 1国外高功率光纤激光器发展概况 光纤激光器的最早有关研究可以追溯到20世纪 60年代初期,当时激光器刚刚出现不久,人们对激光 器的研究投入了极大热情,积极研制开发各种新型激光器。1961年,美国光学公司的E.Snitzer 等在光纤激 光器领域进行了开创性的工作,他们利用棒状掺钕(Nd 3+)玻璃波导获得了波长1.06μm 的激光。 20世纪70年代,光纤通信的研究开始起步,新兴 的光纤通信系统对新型光源的需求极大地刺激了激光器的研究工作。但由于人们的注意力集中到迅猛发展的半导体激光器技术上,以及光纤激光器自身的一些当时无法克服的困难,光纤激光器的研究逐渐沉寂下来。尽管如此,仍然取得了一些值得一提的成就。例如,1973年,J.Stone 等成功地研制出能够在室温下连续工作的掺钕光纤激光器,他们采用的半导体注入型激光器终端泵浦方式对以后实用型光纤激光器的研究具有重要的意义。 20世纪80年代,英国Southampton 大学的S.B.Poole 等用MCVD 法成功地制备了低损耗的掺钕和掺 铒光纤,因为掺铒光纤光纤激光器的激射波长恰好位于通信光纤的1.55μm 低损耗窗口,人们开始认识到光纤放大器和光纤激光器在提高传输速率和延长传输距离等方面无疑将给光纤通信带来一场革命。掺铒光纤放大器(EDFA )得到了迅速的发展并成为一项成熟的应用技术。但是,光纤通信用的光纤激光器输出功率一般都是毫瓦级,一直以来只局限于光通讯等领域;同时由于巨大的行业差距,几乎无人把它与激光 收稿日期:2009-08-31。 作者简介:张劲松(1969-),男,博士,高工,现主要从事光纤激光器、放大器等方面的研究。 ⑧

光纤通信的发展前景

光纤通信的现状及其未来发展 光信息科学与技术08-1班 韩欣欣 08133102 关键词:光纤通信 光纤到户 未来发展 摘要:光纤通信自问世以来,给整个通信领域带来了一场革命,它使高速率,大容量的通信成为可能。目前它已经成为一种不可替代的、最主要的信息传输技术。 引言: 光无处不在。在人类发展的早期,人类已经开始使用光传递信息了。但那时候传递的信息容量非常少,局限性也很大。 随着社会的发展,信息传输与交换量与日俱增,传统的电通信方式已不能满足人们的需要。为了扩大通信容量,通信方式从中波、短波发展到微波、毫米波,这实际上就是通过提高通通信载波频率来扩大通信容量的。这样就出现了现在的光通信技术,就是光纤通信。 光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。 与传统的电通信相比,光纤通信是以很高频率的光波作为载波,以光纤为传输介质的通信。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,自其出现以来就备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980年至今增加了近一万倍 传输速度在过去的10年中大约提高了100倍。 光纤发展与应用 为了发展光通信技术,人们又考虑和尝试了各种传输介质,但是他们的损耗都非常的高。直到1966年美籍华人高锟博士和霍克哈姆发表论文,预见了低损耗的光纤能够应用于通信,敲开了光纤通信的大门。从此光纤在通信中的应用引起了人们的重视。 很快在1970年8月美国康宁公司首次研制成功损耗为20dB/kM光纤。光纤通信的时代由此开始了。 1972年,随着光纤制备工艺中的原材料提纯、制棒和拉丝技术水平

我国光纤通信的现状分析及发展前景

我国光纤通信的现状分析及发展前景 1、光纤通信技术当前发展现状 近些年来,最为流行与最受关注的通信技术可以说是光纤通信技术、卫星通信应用技术以及无线通讯技术。而光纤通信技术在这三种支柱性通信技术中,所涉及到的领域技术最为广泛,这是由于光纤通信技术有着非常多的显著优势与实用特性。 1.1 实用性强、频带宽、容量大 一般光纤能够利用的频宽数量大概可达50000GHz,并且其传输损耗低、实用性强。自1987年我国投入使用时,其就能以1.7Gb/s的一对光纤就能同时对两万多路电话进行传输;2.4Gb/s时,同样也能对三万多组电话进行传输。其频宽能力强大,不仅仅是数据承载通信容量大,而且还能够满足宽带营运实施的综合性业务流转,协调于综合业务宽带的利用效率与开发,如其能够满足数字网B-ISDN发展的需求。 1.2 信号光功率损失小,中继距离长,成本低 由于光纤本身的损耗程度一般低于0.2dB/km,这和其他传输媒介的损耗程度比较而言,光纤传导的信号功率损失程度非常小,也就是说其满足一定的比特率要求的光接收机灵敏度很高,即满足系统误比特率要求的最低接收光功率越小,中继距离就越长。其中其存在的最大中继距离可能高达上千米甚至是上万米,这对光纤通信传输系统所投成本的稳定性,以及实现传输可靠性的现实意义来说,非常重要。 1.3 抗电磁干扰 光纤自身是绝缘体材料,本身不受高空电离层的强度环境变化与雷电或是太阳表面黑子变化活动的干扰,也不受电路系统高压馈电线与相关设施、设备的诸多方面干扰。总的来说,光纤传导受电磁干扰的特性以及受其他方面干扰自身传导通信功能的可能性很小。 1.4 光波传输良好,即保密性好 光波当在光缆中运行传输时,由于自身材料的传导性能,使其光波在传输过程当中也就很难外泄出来,即使存在外漏现象,也很微弱,是在正常损益范畴之内。所以有时对于光纤表面上会上一层消除光谱色散损耗的消光剂。从而使波形因为客观性其他原因引起的失真外泄现象大幅度降低,也使系统传输信息的保密性程度提升了。 2、光纤通信技术的发展趋势

光纤通信发展与现状解析

公选课课程论文 (2010 -2011 学年第二学期光纤通信发展与现状 学生:周丹丹 提交日期:2011 年 4 月 18 日学生签名:周丹丹 光纤通信发展与现状 周丹丹 摘要:

本文通过介绍及时、准确全面地获取信息在当今这个竞争时代的重要性,指出光纤通信与我们的生活息息相关对我们的生产和生活中起到了相当关键的作用。并简单介绍了了国际光纤通信四十多年来的发展历程,并进一步描述了自 1960年光纤之父高锟等人首先提出了用低吸收的光纤做光通信至今,光纤通信的发展。并具体针对在我国出现不久的 3G 手机上网和手机网上银行做了一些介绍,并提出自己的一些观点和看法。最后结合现状和相关文献对光纤通信未来的发展趋势和方向做一些介绍。 关键字:光纤通信、发展、手机、 3G 、光联网 一、信息的重要性 回顾历史,古人烽火狼烟、快马加鞭、鸿雁传书……这些历史典故都告诉我们一个道理——只有具备及时获取全面、准确的信息,把握动态、解决问题的能力,才能抓住机遇、才能充分展示和发挥自己的才华、扬长避短,取得成功。 一直到信息大爆炸的今天,竞争日益激烈。各个国家、企业甚至个人想要在竞争中掌握主动权,就一定要及时、详细了解当今世界的各个行业的发展的现状和趋势,结合自身条件及时调整自己的战略,使之与时代环境相符合。只有这样才可能在竞争中取得最后的胜利,使人类文明不断前进、不断进步。 如何才能满足人们的需求,有效、及时地传递大量信息呢?人们迫切需要一种新的传输媒介。 二、关于光纤通信 【 1】 光纤通信是用光作为信息的载体,以光纤作为传输介质的一种通信方式。光纤通信系统可分为三个基本单元:光发射机、光纤和光接收机。它首先要在发射端将需传送的信号进行光电转换,再经光纤传输到接收端,接收端将接收到的光信号转变成电信号, 最后还原成原信号。光纤通信系统的构成具体如下:

我国光纤光缆行业的发展现状及前景

我国光纤光缆行业的发展现状及前景近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 一、我国光纤光缆发展的现状 1.普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G..652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G..653规定的色散位移单模光纤实现了这样的改进。 2.核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G..652光纤和G..655光纤。G..653光纤虽然在我国曾经采用过,但今后不会再发展。G..654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 3.接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加

光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G..652普通单模光纤和G..652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 4.室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并且还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。结合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 5.电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 二、光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

中国光纤通信技术的现状及未来.

中国光纤通信技术的现状及未来 光纤通信是我国高新技术中与国际差距较小的领域之一。光纤通信由于其具有的一系列特点, 使其在传输平台中居于十分重要的地位。虽然目前移动通信, 甚至卫星移动通信的热浪再现高波,但 Telecom99的展示说明,光纤通信仍然是最主要的传输手段。在北美,信息量的 80%以上是通过光纤网来传输的。在我国光纤通信也得到广泛的应用,全国通信网的传输光纤化比例已高达 82%。光纤通信技术的应用基本达到国际同类水平,自主开发的光纤通信产品也比较接近国际同类产品水平, 但实验室的研究水平还有一定的差距。本文扼要回顾我国光通信走过的历程, 并从光纤光缆、光器件、光传输设备和系统等几方面介绍光通信的研发、应用现状, 展望光通信在我国的应用前景, 将激励我们为振兴我国光通信民族产业做出更大的贡献。 1 我国光通信历程的回顾 我国的光通信起步较早, 70年代初就开始了大气传输光通信的研究,随之又进行光纤和光电器件的研究,自 1977年初,研制出第一根石英光纤起,跨过一道道难关,取得了一个又一个零的突破。如今回顾起来,所经历的“里程碑”依然历历在目: 1977年,第一根短波长 (0. 85mm 阶跃型石英光纤问世,长度为 17m ,衰减系数为300dB/km。 研制出 Si-APD 。 1978年,阶跃光纤的衰减降至 5dB/km。 研制出短波长多模梯度光纤,即 G .651光纤。 研制出 GaAs-LD 。 1979年,研制出多模长波长光纤,衰减为 1dB/km。 建成 5.7km 、 8Mb/s光通信系统试验段。

1980年, 1300nm 窗口衰减降至 0.48dB/km, 1550nm 窗口衰减 为 0.29dB/km。 研制出短波长用的 GaAlAs-LD 。 1981年,研制出长波长用的 InGaAsP-LD 和 PIN 探测器。 多模光纤活动连接器进入实用。 研制出 34Mb/s光传输设备。 1982年,研制成功长波长用的激光器组件和探测器组件 (PIN-FET。 研制出光合波分波器、光耦合器、光衰减器、滤光器等无源器件。 研制出 140Mb/s光传输设备。 1984年,武汉、天津 34Mb/s市话中继光传输系统工程建成 (多模。 1985年,研制出 1300nm 单模光纤,衰减达 0.40dB/km。 1986年,研制出动态单纵模激光器。 1988年,全长 245km 的武汉椌V輻沙市 34Mb/s多模光缆通信系统工程通过邮电部鉴定验收。 扬州——高邮 4Mb/s单模光缆通信系统工程通过邮电部鉴定验收。 1989年,汉阳——汉南 40Mb/s单模光传输系统工程通过邮电部鉴定验收。 1990年, 研制出 G .652标准单模光纤, 最小衰减达 0.35dB/km。到 1992年降至0.26dB/km。成功地研制出 1550nm 分布反馈激光器 (DFB-LD。 1991年,研制出 G .653色散位移光纤。最小衰减达 0.22dB/km。

光纤激光器的原理及应用

光纤激光器的原理及应用 张洪英 哈尔滨工程大学理学院 摘要:由于在光通信、光数据存储、传感技术、医学等领域的广泛应用,近几年来光纤激光器发展十分迅速,且拥有体积小、重量轻、检测分辨率高、灵敏度高、测温范围宽、保密性好、抗电磁干扰能力强、抗腐蚀性强等明显优势。本文简要介绍了光纤激光器的基本结构、工作原理及特性,并对目前几种光纤激光器发展现状及特点做了分析,总结了光纤激光器的发展趋势。 关键词:光纤激光器原理种类特点发展趋势 1引言 对掺杂光纤作增益介质的光纤激光器的研究20世纪60年代,斯尼泽(Snitzer)于1963年报道了在玻璃基质中掺激活钕离子(Nd3+)所制成的光纤激光器。20世纪70年代以来,人们在光纤制备技术以及光纤激光器的泵浦与谐振腔结构的探索方面取得了较大进展。而在20世纪80年代中期英国南安普顿大学掺饵(EI3+)光纤的突破,使光纤激光器更具实用性,显示出十分诱人的应用前景[1]。 与传统的固体、气体激光器相比,光纤激光器具有许多独特的优越性,例如光束质量好,体积小,重量轻,免维护,风冷却,易于操作,运行成本低,可在工业化环境下长期使用;而且加工精度高,速度快,寿命长,省能源,尤其可以智能化,自动化,柔性好[2-3]。因此,它已经在许多领域取代了传统的Y AG、CO2激光器等。 光纤激光器的输出波长范围在400~3400nm之间,可应用于:光学数据存储、光学通信、传感技术、光谱和医学应用等多种领域。目前发展较为迅速的掺光纤激光器、光纤光栅激光器、窄线宽可调谐光纤激光器以及高功率的双包层光纤激光器。 2光纤激光器的基本结构与工作原理 2.1光纤激光器的基本结构 光纤激光器主要由三部分组成:由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和可使激光介质处于受激状态的泵浦源装置。光纤激光器的基本结构如图2.1所示。

通信工程毕业论文光纤通信技术的现状及发展趋势

光纤通信技术的现状及发展趋势 摘要:光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要综述我国光纤通信研究现状及其发展。 关键词:光纤通信核心网接入网光孤子通信全光网络 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1 我国光纤光缆发展的现状 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它

在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过 的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限, 在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径 和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C 低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。 并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全 介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设 的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。国内已能生 产多种ADSS光缆满足市场需要。但在产品结构和性能方面,例如 大志数光缆结构、光缆蠕变和耐电弧性能等方面,还有待进一步完善。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 2 光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是

2019年中国光纤激光器行业市场现状及发展前景研究报告

2019年中国光纤激光器行业市场现状及发展前景研究报告随着光纤激光器突破了传统激光器在功率、效率和性能方面的瓶颈,逐步替代气和普通固体激光器,光纤激光技术的发展和下游行业需求的增加,光纤激光器市场规模保持快速增长。随着光纤激光器技术逐渐成熟以及下游行业市场需求不断增加,数据显示,2018年中国光纤激光器出货量已突破10万台。 工业自动化生产的推进和激光器功率的提升,光纤激光器在工业领域的应用快速渗透,高功率连续光纤激光器稳定性快速提升,应用领域迅速扩大,光纤激光器在工业领域的应用将进一步扩大,整体市场空间将稳定增长,预计2019年中国光纤激光器出货量将进一步增长,有望突破14万台。 基于此,中商产业研究院长期关注中国光纤激光器市场,针对当前光纤激光器情况以及光纤激光器的发展前景,特别推出了《2019中国光纤激光器行业市场前景研究报告》,通过案例分析,为从事光纤激光器产业的从业人员提供了参考方案。 《2019中国光纤激光器行业市场前景研究报告》主要围绕中国光纤激光器行业概况;光纤激光器发展背景;光纤激光器现状;行业相关企业以及光纤激光器行业未来发展前景等五个章节展开,通过对当前中国光纤激光器的分类别划分诊断,总结光纤激光器发展现状,从而预提出当前行业的发展前景。

PART 1光纤激光器的概况 据中商产业研究院分析,光纤激光器是指利用掺稀土元素的玻璃光纤作为增益介质的激光器。光纤激光器一般用光纤光栅作为谐振腔,泵浦源作为泵浦源,泵浦光从合束器耦合进入增益光纤,在包层内多次反射穿过掺杂纤芯,选择合适的光纤长度和掺杂离子浓度可以实现对泵浦光的充分吸收,形成粒子数反转并输出激光。

光纤通信的发展现状和未来_图文(精)

科技!论坛 中国科技信息2006年第4期 CHINASCIENCEANDTECHNOLOGYINFORMATIONFeb.2006 光纤通信的发展现状和未来 王磊裴丽北京交通大学光波所1 00044 摘 要:光纤通信自问世以来,给整个通信领域带来了一场革命,它使高速率、大容量的通信成为可能。目前它已成为一种不可替代的、最主 要的信息传输技术。这篇文章简要介绍了光纤通信的特性和现阶段国内外应用光纤通信的基本-睛况,比较详细地总结了目前光纤通信主要技术——光 波分复用技术、光孤子通信技术和光纤接八技术的基本原理、优势、发展状况和国内外近期所能达到的技术水平,最后论述了未来光纤通信将是朝着 光纤到户、全光网络的方向发展,最终会提供更多更好的信息服务。 关链词:波分复用;光弧子通信;光纤到户 1。光纤通信概况 方案,它在我国多个运营商的网络中得到应 实现了20Gbit/S、105kin的传输。近年来 196

6年,美籍华人高锟博士(C.K. 用;以10Gbit/s为基础的DWDM系统已逐渐 时域上的亮孤子、正色散区的暗孤子、空域上后Kao)和霍克哈姆(C.A.Hockham)发表成为核心网的主流。DWDM系统除了波长数开的三维光弧子等,由于它们完全由非线性彭论文,预见了低损耗的光纤能够应用于通信, 和传输容量不断增加外,光传输距离也从 应决定,不需要任何静态介质波导而备受国映 敲开了光纤通信的大门。从此光纤在通信中的 600km左右大幅度扩展到2000km以上。1. 外研究人员的重视f“。 应用引起了人们的重视,很快在1970年8月,28n)it/s(128 X 10Gbit/s)的DwDM系统已达到 众多实验结果表明,光弧子通信具有远韪美国康宁公司首次研制成功损耗为20dB/km的 无中继传输80 O0kIll;实验室最高记录已达 离光传输能力,可用于海底光缆通信等,而目 光纤,光纤通信的时代由此开始了。与传统的

光纤通信技术发展历程、特点及现状

本科学年论文 学 院 物理电子工程学院 专 业 电子科学与技术 年 级 2008级 姓 名 王震 论文题目 光纤通信技术发展历程、特点及现状 指导教师 张新伟 职称 讲师 成 绩 2012年1月10日 学号:

目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70

光纤通信技术的现状及发展趋势

龙源期刊网 https://www.360docs.net/doc/6e18531388.html, 光纤通信技术的现状及发展趋势 作者:邱劲卜志军 来源:《数字技术与应用》2010年第01期 摘要:光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。本文主要综 述我国光纤通信研究现状及其发展。 关键词:光纤通信核心网接入网光孤子通信全光网络 中图分类号: 文献标识码:A文章编号:1007-9416(2010)01-0000-00 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 1 我国光纤光缆发展的现状 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道 容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长 位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今 后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆

光纤现状及其发展

光纤通信的现状及其发展 光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。下面简单描述我国光纤光缆发展的现状: 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在主干线(包括国家主干线、省内主干线和区内主干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今

后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。主干线光缆中采用分立的光纤,不采用光纤带。主干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的

光纤通信的现状分析

光纤通信的现状分析 叶荣欣 摘要:阐述了光纤通信在国内外的发展历程,并分析了其工作原理和优势所在,为我国光纤通信技术的应用提出了相应发展方向和对策。 In this paper,Expounds the development of optical fiber communication at home and abroad, and analyses its working principle and advantage, for the application of optical fiber communication technology in China put forward the corresponding development direction and countermeasures. 关键词:光纤;光纤通信技术;应用;FTTH Key words: optical fiber; Optical fiber communication technology; Application; FTTH 一.光纤通信的兴起,发展与历史 1880年,贝尔发明了“光话”。他以日光为光源,大气为传输媒质,传输距离是200m。这标志着现代光通信的开始。他建立了自己的理论,但由于没有可靠、高强度的光源和没有稳定、低损耗的传输媒质,贝尔的“光话”始终没有走上实用化阶段。由于以上所说的两个障碍,光通信的研究一度沉寂。 1960年,第一台相干振荡光源——红宝石激光器问世,激起了世界性的光通信研究热潮。1962年半导体激光器的出现给实用化通信光源带来了希望。1970年,首次研究出在室温下连续工作的双异质结半导体激光器,为使用化的通信光源奠定了基础。 在研究光通信光源的同时,人们进行了各种光波导的研究,其中包括了光导纤维。虽然光导纤维以内部全反射限制光波的传输原理早为人知,并且已经应用在医学上。但在当时作为光导纤维材料的石英玻璃损耗很大。这个问题在早期一直没有得到解决,所以没有办法应用在作为光通信传输媒质。1966年,英国标准电信研究所的华裔科学家高锟博士发表了一篇重要的文章,提出了可以利用带有包层材料的石英玻璃光纤作为光通信的传输媒质。他还预言,通过降低材料的杂质含量和改进制造工艺,可使光纤的衰减下降到20dB/km,甚至更小。1970年,美国Corning玻璃有限公司果然制成了衰减为20dB/km的低损耗石英光纤。它的制成使人们确认光导纤维完全能胜任作为光通信的传输媒质,从而确立了光通信发展的明确目标,揭开了光纤通信发展的新篇章。

光纤激光器论文

激光器件与技术期中论文 光纤激光器浅谈浅谈光纤激光器以及我国光纤激光器研究现状

摘要: 光纤激光器作为光源在光通信领域已得到广泛应用,而随着大功率双保层光纤激光器的出现,其应用正向着激光加工、激光测距、激光雷达、激光艺术成像、激光防伪和生物医疗等更广阔的领域迅速扩展。本文以下内容概述了光纤激光器的原理、特点、应用及其发展前景。 关键词:光纤激光器应用扩展发展前景 abstract: Fiber laser as a light source in the field of optical communication has been widely used, and as the dual-protection layer of high-power fiber lasers appear, its application is toward to the laser processing, laser ranging, laser radar, laser art of imaging, security and bio-medical laser rapid expansion of a wider area. The following article outlines the principles of fiber lasers, characteristics, applications and prospects for development. Keywords: fiber laser applications development prospects.

相关文档
最新文档