10种java性能优化方案

10种java性能优化方案
10种java性能优化方案

你是否正打算优化hashCode()方法?是否想要绕开正则表达式?Lukas Eder介绍了很多简单方便的性能优化小贴士以及扩展程序性能的技巧。

最近“全网域(Web Scale)”一词被炒得火热,人们也正在通过扩展他们的应用程序架构来使他们的系统变得更加“全网域”。但是究竟什么是全网域?或者说如何确保全网域?扩展的不同方面

全网域被炒作的最多的是扩展负载(Scaling load),比如支持单个用户访问的系统也可以支持10 个、100个、甚至100万个用户访问。在理想情况下,我们的系统应该保持尽可能的“无状态化(stateless)”。即使必须存在状态,也可以在网络的不同处理终端上转化并进行传输。当负载成为瓶颈时候,可能就不会出现延迟。所以对于单个请求来说,耗费50到100毫秒也是可以接受的。这就是所谓的横向扩展(Scaling out)。

扩展在全网域优化中的表现则完全不同,比如确保成功处理一条数据的算法也可成功处理10条、100条甚至100万条数据。无论这种度量类型是是否可行,事件复杂度(大O符号)是最佳描述。延迟是性能扩展杀手。你会想尽办法将所有的运算处理在同一台机器上进行。这就是所谓的纵向扩展(Scaling up)。

如果天上能掉馅饼的话(当然这是不可能的),我们或许能把横向扩展和纵向扩展组合起来。但是,今天我们只打算介绍下面几条提升效率的简单方法。

大O符号

Java 7的ForkJoinPool和Java8 的并行数据流(parallel Stream)都对并行处理有所帮助。当在多核处理器上部署Java程序时表现尤为明显,因所有的处理器都可以访问相同的内存。

所以,这种并行处理较之在跨网络的不同机器上进行扩展,根本的好处是几乎可以完全消除延迟。

但不要被并行处理的效果所迷惑!请谨记下面两点:

?并行处理会吃光处理器资源。并行处理为批处理带来了极大的好处,但同时也是非同步服务器(如HTTP)的噩梦。有很多原因可以解释,为什么在过去的几十年中我们一直在使用单线程的Servlet模型。并行处理仅在纵向扩展时才能带来实际的好处。

?并行处理对算法复杂度没有影响。如果你的算法的时间复杂度为O(nlogn),让算法在c 个处理器上运行,事件复杂度仍然为O(nlogn/c),因为c 只是算法中的一个无关紧要的常量。你节省的仅仅是时钟时间(wall-clock time),实际的算法复杂度并没有降低。

降低算法复杂度毫无疑问是改善性能最行之有效的办法。比如对于一个HashMap 实例的lookup() 方法来说,事件复杂度O(1) 或者空间复杂度O(1) 是最快的。但这种情况往往是不可能的,更别提轻易地实现。

如果你不能降低算法的复杂度,也可以通过找到算法中的关键点并加以改善的方法,来起到改善性能的作用。假设我们有下面这样的算法示意图:

该算法的整体时间复杂度为O(N3),如果按照单独访问顺序计算也可得出复杂度为O(N x O x P)。但是不管怎样,在我们分析这段代码时会发现一些奇怪的场景:

?在开发环境中,通过测试数据可以看到:左分支(N->M->Heavy operation)的时间复杂度M 的值要大于右边的O 和P,所以在我们的分析器中仅仅看到了左分支。

?在生产环境中,你的维护团队可能会通过AppDynamics、DynaTrace 或其它小工具发现,真正导致问题的罪魁祸首是右分支(N -> O -> P -> Easy operation or also N.O.P.E.)。

在没有生产数据参照的情况下,我们可能会轻易的得出要优化“高开销操作”的结论。但我们做出的优化对交付的产品没有起到任何效果。

优化的金科玉律不外乎以下内容:

?良好的设计将会使优化变得更加容易。

?过早的优化并不能解决多有的性能问题,但是不良的设计将会导致优化难度的增加。

理论就先谈到这里。假设我们已经发现了问题出现在了右分支上,很有可能是因产品中的简单处理因耗费了大量的时间而失去响应(假设N、O和P 的值非常大),请注意文章中提及的左分支的时间复杂度为O(N3)。这里所做出的努力并不能扩展,但可以为用户节省时间,将困难的性能改善推迟到后面再进行。

这里有10条改善Java性能的小建议:

1、使用StringBuilder

StingBuilder 应该是在我们的Java代码中默认使用的,应该避免使用+ 操作符。或许你会对StringBuilder 的语法糖(syntax sugar)持有不同意见,比如:

1 String x = "a" + args.length + "b";

将会被编译为:

1 2 3 4 5 6 7 8 9

10

11 0 new https://www.360docs.net/doc/6e2612609.html,ng.StringBuilder [16]

3 dup

4 ldc [18]

6 invokespecial https://www.360docs.net/doc/6e2612609.html,ng.StringBuilder(https://www.360docs.net/doc/6e2612609.html,ng.String) [20]

9 aload_0 [args]

10 arraylength

11 invokevirtual https://www.360docs.net/doc/6e2612609.html,ng.StringBuilder.append(int) : https://www.360docs.net/doc/6e2612609.html,ng.StringBuilder 14 ldc [27]

16 invokevirtual https://www.360docs.net/doc/6e2612609.html,ng.StringBuilder.append(https://www.360docs.net/doc/6e2612609.html,ng.String) :

https://www.360docs.net/doc/6e2612609.html,ng.StringBuilder [29]

19 invokevirtual https://www.360docs.net/doc/6e2612609.html,ng.StringBuilder.toString() : https://www.360docs.net/doc/6e2612609.html,ng.String [32] 22 astore_1 [x]

但究竟发生了什么?接下来是否需要用下面的部分来对String 进行改善呢?

1 2 3 4 String x = "a" + args.length + "b";

if (args.length == 1)

x = x + args[0];

现在使用到了第二个StringBuilder,而且这个StringBuilder 不会消耗堆中额外的内存,但却给GC 带来了压力。

1 2 3 4 5 6 StringBuilder x = new StringBuilder("a"); x.append(args.length);

x.append("b");

if (args.length == 1);

x.append(args[0]);

小结

在上面的样例中,如果你是依靠Java编译器来隐式生成实例的话,那么编译的效果几乎和是否使用了StringBuilder 实例毫无关系。请记住:在N.O.P.E 分支中,每次CPU的循环的时间到白白的耗费在GC或者为StringBuilder 分配默认空间上了,我们是在浪费N x O x P 时间。

一般来说,使用StringBuilder 的效果要优于使用+ 操作符。如果可能的话请在需要跨多个方法传递引用的情况下选择StringBuilder,因为String 要消耗额外的资源。JOOQ在生成复杂的SQL语句便使用了这样的方式。在整个抽象语法树(AST Abstract Syntax Tree)SQL传递过程中仅使用了一个StringBuilder 。

更加悲剧的是,如果你仍在使用StringBuffer的话,那么用StringBuilder 代

替 StringBuffer吧,毕竟需要同步字符串的情况真的不多。

2、避免使用正则表达式

正则表达式给人的印象是快捷简便。但是在N.O.P.E 分支中使用正则表达式将是最糟糕的决定。如果万不得已非要在计算密集型代码中使用正则表达式的话,至少要将 Pattern缓存下来,避免反复编译Pattern。

1 static final Pattern HEAVY_REGEX =

2 https://www.360docs.net/doc/6e2612609.html,pile("(((X)*Y)*Z)*");

如果仅使用到了如下这样简单的正则表达式的话:

1 String[] parts = ipAddress.split("\\.");

这是最好还是用普通的char[] 数组或者是基于索引的操作。比如下面这段可读性比较差的代码其实起到了相同的作用。

1 2 3 4 5 6 7 8 9

10

11

12 int length = ipAddress.length();

int offset = 0;

int part = 0;

for (int i = 0; i < length; i++) {

if (i == length - 1 ||

ipAddress.charAt(i + 1) == '.') {

parts[part] =

ipAddress.substring(offset, i + 1);

part++;

offset = i + 2;

}

}

上面的代码同时表明了过早的优化是没有意义的。虽然与split() 方法相比较,这段代码的可维护性比较差。

挑战:聪明的小伙伴能想出更快的算法吗?

小结

正则表达式是十分有用,但是在使用时也要付出代价。尤其是在N.O.P.E 分支深处时,要不惜一切代码避免使用正则表达式。还要小心各种使用到正则表达式的JDK字符串方法,比如String.replaceAll()或String.split()。可以选择用比较流行的开发库,比如Apache Commons Lang来进行字符串操作。

3、不要使用iterator()方法

这条建议不适用于一般的场合,仅适用于在 N.O.P.E 分支深处的场景。尽管如此也应该有所了解。Java 5格式的循环写法非常的方便,以至于我们可以忘记内部的循环方法,比如: 1 2

for (String value : strings) {

// Do something useful here

2

3

4

5 int cursor; int lastRet = -1; int expectedModCount = modCount; // ...

也可以用下面等价的循环方式来替代上面的 for 循环,仅仅是在栈上“浪费”了区区一个整形,相当划算。

1

2

3

4

5 int size = strings.size(); for (int i = 0; i < size; i++) { String value : strings.get(i); // Do something useful here } 如果循环中字符串的值是不怎么变化,也可用数组来实现循环。

1 2 3 for (String value : stringArray) {

// Do something useful here

}

小结

无论是从易读写的角度来说,还是从API 设计的角度来说迭代器、Iterable 接口和 foreach 循环都是非常好用的。但代价是,使用它们时是会额外在堆上为每个循环子创建一个对象。如果循环要执行很多很多遍,请注意避免生成无意义的实例,最好用基本的指针循环方式来代替上述迭代器、Iterable 接口和 foreach 循环。

讨论

一些与上述内容持反对意见的看法(尤其是用指针操作替代迭代器)详见Reddit上的讨论。

4、不要调用高开销方法

有些方法的开销很大。以N.O.P.E 分支为例,我们没有提到叶子的相关方法,不过这个可以有。假设我们的JDBC驱动需要排除万难去计算ResultSet.wasNull()方法的返回值。我们自己实现的SQL框架可能像下面这样:

1 2 3 4 5 6 7 8 9 10 if (type == Integer.class) {

result = (T) wasNull(rs,

Integer.valueOf(rs.getInt(index))); }

// And then...

static final T wasNull(ResultSet rs, T value) throws SQLException {

return rs.wasNull() ? null : value;

}

在上面的逻辑中,每次从结果集中取得int 值时都要调用ResultSet.wasNull() 方法,但是 getInt() 的方法定义为:

返回类型:变量值;如果SQL查询结果为NULL,则返回0。

所以一个简单有效的改善方法如下:

1 2 3 4 5 6 7 8 static final T wasNull(

ResultSet rs, T value

)

throws SQLException {

return (value == null ||

(value.intValue() == 0 && rs.wasNull()))

? null : value;

}

这是轻而易举的事情。小结

将方法调用缓存起来替代在叶子节点的高开销方法,或者在方法约定允许的情况下避免调用高开销方法。

5、使用原始类型和栈

上面介绍了来自jOOQ的例子中使用了大量的泛型,导致的结果是使用了byte、short、int 和long 的包装类。但至少泛型在Java 10或者Valhalla项目中被专门化之前,不应该成为代码的限制。因为可以通过下面的方法来进行替换:

1 2 //存储在堆上

Integer i = 817598;

……如果这样写的话:

1 2 // 存储在栈上

int i = 817598;

在使用数组时情况可能会变得更加糟糕:

1 2 //在堆上生成了三个对象

Integer[] i = { 1337, 424242 };

……如果这样写的话:

1 2 // 仅在堆上生成了一个对象

int[] i = { 1337, 424242 };

小结

当我们处于N.O.P.E. 分支的深处时,应该极力避免使用包装类。这样做的坏处是给GC带来了很大的压力。GC将会为清除包装类生成的对象而忙得不可开交。

所以一个有效的优化方法是使用基本数据类型、定长数组,并用一系列分割变量来标识对象在数组中所处的位置。

遵循LGPL协议的 trove4j是一个Java集合类库,它为我们提供了优于整形数组int[] 更好的性能实现。

例外

下面的情况对这条规则例外:因为boolean 和byte 类型不足以让JDK为其提供缓存方法。我们可以这样写:

1 2 3 4 5 Boolean a1 = true; // ... syntax sugar for: Boolean a2 = Boolean.valueOf(true);

Byte b1 = (byte) 123; // ... syntax sugar for: Byte b2 = Byte.valueOf((byte) 123);

其它整数基本类型也有类似情况,比如 char、short、int、long。

不要在调用构造方法时将这些整型基本类型自动装箱或者调用TheType.valueOf() 方法。也不要在包装类上调用构造方法,除非你想得到一个不在堆上创建的实例。这样做的好处是为你为同事献上一个巨坑的愚人节笑话。

非堆存储

当然了,如果你还想体验下堆外函数库的话,尽管这可能参杂着不少战略决策,而并非最乐观的本地方案。一篇由Peter Lawrey和 Ben Cotton撰写的关于非堆存储的很有意思文章请点击:OpenJDK与HashMap——让老手安全地掌握(非堆存储!)新技巧。

6、避免递归

现在,类似Scala这样的函数式编程语言都鼓励使用递归。因为递归通常意味着能分解到单独个体优化的尾递归(tail-recursing)。如果你使用的编程语言能够支持那是再好不过。不过即使如此,也要注意对算法的细微调整将会使尾递归变为普通递归。

希望编译器能自动探测到这一点,否则本来我们将为只需使用几个本地变量就能搞定的事情而白白浪费大量的堆栈框架(stack frames)。

小结

这节中没什么好说的,除了在N.O.P.E分支尽量使用迭代来代替递归。

7、使用entrySet()

当我们想遍历一个用键值对形式保存的Map 时,必须要为下面的代码找到一个很好的理由:

1 2 3 for (K key : map.keySet()) {

V value : map.get(key); }

更不用说下面的写法:

1 2 3 4 for (Entry entry : map.entrySet()) { K key = entry.getKey();

V value = entry.getValue();

}

在我们使用N.O.P.E.分支应该慎用map。因为很多看似时间复杂度为O(1) 的访问操作其实是由一系列的操作组成的。而且访问本身也不是免费的。至少,如果不得不使用map的话,那么要用entrySet()方法去迭代!这样的话,我们要访问的就仅仅是Map.Entry的实例。

小结

在需要迭代键值对形式的Map时一定要用entrySet() 方法。

9、使用EnumSet或EnumMap

在某些情况下,比如在使用配置map时,我们可能会预先知道保存在map中键值。如果这个键值非常小,我们就应该考虑使用EnumSet 或EnumMap,而并非使用我们常用的HashSet 或HashMap。下面的代码给出了很清楚的解释:

1 2 3 4 5 6 7 8 private transient Object[] vals;

public V put(K key, V value) {

// ...

int index = key.ordinal();

vals[index] = maskNull(value);

// ...

}

上段代码的关键实现在于,我们用数组代替了哈希表。尤其是向map中插入新值时,所要做的仅仅是获得一个由编译器为每个枚举类型生成的常量序列号。如果有一个全局的map 配置(例如只有一个实例),在增加访问速度的压力下,EnumMap 会获得比HashMap 更加杰出的表现。原因在于EnumMap 使用的堆内存比HashMap 要少一位(bit),而且HashMap 要在每个键值上都要调用hashCode() 方法和equals() 方法。

小结

Enum 和EnumMap 是亲密的小伙伴。在我们用到类似枚举(enum-like)结构的键值时,就应该考虑将这些键值用声明为枚举类型,并将之作为EnumMap 键。

9、优化自定义hasCode()方法和equals()方法

在不能使用EnumMap的情况下,至少也要优化hashCode() 和equals() 方法。一个好的hashCode() 方法是很有必要的,因为它能防止对高开销equals() 方法多余的调用。在每个类的继承结构中,需要容易接受的简单对象。让我们看一下jOOQ

的org.jooq.Table是如何实现的?

最简单、快速的hashCode() 实现方法如下:

1 2 3 4 5 6 7 8 // AbstractTable一个通用Table的基础实现:

@Override

public int hashCode() {

// [#1938] 与标准的QueryParts相比,这是一个更加高效的hashCode()实现

return name.hashCode();

}

name即为表名。我们甚至不需要考虑schema或者其它表属性,因为表名在数据库中通常是唯一的。并且变量name 是一个字符串,它本身早就已经缓存了一个hashCode() 值。这段代码中注释十分重要,因继承自AbstractQueryPart 的AbstractTable 是任意抽象语法树元素的基本实现。普通抽象语法树元素并没有任何属性,所以不能对优化hashCode() 方法实现抱有任何幻想。覆盖后的hashCode() 方法如下:

1 2 3 4 5 6 7 8 // AbstractQueryPart一个通用抽象语法树基础实现:

@Override

public int hashCode() {

// 这是一个可工作的默认实现。

// 具体实现的子类应当覆盖此方法以提高性能。

return create().renderInlined(this).hashCode(); }

换句话说,要触发整个SQL渲染工作流程(rendering workflow)来计算一个普通抽象语法树元素的hash代码。

equals() 方法则更加有趣:

1 2 3 4 // AbstractTable通用表的基础实现:

@Override

public boolean equals(Object that) {

5 6 7 8 9

10

11

12

13

14

15

16

17

18

19

20

21

if (this == that) {

return true;

}

// [#2144] 在调用高开销的AbstractQueryPart.equals()方法前,

// 可以及早知道对象是否不相等。

if (that instanceof AbstractTable) {

if (StringUtils.equals(name,

(((AbstractTable) that).name))) {

return super.equals(that);

}

return false;

}

return false;

}

首先,不要过早使用equals() 方法(不仅在N.O.P.E.中),如果:

?this == argument

?this“不兼容:参数

注意:如果我们过早使用instanceof 来检验兼容类型的话,后面的条件其实包含了

argument == null。我在以前的博客中已经对这一点进行了说明,请参考10个精妙的Java 编码最佳实践。

在我们对以上几种情况的比较结束后,应该能得出部分结论。比如jOOQ

的 Table.equals() 方法说明是,用来比较两张表是否相同。不论具体实现类型如何,它们必须要有相同的字段名。比如下面两个元素是不可能相同的:

?com.example.generated.Tables.MY_TABLE

?DSL.tableByName(“MY_OTHER_TABLE”)

如果我们能方便地判断传入参数是否等于实例本身(this),就可以在返回结果为false 的情况下放弃操作。如果返回结果为true,我们还可以进一步对父类(super)实现进行判

断。在比较过的大多数对象都不等的情况下,我们可以尽早结束方法来节省CPU的执行时间。

一些对象的相似度比其它对象更高。

在jOOQ中,大多数的表实例是由jOOQ的代码生成器生成的,这些实例的equals() 方法都经过了深度优化。而数十种其它的表类型(衍生表(derived tables)、表值函数(table-valued functions)、数组表(array tables)、连接表(joined tables)、数据透视表(pivot tables)、公用表表达式(common table expressions)等,则保持equals() 方法的基本实现。

10、考虑使用set而并非单个元素

最后,还有一种情况可以适用于所有语言而并非仅仅同Java有关。除此以外,我们以前研究的N.O.P.E. 分支也会对了解从 O(N3) 到 O(n log n)有所帮助。

不幸的是,很多程序员的用简单的、本地算法来考虑问题。他们习惯按部就班地解决问题。这是命令式(imperative)的“是/或”形式的函数式编程风格。这种编程风格在由纯粹命令式编程向面对象式编程向函数式编程转换时,很容易将“更大的场景(bigger picture)”模型化,但是这些风格都缺少了只有在SQL和R语言中存在的:

声明式编程。

在SQL中,我们可以在不考虑算法影响下声明要求数据库得到的效果。数据库可以根据数据类型,比如约束(constraints)、键(key)、索引(indexes)等不同来采取最佳的算法。

在理论上,我们最初在SQL和关系演算(relational calculus)后就有了基本的想法。在实践中,SQL的供应商们在过去的几十年中已经实现了基于开销的高效优化器

CBOs (Cost-Based Optimisers)。然后到了2010版,我们才终于将SQL的所有潜力全部挖掘出来。

但是我们还不需要用set方式来实现SQL。所有的语言和库都支持Sets、collections、bags、lists。使用set的主要好处是能使我们的代码变的简洁明了。比如下面的写法:

1 SomeSet INTERSECT SomeOtherSet

而不是

1 2 3 4 5 6 7 8 9 10 // Java 8以前的写法

Set result = new HashSet();

for (Object candidate : someSet)

if (someOtherSet.contains(candidate))

result.add(candidate);

// 即使采用Java 8也没有很大帮助

someSet.stream()

.filter(someOtherSet::contains)

.collect(Collectors.toSet());

有些人可能会对函数式编程和Java 8能帮助我们写出更加简单、简洁的算法持有不同的意见。但这种看法不一定是对的。我们可以把命令式的Java 7循环转换成Java 8的Stream collection,但是我们还是采用了相同的算法。但SQL风格的表达式则是不同的:

1 SomeSet INTERSECT SomeOtherSet

上面的代码在不同的引擎上可以有1000种不同的实现。我们今天所研究的是,在调用INTERSECT 操作之前,更加智能地将两个set自动的转化为EnumSet 。甚至我们可以在不需要调用底层的Stream.parallel()方法的情况下进行并行INTERSECT 操作。

总结

在这篇文章中,我们讨论了关于N.O.P.E.分支的优化。比如深入高复杂性的算法。作为jOOQ 的开发者,我们很乐于对SQL的生成进行优化。

?每条查询都用唯一的StringBuilder来生成。

?模板引擎实际上处理的是字符而并非正则表达式。

?选择尽可能的使用数组,尤其是在对监听器进行迭代时。

?对JDBC的方法敬而远之。

?等等。

jOOQ处在“食物链的底端”,因为它是在离开JVM进入到DBMS时,被我们电脑程序所调用的最后一个API。位于食物链的底端意味着任何一条线路在jOOQ中被执行时都需要 N x O x P的时间,所以我要尽早进行优化。

我们的业务逻辑可能没有N.O.P.E.分支那么复杂。但是基础框架有可能十分复杂(本地SQL 框架、本地库等)。所以需要按照我们今天提到的原则,用Java Mission Control或其它工具进行复查,确认是否有需要优化的地方。

系统性能优化方案

系统性能优化方案 (第一章) 系统在用户使用一段时间后(1年以上),均存在系统性能(操作、查询、分析)逐渐下降趋势,有些用户的系统性能下降的速度非常快。同时随着目前我们对数据库分库技术的不断探讨,在实际用户的生产环境,现有系统在性能上的不断下降已经非常严重的影响了实际的用户使用,对我公司在行业用户内也带来了不利的影响。 通过对现有系统的跟踪分析与调整,我们对现有系统的性能主要总结了以下几个瓶颈: 1、数据库连接方式问题 古典C/S连接方式对数据库连接资源的争夺对DBServer带来了极大的压力。现代B/S连接方式虽然不同程度上缓解了连接资源的压力,但是由于没有进行数据库连接池的管理,在某种程度上,随着应用服务器的不断扩大和用户数量增加,连接的数量也会不断上升而无截止。 此问题在所有系统中存在。 2、系统应用方式(架构)问题(应用程序设计的优化) 在业务系统中,随着业务流程的不断增加,业务控制不断深入,分析统计、决策支持的需求不断提高,我们现有的业务流程处理没有针对现有的应用特点进行合理的应用结构设计,例如在‘订单、提油单’、‘单据、日报、帐务的处理’关系上,单纯的数据关系已经难以承载多元的业务应用需求。 3、数据库设计问题(指定类型SQL语句的优化)

目前在系统开发过程中,数据库设计由开发人员承担,由于缺乏专业的数据库设计角色、单个功能在整个系统中的定位模糊等原因,未对系统的数据库进行整体的分析与性能设计,仅仅实现了简单的数据存储与展示,随着用户数据量的不断增加,系统性能逐渐下降。 4、数据库管理与研究问题(数据存储、物理存储和逻辑存储的优化) 随着系统的不断增大,数据库管理员(DBA)的角色未建立,整个系统的数据库开发存在非常大的随意性,而且在数据库自身技术的研究、硬件配置的研究等方面未开展,导致系统硬件、系统软件两方面在数据库管理维护、研究上无充分认可、成熟的技术支持。 5、网络通信因素的问题 随着VPN应用技术的不断推广,在远程数据库应用技术上,我们在实际设计、开发上未充分的考虑网络因素,在数据传输量上的不断加大,传统的开发技术和设计方法已经无法承载新的业务应用需求。 针对以上问题,我们进行了以下几个方面的尝试: 1、修改应用技术模式 2、建立历史数据库 3、利用数据库索引技术 4、利用数据库分区技术 通过尝试效果明显,仅供参考!

web性能优化(服务器优化)

Web网站性能优化的相关技术 来源:站长网 https://www.360docs.net/doc/6e2612609.html, 2011-03-04 06:50:47 Web站点性能问题吸引或者迫使越来越多的人投入到这个问题的研究中来,产生了很多解决方案。下面是我根据自身的理解对这些技术进行了归类总结,如有不足之处欢迎拍砖。 一、提高服务器并发处理能力 我们总是希望一台服务器在单位时间内能处理的请求越多越好,这也成了web 服务器的能力高低的关键所在。服务器之所以可以同时处理多个请求,在于操作系统通过多执行流体系设计,使得多个任务可以轮流使用系统资源,这些资源包括CPU、内存以及I/O等。这就需要选择一个合适的并发策略来合理利用这些资源,从而提高服务器的并发处理能力。这些并发策略更多的应用在apache、nginx、lighttpd等底层web server软件中。 二、Web组件分离 这里所说的web组件是指web服务器提供的所有基于URL访问的资源,包括动态内容,静态网页,图片,样式表,脚本,视频等等。这些资源在文件大小,文件数量,内容更新频率,预计并发用户数,是否需要脚本解释器等方面有着很大的差异,对不同特性资源采用能充分发挥其潜力的优化策略,能极大的提高web 站点的性能。例如:将图片部署在独立的服务器上并为其分配独立的新域名,对静态网页使用epoll模型可以在大并发数情况下吞吐率保持稳定。 三、数据库性能优化和扩展。 Web服务器软件在数据库方面做的优化主要是减少访问数据库的次数,具体做法就是使用各种缓存方法。也可以从数据库本身入手提高其查询性能,这涉及到数据库性能优化方面的知识本文不作讨论。另外也可以通过主从复制,读写分离,使用反向代理,写操作分离等方式来扩展数据库规模,提升数据库服务能力。 四、Web负载均衡及相关技术 负载均衡是web站点规模水平扩展的一种手段,实现负载均衡的方法有好几种包括基于HTTP重定向的负载均衡,DNS负载均衡,反向代理负载均衡,四层负载均衡等等。 对这些负载均衡方法做简单的介绍:基于HTTP重定向的负载均衡利用了HTTP 重定向的请求转移和自动跳转功能来实现负载均衡,我们熟悉的镜像下载就使用这种负载均衡。DNS负载均衡是指在一个DNS服务器中为同一个主机名配置多个IP地址,在应答DNS查询时返回不同的解析结果将客户端的访问引到不同的机

java性能调优的基本知识

Java堆是指在程序运行时分配给对象生存的空间。通过-mx/-Xmx和-ms/-Xms来设置起始堆的大小和最大堆的大小。根据自己JDK的版本和厂家决定使用-mx和-ms或-Xmx和-Xms。Java堆大小决定了垃圾回收的频度和速度,Java堆越大,垃圾回收的频度越低,速度越慢。同理,Java堆越小,垃圾回收的频度越高,速度越快。要想设置比较理想的参数,还是需要了解一些基础知识的。Java堆的最大值不能太大,这样会造成系统内存被频繁的交换和分页。所以最大内存必须低于物理内存减去其他应用程序和进程需要的内存。而且堆设置的太大,造成垃圾回收的时间过长,这样将得不偿失,极大的影响程序的性能。以下是一些经常使用的参数设置: 1) 设置-Xms等于-XmX的值; 2) 估计内存中存活对象所占的空间的大小,设置-Xms等于此值,-Xmx四倍于此值; 3) 设置-Xms等于-Xmx的1/2大小; 4) 设置-Xms介于-Xmx的1/10到1/4之间; 5) 使用默认的设置。 大家需要根据自己的运行程序的具体使用场景,来确定最适合自己的参数设置。除了-Xms和-Xmx两个最重要的参数外,还有很多可能会用到的参数,这些参数通常强烈的依赖于垃圾收集的算法,所以可能因为JDK的版本和厂家而有所不同。但这些参数一般在Web 开发中用的比较少,我就不做详细介绍了。在实际的应用中注意设置-Xms和-Xmx使其尽可能的优化应用程序就行了。对于性能要求很高的程序,就需要自己再多研究研究Java虚拟机和垃圾收集算法的机制了。可以看看曹晓钢翻译的《深入Java虚拟机》一书。 Java程序性能调优的基本知识和JDK 调优 一基本知识 1.1 性能是什么 在性能调优之前,我们首先来了解一下性能是什么?关于性能,我想每个学习过Java的人都能列 出几点,甚至可以夸夸其谈。在《Java TM Platform Performance》一书中,定义了如下五个方面来作 为评判性能的标准: 1) 运算的性能——哪一个算法的执行性能最好? 2) 内存的分配——程序运行时需要耗费多少内存?

服务端性能优化参考指南

服务端性能优化 参考指南 1、代码优化 通过JPROFIRE等第三方工具分析判读代码运行耗时长、性能瓶颈部分,重新审视自己写的代码,逐条逐句,主要注意一下几点: 对象的生成和大小的调整 JAVA程序设计中一个普遍的问题就是没有好好的利用JAVA语言本身提供的函数,从而常常会生成大量的对象(或实例)。由于系统不仅要花时间生成对象,以后可能还需花时间对这些对象进行垃圾回收和处理。因此,生成过多的对象将会给程序的性能带来很大的影响。杜绝不必要的对象产生,减少可调整的生成对象。 代码举例: String name=new String("HuangWeiFeng"); System.out.println(name+"is my name"); (1) 生成新的字符串new String(STR_1); (2) 复制该字符串; (3) 加载字符串常量"HuangWeiFeng"(STR_2); (4) 调用字符串的构架器(Constructor); (5) 保存该字符串到数组中(从位置0开始); (6) 从java.io.PrintStream类中得到静态的out变量; (7) 生成新的字符串缓冲变量new StringBuffer(STR_BUF_1); (8) 复制该字符串缓冲变量; (9) 调用字符串缓冲的构架器(Constructor); (10) 保存该字符串缓冲到数组中(从位置1开始); (11) 以STR_1为参数,调用字符串缓冲(StringBuffer)类中的append方法; (12) 加载字符串常量"is my name"(STR_3); (13) 以STR_3为参数,调用字符串缓冲(StringBuffer)类中的append方法; (14) 对于STR_BUF_1执行toString命令; (15) 调用out变量中的println方法,输出结果。 上面两行代码生成了STR_1,STR_2,STR_3,STR_4和STR_BUF_1五个对象变量。这些生成的类的实例一般都存放在堆中。堆要对所有类的超类,类的实例进行初始化,同时还要调用类极其每个超类的构架器。而这些操作都是非常消耗系统资源的。因此,对对象的生成进行限制,是完全有必要的。 经修改,上面的代码可以用如下的代码来替换。

优化服务器的性能

优化服务器的性能 第18章服务器性能监视及优化 服务器的安全管理是网络管理人员日常工作的重要内容。服务器的安全管理涉及系统安全、设备安全、网络安全、应用安全、数据安全等方面。因此,只有重视服务器的安全性,掌握网站服务器应用过程中的安全因素,才能制定出服务器的安全措施,并保证网站服务器的正常、安全、高效、稳定运行。本章详细介绍如何加强服务器的安全管理。 18.1 优化服务器的性能 作为系统管理员,不仅担负着对网络和服务器的维护工作,同时还应当随时掌握服务器系统的运行情况,随时了解和掌握系统的各种性能参数,如CPU使用率、内存占用量、网络负载等状况,并通过必要的方法优化系统性能,解决系统存在的潜在问题,保证网络和服务器能够高效、稳定运行,为企业和用户提供各项优质服务。 18.1.1 检测服务器的性能 可以通过任务管理工具来检测和查询服务器的系统性能,并快速获得服务器的系统信息。 1.检测和管理进程 进程与系统性能有着很大的关系。执行应用程序将产生一个进程,并占用服务器系统的资源,进程越多,占用的系统资源也就越多。任务管理器是监视计算机性能的关键指示器,可以查看正在运行的程序的状态,并终止已停止响应的程序。还可以使用多个参数评估正在运行进程的活动,查看反映CPU和内存使用情况的图形和数据。 STEP1 在Windows Server 2003正常运行的情况下,按下组合键Ctrl+Alt+Delete,出现Windows安全管理窗口,单击“任务管理器”按钮,出现如图18-1所示的窗口。 STEP2 在Windows任务管理器的“进程”选项卡中,可查看系统正在运行的进程情况,如用户名、CPU、内存使用等信息。同时,在窗口的底端显示了当前的进程数、CPU使用率和内存使用等情况。 STEP3 选择菜单“查看→选择列”命令,出现如图18-2所示的对话框。选择其中需要显示的选项,可以在列表框中列出多达几十个有关进程的信息。最好选中“基本优先级”复选框,方便查看正在运行程序的优先级。单击“确定”按钮返回Windows任务管理器。根据进程列表中的信息,分析进程是否需要更改优先级或者结束运行。

web服务器性能优化

web服务器性能优化 导读:本文web服务器性能优化,仅供参考,如果觉得很不错,欢迎点评和分享。 作为一种资源的组织和表达机制,Web已成为Internet最主要的信息传送媒介。因此Web的性能已经成为判断一个网站成功与否的一个重要评估标准。而Web服务器则是决定Web性能的重要环节。 Web服务器性能就是指一个Web服务器响应用户请求的能力。为了提高Web服务器的性能人们进行了诸多尝试,已经取得了可喜的成果。本文通过对前人研究结果的分析,提出了在具体应用环境中优化Web服务器的方法和策略。 Web服务器概述 Web系统在现在网络中广泛使用,而Web服务器则是Web系统的一个重要组成部分。完整的Web结构应包括:HTTP协议,Web 服务器,通用网关接口CGI、Web应用程序接口、Web浏览器。 Web服务器是指驻留在因特网上某种类型计算机的程序。它是在网络中信息提供者基干HTTP的为实现信息发布、资料查询、数据处理等诸多应用搭建基本平台的服务器,其主要功能是提供网上信息浏览服务。当Web浏览器(客户端)连到服务器并请求文件时,服务器将处理该请求并将文件发送到该浏览器上,附带的信息会告诉浏览器如何查看该文件(即文件类型)。

Web服务器在web页面处理中大致可分为三个步骤:第一步,web浏览器向一个特定的服务器发出Web页面请求;第二步,Web 服务器接收到web页面请求后,寻找所请求的web页面,并将所请求的Web页面传送给Web浏览器;第三步,Web服务器接收到所请求的web页面,并将它显示出来。 web服务器不仅能够存储信息,还能在用户通过Web浏览器提供的信息的基础上运行脚本和程序。在Web上,常见的大多数表单核搜索引擎上都是用的是CGI脚本。 影响web应用服务器性能的因素 Web服务器的性能就是指一个Web服务器响应用户请求的能力,服务器的性能对于一个Web系统来说至关重要。为了提高Web 服务器的性能人们进行了许多尝试,也采用了许多技术和方法,但是这些技术和方法往往缺乏适用性。 通过对前人的研究分析可以发现,在web服务器的优化方而存在这种问题的原因主要有两个:一方面是服务器性能评测造成的,一方面是选用优化方案时考虑不全面造成的。 现行的服务器性能评测工具在对Web服务器进行评测时,其实是由一台或几台计算机模拟客户机,与被测的Web服务器进行通信,它们其实组成的只是一个局域网的环境,这与真正的广域网的环境有一定的差别。 另外,评测工具在选择网络负载时,虽然已经尽可能的接近真实负载,但是与持续的高频率负载要求仍有差距;再者,在性能测试指

Java程序性能优化 让你的Java程序更快、更稳定-笔记

第一章 java 性能调优概述 1.1.2 性能的参考指标 1.2.1 设计调优 比如说如果A组件通过循环不断监控时间E是否发生,其必然会占用部分系统资源。但是可以通过observer模式解决: 1.2.2 代码调优 比如linkedList比ArrayList 随机访问性能好。 1.2.3 JVM调优 一般在开发后期做,比如内存结构,GC种类。 1.2.4 数据库调优 比如大量的拥有相同结构的SQL查询,可以用preparedStatement代替statement;指定要查询的列名,避免用“*”。 比如设置oracle的共享池、缓存区。 1 .2.5 操作系统调优 比如调整unix的共享内存值。

第二章设计优化 2.1 设计模式 2.1.1 单例模式 对于频繁使用对象,因为new次数少,对内存使用不频繁,将减轻GC压力。 2.1.2 代理模式 可以实现比如延迟加载 2.1.3 享元模式 好处同单例模式 2.1.5 观察者模式 可以代替多线程。 2.1.6 Value Object 一次封装所有的属性值,省得一次次请求属性值。 2.1.7 Business Delegate 代理类中一组远程方法调用构成一个业务流程,客户端调用代理类。 2.2 常用优化组件 2.2.1 缓冲 缓冲是一块内存区域,目的是缓解应用程序上下层之间的性能差异。 2.2.2 缓存 也是一块内存区域,目的是暂存数据处理结构,并供下次访问使用。 也可用ehCache等框架 2.2.3 对象复用池 比如线程池和数据库连接池

2.2.4 多线程 2.2.5 负载均衡 2.2.6 时间换空间 比如少申请变量 2.2.7 空间换时间 比如用缓存 第三章 java 程序优化 3.3 使用NIO提升性能 NIO为所有的原始类型提供buffer,NIO是基于Block的,NIO最重要的组件是buffer和Channel。 buffer是一个连续的内存快,是NIO读写数据的中转池。通道表示缓冲数据的源头或者目的地,它是用于想缓存读取或写入数据,是访问缓冲的接口。 3.4 使用软引用和弱引用 3.5 有利于改善性能的技巧 3.5.1 慎用异常 3.5.2 使用局部变量,因为局部变量是在stack中,比较快。 3.5.3 位运算代替乘除法 3.5.12 静态方法代替实例方法 第四章并行程序优化 4.5 锁的优化 4.5.7 ReentrantLock 重入锁 4.5.9 自旋锁

Oracle 数据库设计阶段性能优化策略

Oracle 数据库设计阶段性能优化策略 通过对Oracle 数据库系统物理结构和逻辑结构的分析,阐述了在Oralce数据库设计开发阶段性能优化的一些策略和方法。 Oracle是目前使用最为广泛的大型数据库管理系统,提高Oracle数据库系统的运行效率,是整个计算机信息系统高效运转的前提和保证。影响Oracle数据库应用系统性能的因素很多,既有软件方面的因素,也包括数据运行的硬件环境、网络环境、数据库管理和维护方面的因素等。数据库系统设计开发阶段是Oracle应用优化的最佳阶段,也是主动优化阶段,能达到以最小成本获得最大性能增益的目的。通过对其逻辑存储结构和物理存储结构设计进行优化,使之在满足需求条件下,时空开销性能最佳,可以解决数据库系统运行过程中性能的渐进性下降或性能突降等问题,以保证系统运行的优良性能。 Oracle数据库的逻辑结构和物理结构 Oracle 数据库的逻辑结构是由一些数据库对象组成,如数据库表空间、表、索引、段、视图、存储过程、触发器等。数据库的逻辑存储结构(表空间等)决定了数据库的物理空间是如何被使用的,数据库对象如表、索引等分布在各个表空间中。 Oracle 数据库的物理结构从操作系统一级查看,是由一个个的文件组成,从物理上可划分为:数据文件、日志文件、控制文件和参数文件。数据文件中存放了所有的数据信息;日志文件存放数据库运行期间产生的日志信息,它被重复覆盖使用,若不采用归档方式的话,已被覆盖的日志信息将无法恢复;控制文件记录了整个数据库的关键结构信息,它若被破坏,整个数据库将无法工作和恢复;参数文件中设置了很多Oracle 数据库的配置参数,当数据库启动时,会读取这些信息。 逻辑结构的优化 逻辑结构优化用通俗的话来说就是通过增加、减少或调整逻辑结构来提高应用的效率,下面通过对基本表的设计及索引、聚簇的讨论来分析ORACLE逻辑结构的优化。 1、基本表扩展: 数据库性能包括存储空间需求量的大小和查询响应时间的长短两个方面。为了优化数据库性能,需要对数据库中的表进行规范化。一般来说,逻辑数据库设计满足第三范式的表结构容易维护且基本满足实际应用的要求。所以,实际应用中一般都按照第三范式的标准进行规范化,从而保证了数据库的一致性和完整性,设计人员往往会设计过多的表间关联,以尽可能地降低数据冗余。但在实际应用中这种做法有时不利于系统运行性能的优化:如过程从多表获取数据时引发大量的连接操作,在需要部分数据时要扫描整个表等,这都消耗了磁盘的I/O 和CPU 时间。 为解决这一问题,在设计表时应同时考虑对某些表进行反规范化,方法有以下几种:一是分割表。分割表可分为水平分割表和垂直分割表两种:水平分割是按照行将一个表分割为多个表,这可以提高每个表的查询速度,但查询、更新时要选择不同的表,统计时要汇总多个表,因此应用程序会更复杂。垂直分割是对于一个列很多的表,若某些列的访问频率

服务器性能优化配置建议

目录 一、服务配置建议 二、MySQL性能分析及建议 三、系统性能分析 很久以前在前公司给中企动力那边写的服务器分析建议,其实出就是一些简单参数调整仍后利用vmstat,top这些工具对系统性能做初步分析。 贴出来希望对朋友们学习有帮助,同时也欢迎朋友们补充![此文档仅作参考和学习,具体优化比较复杂欢迎朋友们探讨!] 一、服务器配置 先阅读apache配置优化建议如下,再对相关参数进行调整,观察服务器状况. Apache配置优化建议: 进入/usr/local/apache2/conf/extra 目录下 Apache优化, 经过上述操作后,Apache已经能够正常运行。但是,对于访问量稍大的站点,Apache的这些默认配置是无法满足需求的,我们仍需调整Apache的一些参数,使Apache能够在大访问量环境下发挥出更好的性能。以下我们对Apache配置文件httpd.conf中对性能影响较大的参数进行一些说明。 (1) Timeout 该参数指定Apache在接收请求或发送所请求内容之前的最长等待时间(秒),若超过该时间Apache则放弃处理该请求,并释放连接。该参数默认值为120,推荐设置为60,对于访问量较大的网站可以设置为30或15。 (2) KeepAlive 该参数控制Apache是否允许在一个连接中有多个请求,默认打开。但对于大多数论坛类型站点来说,通常设置为off以关闭该支持。 (3) MPM - prefork.c 在默认情况下Apache使用Prefork(进程)工作模式,可以说这部分的参数设置是对Apache性能影响的核心和关键。用户可以在配置文档中找到以下配置段: ? StartServers 5 ? MinSpareServers 5 ? MaxSpareServers 10 ? MaxClients 15 ? MaxRequestsPerChild 0 ?

[2016-06-28]_系统性能问题分析及优化策略方法总结(无作者)

系统性能问题分析及优化策略方法 摘要:随着信息化建设的深入和普及,信息系统已经成为了社会的生产、生活重要组成部分,信息系统由各类型复杂的软、硬件组成,功能逻辑结构复杂,数据种类多样,系统的性能犹如系统的生命,是系统正常运行服务的关键,越来越受到人们的重视。如何优化系统性能,是系统设计研发者们必须考虑的问题。性能优化目标只有一个就是提高系统性能,但是性能分析优化的方法策略却多种多样,如系统的架构优化,程序的逻辑优化,内存、I/O、网络、磁盘优化,数据库优化等等。如何选择合适的优化方法,解决性能问题,是系统性能优化的关键。 关键词:性能、优化、系统、升级 System Performance Analysis and Optimization Strategy Abstract: With the development and popularization of grid informatization, the information systems has become an important part of social production and living. They are composing by types of complex information system software and hardware components. Their functions logical structures are of complex and their data types are diverse. The system performance is like living systems which is the key to the normal operation of the service, attracting more and more people's attention. How to optimize system performance is the problem that must be considered by the designer and developer. Performance Optimization has only one goal that is to improve system performance. However, performance analysis and optimization methods and strategies are various, such as system architecture optimization, logic optimization, memory optimization, I / O optimization, network optimization, disk optimization, database optimization and so on. How to choose a suitable optimization method to solve performance problems is the key to system performance optimization. Keywords: Performance, Optimization, System,Upgrade

服务器性能调优

服务器性能优化 1、Apache+tomcat集群方式 服务器基本设置:1个apache集成二个tomcat。 安装apache http server省略,访问地址为http://127.0.0.1:8081 安装tomcat,解压apache-tomcat-6.0.20.zip,测试时我是把两个tomcat分开放在不同的虚拟机,其中一个是和apache同一台虚拟机。 两个tomcat分别命名为worker2和worker3 先说tomcat.worker2的配置: server.xml 第一步:配置http监听端口,这里端口设为8079,该步骤非必要,只要不冲突就行了。 第二步:配置AJP监听端口,这里端口设为8077,该步骤非必要,只要不冲突就行了。 第三步:配置服务器标识,这里标识名配置为:worker2,添加jvmRoute="worker2",该步骤必须。 在Engine节点启用集群配置,只需去掉Cluster节点前的注释就行了,该步骤必须,配置了集群才能实现Session复制,如果只有一个集群,只按我下边的配置就行了,如果多个集群,则不能按此配置,tomcat服务器内的帮助文档/docs/cluster-howto.html,/docs/config/cluster.html有介绍,需要的可以参考下。 要实现session复制,还需要在context.xml添加属性distributable="true",如下: 如果不想在context.xml中添加distributable="true",还有另一方法是在应用程序的web.xml中添加,不过这方法我没有测试。 配置完成,访问地址为:http://127.0.0.1:8079 另一个tomcat.worker3的配置 server.xml

Java架构学习【JVM与性能优化知识点整理】编写高效优雅Java程序

面向对象 构造器参数太多怎么办? 用builder模式,用在 1、5个或者5个以上的成员变量 2、参数不多,但是在未来,参数会增加 Builder模式: 属于对象的创建模式,一般有 1.抽象建造者:一般来说是个接口,包含1)建造方法,建造部件的方法(不止一 个),2)返回产品的方法 2.具体建造者 3.导演者,调用具体的建造者,创建产品对象 4.产品,需要建造的复杂对象 对于客户端,创建导演者和具体建造者,并把具体建造者交给导演者,然后由客户端通知导演者操纵建造者进行产品的创建。 在实际的应用过程中,有时会省略抽象建造者和导演者。 不需要实例化的类应该构造器私有 如,一些工具类提供的都是静态方法,这些类是不应该提供具体的实例的。可以参考JDK 中的Arrays。 不要创建不必要的对象 1.避免无意中创建的对象,如自动装箱 2.可以在类的多个实例之间重用的成员变量,尽量使用static。

但是,要记住,是不要创建不必要的对象,而不是不要创建对象。 对象池要谨慎使用,除非创建的对象是非常昂贵的操作,如数据库的连接,巨型对象等等。 避免使用终结方法 finalizer方法,jdk不能保证何时执行,也不能保证一定会执行。如果有确实要释放的资源应该用try/finally。 使类和成员的可访问性最小化 编写程序和设计架构,最重要的目标之一就是模块之间的解耦。使类和成员的可访问性最小化无疑是有效的途径之一。 使可变性最小化 尽量使类不可变,不可变的类比可变的类更加易于设计、实现和使用,而且更不容易出错,更安全。 常用的手段: 不提供任何可以修改对象状态的方法; 使所有的域都是final的。 使所有的域都是私有的。 使用写时复制机制。带来的问题:会导致系统产生大量的对象,而且性能有一定的影响,需要在使用过程中小心权衡。 复合优先于继承 继承容易破坏封装性,而且会使子类的实现依赖于父类。 复合则是在类中增加一个私有域,引用类的一个实例,这样的话就避免了依赖类的具体实现。 只有在子类确实是父类的一个子类型时,才比较适合用继承。 接口优于抽象类 java是个单继承的,但是类允许实现多个接口。

前端性能优化方案

前端优化方案 1.提升页面静态资源加载速度 (1) 1.1减少Http请求 (1) 1.1.1项目首页、访问量非常大的页面有自己单独css内容 (1) 1.1.2移除重复的脚本及样式,统一网站资源(js库、css库)的使用。.2 1.1.3整理优化并合并现css文件及js文件,将所有的css文件以及js文件 分为base、common、page三层 (2) 1.2压缩静态资源文件,减少文件体积大小 (2) 1.2.1采用CSS Sprites技术将页面内所有背景小图标整合到一张图片。 .. 2 1.2.2不要在HTML使用太多大图像 (2) 1.2.3采用开源工具来压缩减小css及js文件体积 (2) 1.3内嵌图像。 (3) 1.4静态资源尽量合并到少数几个域名访问,减少DNS查询 (3) 2.加快页面的渲染展示速度 (3) 2.1 Css和js文件的位置 (3) 2.2规范img标签的使用 (3) 2.3精简页面标签,减少DOM元素 (4) 2.4规范Css代码 (4) 3.服务器端静态资源访问优化 (4) 3.1服务器部署时通过web服务器及应用服务集群配置,让静态资源通过web 服务器提供访问,提高静态资源并发访问效率 (4) 3.2通过在web服务器配置静态资源的缓存以及压缩策略,提高用户访问速度. (4) 3.3通过第三方网络静态资源缓存服务(CDN),提高网站访问速度,提升用户访 问体验。 (4) 1.提升页面静态资源加载速度 1.1减少Http请求 1.1.1项目首页、访问量非常大的页面有自己单独css内容 静态页面生成时直接生成到文件中,动态文件的话在模板文件中include。

网络性能优化

网络性能优化总结 网络性能优化的目的是减少网络系统的瓶颈、设法提高网络系统的运行效率。对于不同的网络硬件环境和软件环境,可以存在不同的优化方法和内容。例如,在一个配置比较落 后而又需要提供各种新服务的网络中,管理员往往需要对内存、CPU磁盘、网络接口和服 务器等分别进行优化处理,以便适应新的网络运行要求。但是,在一个网络服务比较少而硬 件配置比较高的网络中,管理员不需要考虑整个网络的性能问题,只要利用一些性能和网络 监视工具对系统进行监视,然后对发现的问题进行专项处理即可。下面对网络性能优化过程 中的重要内容分别进行介绍。 721内存优化 内存是操作系统中的重要资源,不仅操作系统的运行需要它,而且各种应用程序和服务都需要调用它才能使用。从应用的角度来看,系统内存是引起各种系统问题的重要原因,是需要用户和管理员着重考虑的优化对象。 1.合理使用内存 在内存一定的情况下,合理地使用内存可以提高网络的性能。这要求管理员必须对系 统中的内存使用情况非常了解,对于那些不再需要的功能、应用程序或服务应及时关闭,以便释放内存给其他应用程序和服务。另外,管理员还可以通过系统设置来决定内存的主要优 化对象。一般,服务器的主要优化对象应该是后台服务,而工作站和单个计算机的主要优化 对象应该是前台应用程序。 要选择内存优化的主要对象,可执行下面的操作步骤: (1)打开“控制面板”窗口,右击“系统”图标,从弹出的快捷菜单中选择“打开” 命令,打开“系统特性”对话框。 (2)单击“高级”标签,切换到“高级”选项卡,然后单击“性能”选项组中的“性 能选项”按钮,打开“性能选项”对话框,如图7-1所示。 图7-1 “性能选项”对话框

java和数据库性能优化

1 数据库性能优化 ?优先考虑查询 数据库设计时,要优先考虑查询,因为在正常用户使用中,插入(insert)只有一次,但是会经常查询。例如在我们的OA中,起草一次,然后在接收端可能多个人要多次查询。 查询一般不要关联3个以上的表,也就是说一个业务的查询最多去关联3个表,如果必须要关联多个表,那么要尽可能的考虑怎么提高查询效率。 ?一定要考虑索引 在数据量很大的时候,一定要建立索引,索引虽说降低了插入和更新效率,但大大的提高了查询效率。在四川公文传输中通过建立索引,能 提升十几倍的效率。 ?分区 分区可以按照地域、时间等分区。我们现在的项目中主要是使用时间分区就可以了,分区可以避免查询时遍历很多条记录。 ?按新旧查询 这个也可以说是按照时间查询,例如:只查询半年内的数据,半年外的数据在另外一个功能模块中查询。这个主要是根据客户的使用习惯, 他们可能会经常查询半年之内的数据。这样避免每次都去遍历很多条记 录。 2 java性能优化 ?Hibernate缓存 Sprint和hibernate的结构现在是java开发的通用基本框架,所以不可能造成内存问题的,但现在网上也有人说hibernate内存有问题或则效率不高,这其实是没有真正掌握hibernate的技术。 Hibernate的缓存分为内在缓存、session缓存和查询缓存。可能和网上有些叫法不是很一样,道理都一样的。

内在缓存是hibernate的机制,当hibernate随着容器启动后,会把hibernate的pojo对象装载进入缓存中,这些是不能修改的。随着容器的关闭而自动释放。另外我们写的hql语言,hibernate会把这些编译成最低成的sql语句,也放在缓存中。这个也是随着容易的关闭而自动释放得。 Session缓存是随着session作用域的消失而消失,但通过在web.xml 中配置 openSessionInViewFilter,可以把session的作用域延长到jsp和action中。 查询缓存主要是用在更新很少,但查询很频繁的地方,提高查询效率和减少与数据库的交互。 Java内存 Java的内存分两部分: 持久化(perm):这部分内存是装载进入jvm中是不会消失的,主要用在static中,还有例如:hibernate的hbm和pojo装载后都要把对象放在perm中。在第一次使用是装载近来,不会随着时间或并发量的变化而变化。 另一部分内存就是会随着使用的增加而增加,例如一个发文业务,并发100个人同时使用,那么就会执行100次装载,但这部分内存会随着使用的结束而释放。一般内存益处的问题都在这里,有些代码写的内存不会释放,还有代码写的过于消耗内存,造成并发很大时,内存还来不及释放已经把虚拟机内存撑暴。 Java虚拟机的内存在64位操作系统中可以无限开大,取决于硬件的内存配置。 Java虚拟机的内存在32位操作系统中只能开到1300M~1800M,取决于操作系统,一般linux操作系统可以比windows多开几百M。但可以使用垂直集群方法来解决这个问题,也就是在一台服务器上安装多个java容器。

ElasticSearch性能优化策略

ElasticSearch性能优化策略 ElasticSearch性能优化主要分为4个方面的优化。 一、服务器部署 1、增加1-2台服务器,用于负载均衡节点 elasticSearch的配置文件中有2个参数:node.master和node.data。这两个参数搭配使用时,能够帮助提供服务器性能。 1.1>node.master: false node.data: true 该node服务器只作为一个数据节点,只用于存储索引数据。使该node服务器功能单一,只用于数据存储和数据查询,降低其资源消耗率。 1.2>node.master: true node.data: false 该node服务器只作为一个主节点,但不存储任何索引数据。该node服务器将使用自身空闲的资源,来协调各种创建索引请求或者查询请求,讲这些请求合理分发到相关的node服务器上。 1.3> node.master: false node.data: false 该node服务器即不会被选作主节点,也不会存储任何索引数据。该服务器主要用于查询负载均衡。在查询的时候,通常会涉及到从多个node服务器上查询数据,并请求分发到多个指定的node服务器,并对各个node服务器返回的结果进行一个汇总处理,最终返回给客户端。 2、关闭data节点服务器中的http功能 针对ElasticSearch集群中的所有数据节点,不用开启http服务。将其中的配置参数这样设置:http.enabled: false,同时也不要安装head,bigdesk,marvel等监控插件,这样保证data节点服务器只需处理创建/更新/删除/查询索引数据等操作。 http功能可以在非数据节点服务器上开启,上述相关的监控插件也安装到这些服务器上,用于监控ElasticSearch集群状态等数据信息。 这样做一来出于数据安全考虑,二来出于服务性能考虑。 3、一台服务器上最好只部署一个Node 一台物理服务器上可以启动多个Node服务器节点(通过设置不同的启动port),但一台服务器上的CPU,内存,硬盘等资源毕竟有限,从服务器性能考虑,不建议一台服务器上启动多个node节点。 二、服务器配置 1、配置索引线程池的大小 ElastiSearch服务器有多个线程池大小配置。主要有:index,search,suggest,get,bulk,percolate,snapshot,snapshot_data,warmer,refresh。 在此主要针对index和search进行一个配置调整。index操作包含:创建/更新/删除索引数据。search操作主要针对用户的各种搜索操作。 具体配置如下: threadpool: index: type: fixed size: 100 search: type: fixed

26个常用的.net性能优化方法

https://www.360docs.net/doc/6e2612609.html,中常用的26个优化性能方法收藏 1. 数据库访问性能优化 数据库的连接和关闭 访问数据库资源需要创建连接、打开连接和关闭连接几个操作。这些过程需要多次与数据库交换信息以通过身份验证,比较耗费服务器资源。https://www.360docs.net/doc/6e2612609.html,中提供了连接池(Connection Pool)改善打开和关闭数据库对性能的影响。系统将用户的数据库连接放在连接池中,需要时取出,关闭时收回连接,等待下一次的连接请求。连接池的大小是有限的,R1如果在连接池达到最大限度后仍要求创建连接,必然大大影响性能。因此,在建立数据库连接后只有在真正需要操作时才打开连接,使用完毕后马上关闭,从而尽量减少数据库连接打开的时间,避免出现超出连接限制的情况。 使用存储过程 存储过程是存储在服务器上的一组预编译的SQL语句,类似于DOS系统中的批处理文件。存储过程具有对数据库立即访问的功能,信息处理极为迅速。使用存储过程可以避免对命令的多次编译,在执行一次后其执行规划就驻留在高速缓存中,以后需要时只需直接调用缓存中的二进制代码即可。另外,存储过程在服务器端运行,独立于https://www.360docs.net/doc/6e2612609.html,程序,便于修改,最重要的是它可以减少数据库操作语句在网络中的传输。 优化查询语句 https://www.360docs.net/doc/6e2612609.html,中ADO连接消耗的资源相当大,SQL语句运行的时间越长,占用系统资源的时间也越长。因此,R2尽量使用优化过的SQL语句以减少执行时间。比如,不在查询语句中包含子查询语句,充分利用索引等。 2. 字符串操作性能优化 使用值类型的ToString方法 在连接字符串时,经常使用"+"号直接将数字添加到字符串中。这种方法虽然简单,也可以得到正确结果,但是由于涉及到不同的数据类型,数字需要通过装箱操作转化为引用类型才可以添加到字符串中。但是装箱操作对性能影响较大,因为在进行这类处理时,将在托管堆中分配一个新的对象,原有的值复制到新创建的对象中。R3使用值类型的ToString方法可以避免装箱操作,从而提高应用程序性能。 运用StringBuilder类 String类对象是不可改变的,对于String对象的重新赋值在本质上是重新创建了一个String 对象并将新值赋予该对象,其方法ToString对性能的提高并非很显著。R4在处理字符串时,最好使用StringBuilder类,其.NET 命名空间是System.Text。该类并非创建新的对象,而是通过Append,Remove,Insert等方法直接对字符串进行操作,通过ToString方法返回操作结果。其定义及操作语句如下所示: int num; System.Text.StringBuilder str = new System.Text.StringBuilder(); //创建字符串str.Append(num.ToString()); //添加数值num Response.Write(str.ToString); //显示操作结果

相关文档
最新文档