迭代算法

迭代算法
迭代算法

算法设计之迭代法

军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B = A操作),然后A 再前进占领新的位置,B再跟上……直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置逼近的方法称之为迭代法。

迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

利用迭代算法解决问题,需要做好以下三个方面的工作:

一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件。

最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

定理:gcd(a, b) = gcd(b, a mod b)

证明:a可以表示成a = kb + r,则r = a mod b 。假设d是a,b的一个公约数,则有 d% a==0, d%b==0,而r = a - kb,因此d%r==0 ,因此d是(b, a mod b)的公约数

同理,假设d 是(b, a mod b)的公约数,则 d%b==0 , d%r==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。其算法用C语言描述为:

int Gcd_2(int a, int b)// 欧几里德算法求a, b的最大公约数

{

if (a<=0 || b<=0) //预防错误

return 0;

int temp;

while (b > 0) //b总是表示较小的那个数,若不是则交换a,b的值

{

temp = a % b; //迭代关系式

a = b; //a是那个胆小鬼,始终跟在b的后面

b = temp; //b向前冲锋占领新的位置

}

return a;

}

从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b; 根据迭代

关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数

为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前

冲的先锋。

还有一个很典型的例子是斐波那契(Fibonacci)数列。斐波那契数列为:0、1、1、2、

3、5、8、13、21、…,即 fib(1)=2; fib(2)=1; fib(n)=fib(n-1)+fib(n-2) (当n>2时)。

在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型

的迭代关系,所以我们可以考虑迭代算法。

int Fib(int n) //斐波那契(Fibonacci)数列

{

if (n < 1)//预防错误

return 0;

if (n == 1 || n == 2)//特殊值,无需迭代

return 1;

int f1 = 1, f2 = 1, fn;//迭代变量

int i;

for(i=3; i<=n; ++i)//用i的值来限制迭代的次数

{

fn = f1 + f2; //迭代关系式

f1 = f2; //f1和f2迭代前进,其中f2在f1的前面

f2 = fn;

}

return fn;

}

有一种迭代方法叫牛顿迭代法,是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式 x(n+1) = g(x(n)) = x(n)–f(x(n))/f…(x(n)).然后按以下步骤执行:

(1) 选一个方程的近似根,赋给变量x1;

(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;

(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。

若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就

认为是方程的根。

例1:已知f(x) = cos(x) - x。 x的初值为3.14159/4,用牛顿法求解方程f(x)=0的近似值,要求精确到10E-6。

算法分析:f(x)的Newton代法构造方程为:x(n+1) = xn - (cos(xn)-xn) / (-sin(xn)-1)。

#include

double F1(double x); //要求解的函数

double F2(double x); //要求解的函数的一阶导数函数

double Newton(double x0, double e);//通用Newton迭代子程序

int main()

{

double x0 = 3.14159/4;

double e = 10E-6;

printf("x = %f\n", Newton(x0, e));

getchar();

return 0;

}

double F1(double x) //要求解的函数

{

return cos(x) - x;

}

double F2(double x) //要求解的函数的一阶导数函数

{

return -sin(x) - 1;

}

double Newton(double x0, double e)//通用Newton迭代子程序

{

double x1;

do

{

x1 = x0;

x0 = x1 - F1(x1) / F2(x1);

} while (fabs(x0 - x1) > e);

return x0; //若返回x0和x1的平均值则更佳

}

例2:用牛顿迭代法求方程x^2 - 5x + 6 = 0,要求精确到10E-6。

算法分析:取x0 = 100; 和 x0 = -100;

f(x)的Newton代法构造方程为: x(n+1) = xn - (xn*xn – 5*xn + 6) / (2*xn - 5)

#include

double F1(double x); //要求解的函数

double F2(double x); //要求解的函数的一阶导数函数

double Newton(double x0, double e);//通用Newton迭代子程序

int main()

{

double x0;

double e = 10E-6;

x0 = 100;

printf("x = %f\n", Newton(x0, e));

x0 = -100;

printf("x = %f\n", Newton(x0, e));

getchar();

return 0;

}

double F1(double x) //要求解的函数

{

return x * x - 5 * x + 6;

}

double F2(double x) //要求解的函数的一阶导数函数

{

return 2 * x - 5;

}

double Newton(double x0, double e)//通用Newton迭代子程序

{

double x1;

do {

x1 = x0;

x0 = x1 - F1(x1) / F2(x1);

} while (fabs(x0 - x1) > e);

return (x0 + x1) * 0.5;

}

具体使用迭代法求根时应注意以下两种可能发生的情况:

(1) 如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;

(2) 方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导

致迭代失败。选初值时应使:|df(x)/dx|<1,|df(x)/dx|越小收敛速度越快!

练习:

1.验证谷角猜想。日本数学家谷角静夫在研究自然数时发现了一个奇怪现象:对于任意一个自然数 n ,若 n 为偶数,则将其除以 2; 若 n 为奇数,则将其乘以 3 ,然后再加 1 。如此经过有限次运算后,总可以得到自然数 1 。人们把谷角静夫的这一发现叫做“谷角猜想”。

要求:编写一个程序,由键盘输入一个自然数 n ,把 n 经过有限次运算后,最终变成自然数 1 的全过程打印出来。2.阿米巴用简单分裂的方式繁殖,它每分裂一次要用 3 分钟。将若干个阿米巴放在一个盛满营养参液的容器内,4

5分钟后容器内充满了阿米巴。已知容器最多可以装阿米巴2^20个。试问,开始的时候往容器内放了多少个阿米巴?请编程序算出。

3.五只猴子一起摘了一堆桃子,因为太累了,它们商量决定,先睡一觉再分.一会其中的一只猴子来了,它见别的猴子没来,便将这堆桃子平均分成5份 ,结果多了一个,就将多的这个吃了,并拿走其中的一份.一会儿,第2只猴子来了,他不知道已经有一个同伴来过,还以为自己是第一个到的呢,于是将地上的桃子堆起来,再一次平均分成5份,发现也多了一个,同样吃了这1个,并拿走其中一份.接着来的第3,第4,第5只猴子都是这样做的.......,

根据上面的条件,问这5只猴子至少摘了多少个桃子?第5只猴子走后还剩下多少个桃子?

4. 用牛顿迭代法求方程x^2 = 45,要求精确到10E-6。

提示:取x0 = -6; 和 x0 = 6;

f(x)的Newton代法构造方程为: x(n+1) = xn - (xn*xn - 45) / (2*xn)

参考答案:

1.#include

#include

int main()

{

int n;

puts("input n: ");

scanf("%d", &n);

puts("过程:");

printf("%d -> ", n);

while (n != 1)

{

if (0 == (n&1))

n = n / 2; //迭代关系式

else

n = n * 3 + 1; //迭代关系式

printf("%d -> ", n);

}

printf("\b\b\b\b \n");//去掉多余的“ -> ”

system("pause");

return 0;

}

2. 算法分析:根据题意,阿米巴每3分钟分裂一次,那么从开始的时候将阿米巴放入容器里面,到45分钟后充满容器,需要分裂 45/3=15 次。而"容器最多可以装阿米巴2^20个",

即阿米巴分裂15次以后得到的个数是2^20 。题目要求我们计算分裂之前的阿米巴数,不妨使用倒推的方法,从第15次分裂之后的2^20个,倒推出第15次分裂之前(即第14次分裂之后)的个数,再进一步倒推出第13次分裂之后、第12次分裂之后、……第1次分裂之前的个数。设第1次分裂之前的个数为x0 、第1次分裂之后的个数为x1 、第2次分裂之后的个数为x2 、……

第15次分裂之后的个数为x(15),则有x(14)=x(15)/2,x(13)=x(14)/2,……x(n-1)=x(n)/2 (n >= 1) 因为第15次分裂之后的个数x(15)是已知的,如果定义迭代变量为x ,则可以将上面的倒推公式转换成如下的迭代公式: x=x/2 (x的初值为第15次分裂之后的个数2^20)让这个迭代公式重复执行15次,就可以倒推出第1次分裂之前的阿米巴个数。因为所需的迭代次数是个确定的值,我们可以使用一个固定次数的循环来实现对迭代过程的控制。

#include

#include

int main()

{

int max = pow(2, 20);

int n = 15;

int i;

int s = max;

for (i=1; i<=n; i++)

{

s /= 2;

}

printf("开始的时候往容器内放了%d个阿米巴\n", s);

getchar();

return 0;

}

3. 算法分析:先要找一下第N只猴子和其面前桃子数的关系。如果从第1只开始往第5只找,不好找,但如果思路一变,从第N到第1去,可得出下面的推导式:

第N只猴第N只猴前桃子数目

6 s6=x,即最后剩下的桃子数

5 s5=s6*5/4+1

4 s4=s5*5/4+1

3 s3=s4*5/4+1

2 s2=s3*5/4+1

1 s1=s2*5/4+1,即最初的桃子数

s1即为所求。上面的规律中只要将s1-s5的下标去掉:

s=x

s=s*5/4+1

s=s*5/4+1

s=s*5/4+1

s=s*5/4+1

s=s*5/4+1

很显然,这是一种迭代,所以可以用循环语句加以解决。

综观程序的整体结构,最外是一个循环,因为循环次数不定,可以使用While循环,其结束条件则是找到第一个符合条件的数。为了做出上面while循环的结束条件,还需进一步分析上述规律的特点,要符合题目中的要求,s2-s6五个数必须全部能被4整除,而s1不能被4整除,这个可作为条件。具体实现请参看源程序。

#include

int main(void)

{

int x, s;

int i;

for(x=0; ;x+=4)

{

s = x;

for (i=0; i<5; i++)

{

s = s * 5 / 4 + 1;

if (s % 4)

break;

}

if (i == 4)

break;

}

printf("摘了%d个桃子, 剩下%d个桃子\n", s, x);

getchar();

return 0;

}

4. #include

double F1(double x); //要求解的函数

double F2(double x); //要求解的函数的一阶导数函数

double Newton(double x0, double e);//通用Newton迭代子程序

int main()

{

double x0;

double e = 10E-6;

x0 = -6;

printf("x = %f\n", Newton(x0, e));

x0 = 6;

printf("x = %f\n", Newton(x0, e));

getchar();

return 0;

}

double F1(double x) //要求解的函数

{

return x * x - 45;

}

double F2(double x) //要求解的函数的一阶导数函数

{

return 2 * x;

}

double Newton(double x0, double e)//通用Newton迭代子程序{

double x1;

do

{

x1 = x0;

x0 = x1 - F1(x1) / F2(x1);

} while (fabs(x0 - x1) > e);

return (x0 + x1) * 0.5;

}

基于优化设计的迭代学习算法研究

基于优化设计的迭代学习算法研究 摘要 迭代学习控制是上世纪80年代提出的一门新兴学科,它在非线性、模型未知等控制问题方面有着独到优势。迭代学习控制针对具有重复运行性质的被控对象,利用对象以前运行的信息,通过迭代的方式修正控制信号,实现在有限时间区间上的完全跟踪任务。它在工业机器人、数控机床等具有重复运行特性的领域有着非常好的应用前景。 目前,作为一门年轻的学科,迭代学习控制的研究分支也较多,而且,在很多方面还有待进一步研究与完善。本文主要在迭代学习控制算法设计与优化方面做了一些工作,主要研究工作体现在如下几个方面: 第一,对迭代学习控制的基本概念、研究现状及应用等内容作一概述,简单介绍了基于优化设计的迭代学习控制算法。最后,对论文的安排及研究内容作了简要说明。 传统迭代学习控制律中的学习系数对迭代学习控制的收敛性和收敛速度的影响非常重要,在PID型迭代学习控制律的实际应用中,算法分析给出的收敛性条件并不能用于指导学习增益的选取,学习增益的设置需要凭借经验选取,因此具有一定的盲目性。为了克服猜测设置学习增益的盲目性,直接的方法是利用系统模型知识。由此引伸出来的一个可行方法就是利用优化指标来设计迭代学习控制律,即所谓的优化迭代学习律。 第二,研究了二次型最优迭代学习算法。在模型确定与不确定两种情况下,针对线性离散系统,分别设计了基于二次型性能指标优化的迭代学习控制算法及参数辨识与估计方法,并得到了系统稳定性、收敛性条件。仿真结果证明了所设计二次型优化迭代学习算法的有效性。 实现二次型性能指标的最优化属最优控制研究的范畴,但该领域

中最优控制器(LQG)的设计必须基于系统精确模型的建立,对于模型未知系统显然无法给出最优控制策略,对于带有不确定项的系统,也只能采用保成本控制等方法得到次优的结果。那么,利用迭代学习控制方法的优点,针对模型未知系统(连续或离散系统),基于二次型性能指标: dt t Ru t u t Qe t e J T )]()()()([T 0T +=? 或 {}∑=+=N i i Ru i u i Qe i e J 0 T T )()()()( 给出一种最优迭代学习控制(Optimal Iterative learning Control ,OILC)策略,无论从理论上或者实际应用上都是十分有价值、有意义的探讨。然而,对于这一课题的研究,目前仅有少量文献发表。 Phan 和Juang 在假定系统模型已知的情况下得到了最优迭代学习控制方法,其实这已失去了迭代学习控制方法的优越性;M. Norrlof 等人利用可获得的模型标称值替代真实模型给出了一类二次型最优迭代学习控制方法,很显然结果只能是次优的,且性能的好坏很大程度上受到建模精度的影响。引入基函数概念,运用辨识方法,Frueh 和Phan 针对线性离散系统,给出了基于二次性能指标的最优迭代学习控制方法,这一方法要求事先假定一组测试输入量作为激励函数,然后不断产生新的与原基函数正交的新基函数以及基函数的系数,最后以基函数的张集作为系统控制输入量。在这一方法中,控制输入量的求取与系统的实际控制是分开进行的,是一种先激励后控制的方式。而对于非线性系统,目前还没有任何研究结果出现。 第三,提出了一种改进的基于最优化指标的迭代学习算法。对于线性时变系统,将每一次的迭代学习控制信号的增量看成常规反馈控制的信号,都通过求解一个基于一种合理改进的性能指标的最优化问题得到,从而设计最优迭代学习算法。该算法的收敛速度较快,其输出误差序列和控制信号序列的收敛性能够得到保证。对于任意给定的系统期望轨迹,该方法保证迭代控制信号能够收敛于系统的一个线性二次型最优控制解。 Amann 针对线性系统,提出了一个基于最优化指标的迭代学习控制设计方法。该方法首先给出了每次迭代运行的最优化性能指标,然

ICP迭代最近点算法综述

迭代最近点算法综述 摘要:三维点集配准问题是计算机技术中的一个极其重要的问题,作为解决三维点集配准问题的一个应用较为广泛的算法,ICP算法得到了研究者的关注,本文以一种全新的思路从配准元素的选择、配准策略的确定和误差函数的求解等3个方面对三维点集配准的ICP算法的各种改进和优化进行了分类和总结。 关键词:三维点集;迭代最近点;配准 1引言 在计算机应用领域,三维点集配准是一个非常重要的中间步骤,它在表面重建、三维物体识别、相机定位等问题中有着极其重要的应用[1]。对于三维点集配准问题,研究者提出了很多解决方案,如点标记法、自旋图像、主曲率方法、遗传算法、随机采样一致性算法等等,这些算法各有特色,在许多特定的情况下能够解决配准的问题。但是应用最广泛的,影响最大的还是由Besl和Mckay在1992年提出的迭代最近点算法[2](Iterative Closest Point,ICP),它是基于纯粹几何模型的三维物体对准算法,由于它的强大功能以及高的精确度,很快就成为了曲面配准中的主流算法。 随着ICP算法的广泛应用,许多研究者对ICP算法做了详细的研究,分析了该算法的缺陷和特点,提出了许多有价值的改进,推动了这一重要算法的发展。本文着眼于ICP算法的发展历程,详细介绍了ICP算法的基本原理,总结其发展和改进的过程,对于该算法的各个阶段的发展和变化做了简单的论述。 2ICP算法原理 2.1ICP算法原理 ICP算法主要用于三维物体的配准问题,可以理解为:给定两个来至不同坐标系的三维数据点集,找出两个点集的空间变换,以便它们能进行空间匹配。假定用{}表示空间第一个点集,第二个点集的对齐匹配变换为使下式的目标函数最小[3]。 ICP算法的实质是基于最小二乘法的最优匹配算法,它重复进行“确定对应关系点集—计算最优刚体变换”的过程,直到某个表示正确匹配的收敛准则得到满足。ICP 算法的母的是找到目标点集与参考点之间的旋转R和平移T变换,使得两匹配数据中间满足某种程度 度量准则下的最优匹配。假设目标点集P的坐标为{}及参考点集Q的坐标为

相关主题
相关文档
最新文档