复合函数定义域求法

复合函数定义域求法
复合函数定义域求法

复合函数定义域求法

若函数=()的定义域是B,=()的定义域是A,则复合函数=[()]的定义域是

D={|∈A,且()∈B}综合考虑各部分的x的取值范围,取他们的交集。

求函数的定义域主要应考虑以下几点:

⑴当为整式或奇次根式时,R;

⑵当为偶次根式时,被开方数不小于0(即≥0);

⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

⑹分段函数的定义域是各段上自变量的取值集合的并集。

⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

⑼对数函数的真数必须大于零,底数大于零且不等于1。

⑽三角函数中的切割函数要注意对角变量的限制。

复合函数及其定义域求法(1)

一、复合函数的定义:设y是u的函数,即y=f(u),u是x的函数,即u=g(x),且g(x)的值域与f(u)的定义域的交集非空,那么y 通过u的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的复合函数记作y=f[g(x)],其中u称为中间变量。

二、对高中复合函数的通解法——综合分析法

1、解复合函数题的关键之一是写出复合过程

例1:指出下列函数的复合过程。

(1)y=√2-x2(2)y=sin3x(3)y=sin3x

解:(1)y=√2-x2是由y=√u,u=2-x2复合而成的。

(2)y=sin3x是由y=sinu,u=3x复合而成的。

(3)∵y=sin3x=(sinx)-3

∴y=sin3x是由y=u-3,u=sinx复合而成的。

2、解复合函数题的关键之二是正确理解复合函数的定义。

看下例题:例2:已知f(x+3)的定义域为[1、2],求f(2x-5)的定义域。

经典误解1:解:f(x+3)是由y=f(u),u=g(x)=x+3复合而成的。

F(2x-5)是由y=f(u2),u2=g(x)=2x-5复合而成的。

由g(x),G(x)得:u2=2x-11即:y=f(u2),u2=2x-11

∵f(u1)的定义域为[1、2]

∴1≤x﹤2

∴-9≤2x-11﹤-6

即:y=f(u2)的定义域为[-9、-6]

∴f(2x-5)的定义域为[-9、-6]

经典误解2:解:∵f(x+3)的定义域为[1、2]

∴1≤x+3﹤2

∴-2≤x﹤-1

∴-4≤2x﹤-2

∴-9≤2x-5﹤-7

∴f(2x-5)的定义域为[-9、-7]

注:通过以上两例误解可得,解高中复合函数题会出错主要原因是对复合函数的概念的理解模棱两可,从定义域中找出“y”通过u

的联系成为x的函数,这个函数称为由y=f(u),u=g(x)复合而成的

复合函数,记作y=f[g(x)],其中u称为“中间变量”。从以上误解

中找出解题者易将f(x+3)的定义域理解成(x+3)的取值范围,从而

导致错误。而从定义中可以看出u仅仅是中间变量,即u既不是自

变量也不是因变量。复合函数的定义域是指y=f(u),u=g(x)中u=g(x)中的x的取值范围,即:f(x+3)是由f(u),u=x+3复合而成的复合函数,其定义域是x的取值范围。

正确解法:解:f(x+3)是由y=f(u1),u1=x1+3(1≤x﹤2)复合而成的。

f(2x-5)是由y=f(u2),u2=2x2-5复合而成的

∵1≤x1﹤2

∴4≤u1﹤5

∴4≤u2﹤5

∴4≤2x2-5﹤5

∴2≤x2﹤5

∴f(2x-5)的定义域为[2、5]

结论:解高中复合函数题要注意复合函数的分层,即u为第一层,x为第二层,一、二两层是不可以直接建立关系的,在解题时,一

定是同层考虑,不可异层考虑,若异层考虑则会出现经典误解1与

2的情况。

复合函数定义域求法(2)

一、求高中复合函数定义域的题型

题型一:单对单,如:已知f(x)的定义域为[-1,4],求f(x+2)的定义域。

题型二:多对多,如:已知f(x+3)的定义域为[1、2],求f(2x-5)的定义域。

题型三:单对多,如:已知f(x)的定义域为[0、1],求f(2x-1)的定义域。

题型四:多对单,如:已知f(2x-1)的定义域为[0、1],求f(x)的定义域。

注:通解法——综合分析法的关键两步:

第一步:写出复合函数的复合过程。

第二步:找出复合函数定义域所真正指代的字母(最为关键)

下面用综合分析法解四个题型

题型一:单对单:

例3:已知f(x)的定义域为[-1、4],求f(x2)的定义域。

第1步:写出复合函数的复合过程:

f(x2)是由y=f(u),u=x22复合而成的。

(由于要同层考虑,且u与x的取值范围相同,故可这样变形)

f(x)是由y=f(u),u=x1复合而成的。

∴f(x)的定义域为[-1、4]

第2步:找出复合函数定义域的真正对应

∴-1≤x1﹤4

即-1≤u﹤4

又∵u=x22

∴-1≤x22﹤4

(x2是所求f(x2)的定义域,此点由定义可找出)

∴-2﹤x2﹤2

∴f(x2)的定义域为(-2,2)

结论:此题中的自变量x1,x2通过u联系起来,故可求解。

题型二:多对多:

如例6:已知f(x+3)的定义域为[1、2],求f(2x-5)的定义域。

解析:多对多的求解是比较复杂的,但由解题型三与题型四的结论:

已知f(x)的定义域,可求出y=f[g(x)]的定义域”

已知y=f[g(x)]的定义域,可求出f(x)的定义域

可以推出f(x)与y=f[g(x)]可以互求。

若y1=f(x+3),y2=f(2x-5),

同理,已知y1=f(x+3)的定义域,

故,

这里f(x)成为了联系y1=f(x+3),y2=f(2x-5)的一个桥梁,

其作用与以上解题中u所充当的作用相同。

所以,在多对多的题型中,可先利用开始给出的复合函数的定义域先求出f(x),再以f(x)为跳板求出所需求的复合函数的定义域,具体步骤如下:

第一步:写出复合函数的复合过程:

f(x+3)是由y=f(u)u=x+3复合而成的。

f(2x-5)是由y2=f(u)u=2x-5复合而成的。

∴4≤x+3≤5

∴4≤u≤5

设:函数y3=(u),u=x

∴y3=f(x)的定义域为[4、5]

第三步:通过桥梁f(x)进而求出y2=f(2x-5):

f(x)是由y3=f(u),u=x复合而成的

∵4≤x≤5

∴4≤u≤5

∴4≤2x-5≤5

∴≤x2≤5

∴f(2x-5)的定义域为:[5]

小结:实际上,此题也可以u为桥梁求出f(2x-5),详参照例2的解法。

题型三:单对多:

例4:已知f(x)的定义域为[0,1],求f(2x-1)的定义域。

第1步:写出复合函数的复合过程:

f(x)是由y=f(u),u=x1复合而成的。

f(2x-1)是由y=f(u),u=2x2-1复合而成.

第2步:找出复合函数定义域的真正对应:

∵0≤x1≤1

∴0≤u≤1

∴0≤2x2-1≤1

∴x2≤1

∴f(2x-1)的定义域为[,1]

结论:由此题的解答过程可以推出:已知f(x)的定义域可求出y=[g(x)]的定义域。

题型四:多对单:

如:例5:已知f(2x-1)的定义域为[0、1],求f(x)的定义域。

第1步:写出复合函数的复合过程:

f(2x-1)是由f(u),u=2x1-1复合而成的。

f(x)是由f(u),u=x2复合而成的。

第2步:找出复合函数定义域对应的真正值:

∵0≤x1≤1

∴0≤2x1≤2

∴-1≤2x1-1≤1

∴-1≤u≤1

∴-1≤x2≤1

∴f(x)的定义域为[-1、1]

结论:由此题的解答过程可以推出:已知y=f[g(x)]的定义域可求出f(x)的定义域。

小结:通过观察题型一、题型三、题型四的解法可以看出,解题的关键在于通过u这个桥梁将x1与x2联系起来解题。

二、将以上解答过程有机转化为高中的标准解答模式。

如:例7:已知函数y=f(x)的定义域为[0、1],求函数

y=f(x2+1)的定义域。

解:∵函数f(x2+1)中的x2+1相当于f(x)中的x(即u=x2+1,与u=x)

∴0≤x2+1≤1

∴-1≤x2≤0

∴x=0

∴定义域为{0}

小结:本题解答的实质是以u为桥梁求解。

例8:已知y=f(2x-1)的定义域为[0、1],求函数y=f(x)的定义域。

解:由题意:0≤x≤1(即略去第二步,先找出定义域的真正对象)。

∴-1≤2x-1≤1(即求出u,以u为桥梁求出f(x)

视2x-1为一个整体(即u与u的交换)

则2x-1相关于f(x)中的x(即u与u的交换,

f(x)由y=f(u),u=x复合而成,-1≤u≤1,

∴-1≤x≤1)

∴函数f(x)的定义域为[-1、1]

总结:综合分析法分了3个步骤

写出复合函数的复合过程。找出复合函数定义域所指的代数。找出解题中的桥梁(u或f(x)可为桥梁)

函数定义域的类型和求法

函数定义域的类型和求法 本文介绍函数定义域的类型和求法,目的在于使学生全面认识定义域,深刻理解定义域,正确求函数的定义域。现举例说明。 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得或。③ 由②解得或④ ③和④求交集得且或x>5。 故所求函数的定义域为。 例2 求函数的定义域。 解:要使函数有意义,则必须满足 由①解得③

由②解得④ 由③和④求公共部分,得 故函数的定义域为 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知的定义域,求的定义域。 其解法是:已知的定义域是[a,b]求的定义域是解,即为所求的定义域。 例3 已知的定义域为[-2,2],求的定义域。 解:令,得,即,因此,从而,故函数的定义域是。 (2)已知的定义域,求f(x)的定义域。 其解法是:已知的定义域是[a,b],求f(x)定义域的方法是:由,求g(x)的值域,即所求f(x)的定义域。 例4 已知的定义域为[1,2],求f(x)的定义域。

解:因为。 即函数f(x)的定义域是。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数的定义域为R求实数m的取值范围。 分析:函数的定义域为R,表明,使一切x∈R都成立,由项的系数是m,所以应分m=0或进行讨论。 解:当m=0时,函数的定义域为R; 当时,是二次不等式,其对一切实数x都成立的充要条件是综上可知。 评注:不少学生容易忽略m=0的情况,希望通过此例解决问题。 例6 已知函数的定义域是R,求实数k的取值范围。 解:要使函数有意义,则必须≠0恒成立,因为的定义域为R,即 无实数 ①当k≠0时,恒成立,解得;

函数定义域几种类型及其求法

函数定义域几种类型及其求法 河北省承德县一中 黄淑华 一、已知函数解析式型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1、求函数8315 22-+--=x x x y 的定义域。 解:要使函数有意义,则必须满足?????≠-+≥--0 8301522x x x 即???-≠≠-<>11535x x x x 且或 解得1135-≠-<>x x x 且或 即函数的定义域为{}1135-≠-<>x x x x 且或。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。 (一)已知)(x f 的定义域,求[])(x g f 的定义域。 其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。 例2、已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。 解:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤- x 即函数)1(2-x f 的定义域为{}33≤≤-x x (二)已知[])(x g f 的定义域,求)(x f 的定义域。 其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。 例3、已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。 解:21≤≤x ,422≤≤∴x ,5123≤+≤∴x 。 即函数)(x f 的定义域是{}53|≤≤x x 。

高一必修一数学-复合函数定义域

复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值. 第二步:复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22 (())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。) 第三步:介绍复合函数的定义域求法 例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域; 解:由题意得 35x -<≤ 3325x ∴-<-≤ 137x -<≤ 1 7 33x ∴-<≤ 所以函数(32)f x -的定义域为17,33? ?- ??? . 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222 x x x x x x x x x ,或

复合函数定义域与值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义 域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1 (2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y = ⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时 ()f x =____ _ ()f x 在R 上的解析式为

函数的定义域及其求法(知识点)(教师版)

函数的定义域及其求法(知识点) 一.定义域 定义域、值域、对应法则合称为函数的三要素.本词条主要介绍函数定义域的概念及其求法. 二.函数定义域的概念 函数的定义域就是指自变量x 的取值范围,它是构成函数的重要组成部分.定义域必须是非空数集,且必须写成区间或集合的形式. 例如:一次函数()(0)f x kx b k =+≠的定义域为 (或写成(,)-∞+∞). 三.函数定义域的求法 在处理函数的相关问题时,首先应明确函数的定义域是什么,求函数定义域主要包括具体函数的定义域、抽象函数的定义域以及实际问题中函数的定义域三种. 四.具体函数的定义域 对于已知解析式的具体函数,如果未加特殊说明,函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合.常见情形如下: 1. 若函数()f x 为整式,则其定义域为实数集 . 例如,二次函数2()1f x x x =++的定义域为. 2. 若函数()f x 是分式,则其定义域是使分母不为零的全体实数的集合. 例如,函数1()1 f x x =-的定义域为{1}x x ≠. 3. 若函数()f x 是偶次根式,则其定义域是使得根号内的式子大于或等于零的全体实数构成的集合. 例如,函数()f x =[1,)-+∞. 4. 若函数()f x 是由几个部分的数学式子构成的,则函数的定义域是使是使各部分都有意义的实数的集合, 即交集. 例如,函数1()1 f x x =-[1,1)(1,)-+∞. 5. 若函数0()f x x =,则其定义域是{0}x x ∈≠. 注:除了上述情形,还应注意指数函数和对数函数均需满足底数大于零且不等于1,对数函数的真数必须大于零,以及三角函数的定义域,如正切函数的定义域为ππ,2x x k k ??≠+∈???? 例 :求下列函数的定义域:①y = 2310x y x x --;③() f x =. 解:①由80,30,x x +??-?≥≥得83x -≤≤.所以原函数的定义域为[]8,3-. ②由220,3100,x x x +???--≠?? ≥解得()() 2250x x x -???+-≠??≥所以2,2,5,x x x -??≠-≠?≥即25x -<<或5x >.所以原函数的定义域为()()2,55,-+∞.

复合函数定义域三种形式解法

先介绍几个名词:(能理解最好,如果感觉这些名词有点晕,你可以跳过) 【定义域】:就是初中我们所学的,函数y=f(x)的自变量x的取值范围;【值域】:函数y=f(x)的因变量y的取值范围; 【显函数】:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5; 【隐函数】:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 【复合函数】:如果说y=f(x)是一个简单的抽象函数,那么把自变量x 用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 讲解之前提醒很关键的一句:凡是函数的定义域,永远是指自变量x 的取值范围。 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],

即t=3+2x∈[0,3], 关于抽象复合函数定义域的求法 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与 y=f(3+2x)的x虽然长得一样,但是意义不同,如果令x=3+2x,则等号两边的x就是一模一样了,x只能为-3了。 【题型二】已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(x)的自变量x的范围,其中的关键是,前者的 g(x)相当于后者的x。 解决策略:求内函数t=g(x)在区间[m,n]的值域(t的取值范围),即为y=f(x)的定义域 【例题2】已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 解:∵y=f(2x-1)的定义域[0,3],∴0≤x≤3,令t=2x-1,∴t=2x-1∈[-1,5] 故,函数y=f(t)的定义域为t∈[-1,5], 故,函数y=f(x)的定义域为x∈[-1,5] 说明:函数y=f(x)与y=f(t)是同一个函数,与单个自变量是x还是t 无关。另外,题型二是题型一的逆向题目。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

(完整版)1求函数定义域类型几方法(word版)

函数定义域的类型及求法 、已知解析式型(所有同学一定要会的) 即给出函数的解析式的定义域求袪,苴解袪是由解析式有意义列出关于自变量的不等 式或不等式组■解此不等式(或组)即得原函数的定义域° Jx 1 - 2x - 1^ 例求函数p 二 _ 的定文域. I - 15 >0 f Y > 5或丫 < -3 解*要使函数有意5C 则必须满足] ' - 即J ”工+引―8工0 [工疋5且工工―11 解得r > §或斗< 且里工一11 即口数的定义域为{工r > 5或藍丈-3且工上-11 } o 二、含参问题(很重要) 例乳已知函数$ = J 沁亍一6沁一澈十8的定义境为E 求实数战的取值范围° 分析;函数的定文域为R ,表明他:-6林亠用十S 乙0 ,使一切工E R 都成立,由厂 项的系數是刖,所以应分刪=0或旳黑0进行讨论d 解.讨论. ① 当也二0时,函数的定义域为R ; ② 当用=0时,mx ■ - 6)KX + M ? -F X > 0杲二次不等式,其对一切实数X 都成立的充 综上可知;0 £ m 玉1 ° 三、抽象函数(复合函数)的定义域 1已知f(x)的定义域,求f g(x)的定义域 其解法是:若f (x)的定义域为a < x < b ,则在f g(x)中,a < g(x) < b ,从中解得x 的取值范 要条件是.

围即为f g(x)的定义域. 例1 已知函数f(x)的定义域为1,,求f(3x 5)的定义域. 分析:该函数是由u 3x 5和f(u)构成的复合函数,其中x是自变量,u是中间变量,由于f(x)与f (u)是同一个函数,因此这里是已知 1 < u < 5,即K 3x 5 < 5,求x的取值范围. 4 10 解:Q f(x)的定义域为1,, 1 < 3x 5 < 5,4< x < 10. 3 3 故函数f(3x 5)的定义域为-,10. 3 3 2、已知f g(x)的定义域,求f (x)的定义域 其解法是:若f g(x)的定义域为m < x< n,则由m< x < n确定的g(x)的范围即为f (x)的定义域. 2 例2已知函数f(x 2x 2)的定义域为0,3,求函数f(x)的定义域. 分析:令u x2 2x 2,则f(x2 2x 2) f(u), 由于f(u)与f(x)是同一函数,因此u的取值范围即为f(x)的定义域. 解:由0 < x < 3,得 1 < x2 2x 2 < 5 . 令u x2 2x 2,贝y f (x2 2x 2) f (u),1< u < 5 . 故f (x)的定义域为1,. 3,已知f g(x)的定义域,求f[h(x)]的定义域 其解法是:若f g(x)的定义域为m < x < n,则由m < x < n确定的g(x)的取值范围即为h(x) 的取值范围,由h(x)的取值范围即可求出f[h(x)]的定义域x的取值范围。 例2 已知函数f(x 1)的定义域为1,,求f(3x 5)的定义域. 分析:令u x 1,t 3x 5,则f(x 1) f(u), f(3x 5) f(t), f (u), f (t)表示的是同一函数,故u的取值范围与t相同。 解:Q f(x)的定义域为1,,即K x < 5 0 < x 1 < 6。

复合函数定义域三种形式解法

复合函数定义域三种形式 解法 Last updated on the afternoon of January 3, 2021

先介绍几个名词:(能理解最好,如果感觉这些名词有点晕,你可以跳过)【定义域】:就是初中我们所学的,函数y=f(x)的自变量x的取值范围;【值域】:函数y=f(x)的因变量y的取值范围; 【显函数】:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5;【隐函数】:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 【复合函数】:如果说y=f(x)是一个简单的抽象函数,那么把自变量x用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 讲解之前提醒很关键的一句:凡是函数的定义域,永远是指自变量x的取值范围。 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域 【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],即t=3+2x ∈[0,3], 关于抽象复合函数定义域的求法 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与

1求函数定义域类型几方法(word版)

函数定义域的类型及求法 一、已知解析式型(所有同学一定要会的) 二、含参问题(很重要) 三、抽象函数(复合函数)的定义域 1已知()f x 的定义域,求[]()f g x 的定义域 其解法是:若()f x 的定义域为a x b ≤≤,则在[]()f g x 中,()a g x b ≤≤,从中解得x 的取值范围即为[] ()f g x 的定义域.

例1 已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 分析:该函数是由35u x =-和()f u 构成的复合函数,其中x 是自变量,u 是中间变量,由于()f x 与()f u 是同一个函数,因此这里是已知15u -≤≤,即1355x --≤≤,求x 的取值范围. 解:()f x 的定义域为[]15-,,1355x ∴--≤≤,41033x ∴≤≤. 故函数(35)f x -的定义域为41033?????? ,. 2、已知[]()f g x 的定义域,求()f x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的范围即为()f x 的定义域. 例2 已知函数2(22)f x x -+的定义域为[] 03,,求函数()f x 的定义域. 分析:令222u x x =-+,则2(22)()f x x f u -+=, 由于()f u 与()f x 是同一函数,因此u 的取值范围即为()f x 的定义域. 解:由03x ≤≤,得21225x x -+≤≤. 令222u x x =-+,则2(22)()f x x f u -+=,15u ≤≤. 故()f x 的定义域为[]15,. 3,已知[]()f g x 的定义域,求[()]f h x 的定义域 其解法是:若[]()f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定的()g x 的取值范围即为()h x 的取值范围,由()h x 的取值范围即可求出 [()]f h x 的定义域x 的取值范围。 例2 已知函数(1)f x +的定义域为[]15-,,求(35)f x -的定义域. 分析:令1,35u x t x =+=-,则(1)(),(35)()f x f u f x f t +=-=, (),()f u f t 表示的是同一函数,故u 的取值范围与t 相同。 解:()f x 的定义域为[]15-,,即15x ∴-≤≤016x ∴+≤≤。 056x ∴-≤3≤

函数的定义域常见求法-含答案

【知识要点】 一、函数的定义域的定义 函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据 1、分式的分母不能为零. 2(2,)n k k N *=∈其中中0,x ≥奇次方根 (21,)n k k N *=+∈其中中,x R ∈. 3、指数函数x y a =的底数a 必须满足01,a a x R >≠∈且. 4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且. 5、零次幂的底数不能为零,即0x 中0x ≠. 6、正切函数tan y x =的定义域是{|,}2 x x k k z π π≠+∈. 7、复合函数的定义域的求法 (1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域. (2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数 ()g x 的值域,即得原函数()f x 的定义域. 8、求函数()()y f x g x =+的定义域 一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的 定义域. 9、求实际问题中函数的定义域 不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示 函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上

是集合的一种特殊表示形式. 四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法. 五、函数的问题,必须遵循“定义域优先”的原则. 研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】 【例1】求函数y . 【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数y =. B ,A B 就是函数 【例2】求函数y =3log cos x 的定义域. 【解析】由题得?? ? ??∈+<<-≤≤-∴???>≥-z k k x k x x x 22225 50cos 0252π πππ ∴}52 3 22235|{≤<<<--<≤-x x x x ππππ或或 所以函数的定义域为}52 3 22235|{≤<<<--<≤-x x x x ππππ或或

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

求复合函数的定义域、值域、解析式(集锦)

求复合的定义域、值域、解析式(集锦) 一、 基本类型: 1、 求下列函数的定义域。 (1)12 )(-+=x x x f (2)x x x x f -+= 0)1()( (3) 1 11--= x y (4)()28 x f x = - 二、复合函数的定义域 1、 若函数y =f (x )的定义域是[-2, 4], 求函数g (x )=f (x )+f (1-x )的定义域 2(江西卷3)若函数()y f x =的定义域是[0,2],求函数(2) ()1 f x g x x =-的定义域 2、 函数y =f (2x +1)的定义域是(1, 3],求函数y =f (x )的定义域 3、 函数f (2x -1)的定义域是[0, 1),求函数f (1-3x )的定义域是 求函数的值域 一、二次函数法 (1)求二次函数232y x x =-+的值域 (2)求函数225,[1,2]y x x x =-+∈-的值域. 二、换元法: (1) 求函数 y x =+

分分式法 求2 1+-=x x y 的值域。 解:(反解x 法) 四、判别式法 (1)求函数22221 x x y x x -+=++;的值域 2)已知函数2 1 ax b y x += +的值域为[-1,4],求常数b a ,的值。 五:有界性法: (1)求函数1e 1e y x x +-=的值域 六、数形结合法---扩展到n 个相加 (1)|1||4|y x x =-++(中间为减号的情况?) 求解析式 换元法 已知 23,f x =- 求 f (x ). 解方程组法 设函数f (x )满足f (x )+2 f (x 1)= x (x ≠0),求f (x )函数解析式. 一变:若()f x 是定义在R 上的函数,(0)1f =,并且对于任意实数 ,x y ,总有2 ()()(21),f x f x y x y y +=+++求()f x 。 令x=0,y=2x 待定系数法 设 f (2x )+f (3x +1)=13x 2+6x -1, 求 f (x ).

复合函数定义域的常见求法

复合函数定义域的常见求法 一、复合函数的概念 假如y 是u 的函数,而u 是x 的函数,即y = f ( u ), u = g ( x ) ,那么y 关于x 的函数y = f [g ( x ) ]叫做函数f 与 g 的复合函数,u 叫做中间变量。 注意:复合函数并不是一类新的函数,它只是反映某些函数在结构方面的某种特点,因此,依照复合函数结构,将它折成几个简单的函数时,应从外到里一层一层地拆,注意不要漏层。 另外,在研究有关复合函数的咨询题时,要注意复合函数的存在条件,即当且仅当g ( x )的值域与f ( u )的定义域的交集非空时,它们的复合函数才有意义,否那么如此的复合函数不存在。 例:f ( x + 1 ) = (x + 1)2 能够拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即能够看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。 二、求复合函数的定义域: 〔1〕假设f(x)的定义域为a ≤ x ≤ b,那么f [ g ( x ) ] 中的a ≤ g ( x ) ≤ b ,从中解得x 的范畴,即为f [g ( x )]的定义域。 例1、y = f ( x ) 的定义域为[ 0 , 1 ],求f ( 2x + 1 )的定义域。 答案: [-1/2 ,0 ] 例2、f ( x )的定义域为〔0,1〕,求f ( x 2)的定义域。 答案: [-1 ,1] 〔2〕假设f [ g ( x ) ]的定义域为〔m , n 〕那么由m < x < n 确定出g ( x )的范畴即为f ( x )的定义域。 例3、函数f ( 2x + 1 )的定义域为〔0,1〕,求f ( x ) 的定义域。 答案: [ 1 ,3] 〔3〕由f [ g ( x ) ] 的定义域,求得f ( x )的定义域后,再求f [ h ( x ) ]的定义域。 例4、f ( x + 1 )的定义域为[-2 ,3],求f ( 2x 2 – 2 ) 的定义域。 答案:[-√3/2 ,-√3]∪[√3/2 ,√3] 三、求复合函数的解析式。 关于复合函数的解析式的求法,尽管种类专门多,在那个地点重点介绍配凑法和换元法,详细内容请参阅?教学周刊?第6期。 〔1〕配凑法 假设f [ g ( x ) ] = F ( x )是关于x 的函数,能够把F ( x )表示g ( x )的复合函数形式,然后用x 替换g ( x ),即可得到f ( x )的解析式。 例5、f (x x x x x 21)122++=+,求f ( x )的解析式。 答案:f(x)= x 2 例6、f ( x + 331)1x x x +=,求f ( x )的解析式。 答案:f(x)= x 3-2x-1 〔2〕换元法 假设f [ g ( x ) ]的表达式,能够令g ( x ) = t ,从中解出x 再将x 代入f [ g ( x ) ]的表达式中,如此

高中函数定义域的求法

例1,求下列分式的定义域。 2 求函数y =23-x +30323-+x x ) (的定义域 解:(1)依题意可得,须是分母不能为零并且该根式也必须有意义,则 解得 x ≥3或x <2 因此函数的定义域为{X ︱x ≥3或x <2}。 (2) 要使函数有意义,则?????≠+≠-≥-. 03032023x x x ,,所以原函数的定义域为{x|x ≥32,且x ≠32}. 评注:对待此类有关于分式、根式的问题,切记关注函数的分母与被开方数即可,两者要同时考虑,所求“交集”即为所求的定义域。 例2,求下列关于对数函数的定义域 例1 函数x x y --=312log 2的定义域为 。 分析:对数式的真数大于零。 解:依题意知:0312>--x x 即0)3)(12(>--x x 解之,得321<--x x 已包含03≠-x 的情况,因此不再列出。 例3、⑴已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。 (2)已知f(x)的定义域为[0,2],求函数f(2x-1)的定义域。 (3)已知f(x)的定义域为[0,2],求f(x 的平方)的定义域。 (4)已知f(2x-1)的定义域为(-1,5],求函数f(x)的定义域。 (5)已知f(2x-5)的定义域为(-1,5],求函数f(2-5x)的定义域。 例4,将长为a 的铁丝折成矩形,求矩形的面积y 关于一边长x 的函数解析式,并求函数的定义域。 总的来说,中学阶段研究的函数都还只是函数领域中的皮毛而已。但是不要因为这样,就高兴的太早了。毕竟还有很多同学对这方面一窍不通。对于每一个确定的函数,,其定义域是确定的,为了更明确、更深刻地揭示函数的本质,就产生了求函数定义域的问题。要全面认识定义域,深刻理解定义域,在实际寻求函数的定义域时,应当遵守下列规则: (1) 分式的分母不能为零; (2) 偶次方根的被开方数应该为非负数; (3) 有限个函数的四则运算得到新函数其定义域是这有限个函数的定义域交集(作 除法时还要去掉使除式为零的x 值); 的定义域求函数265)(:12-+-= x x x x f 020652≠-≥+-x x x

函数的定义域及求法讲解

函数 一、函数的定义域及求法 1、分式的分母≠0;偶次方根的被开方数≥0; 2、对数函数的真数>0;对数函数的底数>0且≠1; 3、正切函数:x ≠kπ+ π/2 ,k∈Z;余切函数:x ≠kπ,k ∈Z ; 4、一次函数、二次函数、指数函数的定义域为R; 5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法; 6、复合函数定义域的求法:推理、取交集及分类讨论. [例题]: 1、求下列函数的定义域

3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论] 当m=0时,则mx2-4mx+m+3=3,→原函数的定义域为R; 当m≠0时,则mx2-4mx+m+3>0, ①m<0时,显然原函数定义域不为R; ②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R, 所以当m∈[0,1) 时,原函数定义域为R.

4、求函数y=log x + 1 (x≥4) 的反函数的定义域. 2 [解析]:[求原函数的值域] 由题意可知,即求原函数的值域, ∵x≥4,∴log2x≥2∴y≥3 所以函数y=log2x + 1 (x≥4) 的反函数的定义域是[3,+∞). 5、函数f(2x)的定义域是[-1,1],求f(log x)的定义域. 2 [解析]:由题意可知2-1≤2x≤21→f(x)定义域为[1/2,2] → 1/2≤log2x≤2→√ ̄2≤x≤4. x)的定义域是[√ ̄2,4]. 所以f(log 2 二、函数的值域及求法 1、一次函数y=kx+b(k≠0)的值域为R; 2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时, y≤-△/4a ; 3、反比例函数的值域:y≠0 ; 4、指数函数的值域为(0,+∞);对数函数的值域为R; 5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R; 6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法. [例题]::求下列函数的值域

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

复合函数的定义域-函数表达式的求法

复合函数的定义域-函数表达式的求法

个性化教学辅导教案 教案课题函数的单调性 教师姓名学生姓名××××上课日期2018.8.3 学科数学适用年级高一教材版本人教版A 学习目标1.掌握用定义法求函数的单调性 2.掌握函数最值的求法 重难点重点:函数的单调性及其几何意义,函数的最大(小)值及其几何意义. 难点:利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值. 课前检查作业完成情况:优□良□中□差□建议: 第5 讲复合函数的定义域函数表达式的求法 & 一.复合函数的定义域 1.复合函数的定义: 一般地:若)(u f y=,又)(x g u=,则函数)]([x g f y=叫x的复合函 数,其中)(u f y=叫外层函数,)(x g u=叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.

例如: 2 ()35,()1 f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 2 2(())3()53(1)538 f g x g x x x =+=++=+ 2.复合函数的定义域 函数))((x g f 的定义域还是指x 的取值范围,而不是)(x g 的取值范围. ① 已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 ② 已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域 ③ 已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类

函数的定义域及其求法(知识讲解)(教师版)

函数的定义域及其求法(知识讲解) 一.求定义域问题 概述 在处理函数的相关问题时,首先应明确函数的定义域是什么,求函数定义域主要包括具体函数的定义域、抽象函数的定义域以及实际问题中函数的定义域三种. 1.对于已知解析式的具体函数,如果未加特殊说明,函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合. 2.求[[抽象函数的定义域求法|抽象函数的定义域]]时,应充分理解定义域的含义,即:函数()f x 的定义域是指x 的取值范围. 3.在实际问题中求函数()f x 的定义域,除了考虑解析式本身有意义外,还应该考虑自变量x 所代表的具体量的实际取值范围. 应用举例 求具体函数定义域 1.求函数( )256lg 3 x x f x x -+=-的定义域. 解:由二次根号和对数函数,可得 24||0,560.3 x x x x -???-+>?-? 解得 233 4.x x <<<或 因此,函数的定义域为{|2334}x x x <<<或 注:函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合. 二.求抽象函数的定义域 1.已知函数()f x 的定义域为(2,1)-,求函数(21)f x +的定义域. 解:由题意知 21(2,1),x +∈- 解得302x -<<,故定义域为3,02??- ???. 2.已知函数(3)f x -的定义域为(1,4),求函数(21)f x +的定义域. 解:由题意得 14,x <<

因此, 231,x -<-< 故可以得出, 21(2,1),x +∈- 解得302x -<<,故定义域为3,02??- ???. 注:①.定义域是自变量x 的取值范围. ②.被同一个对应法则f 作用下的对象的取值范围相同. 三.实际应用中的函数求定义域 1.将长为8的铁丝折成矩形,则矩形面积y 关于一边长x 的函数关系式为24y x x =-+,求其定义域. 解:由函数的实际意义,知自变量x 应满足 0,1(82)0.2 x x >???->?? 解得04x <<.所以定义域为(0,4). 注:实际应用中的函数定义域不仅受到函数自身表达式的限制,而且还受实际意义的影响. 四.拓展 有些问题是给出了函数的定义域,而求参数的值或范围.此时需要找出定义域的限制条件对其进行分析解答.例如: 1.函数2743 kx y kx kx +=++的定义域为R ,求实数k 的取值范围. 解:由题意,2430kx kx ++≠恒成立,所以 20,0,30.(4)120.k k k k ≠?=????≠?=-

相关文档
最新文档