(实验)空载长线路电容效应引起的工频过电压

(实验)空载长线路电容效应引起的工频过电压
(实验)空载长线路电容效应引起的工频过电压

空载长线路电容效应引起的工频过电压

一、实验目的

(1)了解空载长线路电容效应引起工频电压升高的原因

(2)掌握Probe Volt (节点电压测量仪)的设置和PlotXY 的使用方法

(3)掌握空载长线路的电容效应引起工频电压升高的仿真分析方法。

(4)了解并联电抗器对线路电容的补偿作用。

二、实验原理

(1)空载长线路的电容效应引起工频电压升高的原因

输电线路具有分布参数的特性,但在输送距离较短的情况下,工程上可用集中参数的电感L 、电阻r 和电容C 1、C 2所组成的π型电路来等值,如图1(a )所示。一般线路等值的容抗远大于线路等值的感抗,则在线路空载(02=?I )的情况下,在输电线路首端电压?

1U 的作用下,可列出如下电路回路方程为 ?

??????++=++=22221C L C L r I jX I r U U U U U

以?2U 为参考向量,可画出图1(b )所示的相量图。由相量图分析可知,空载线路末端电压?2U 高于线路首端电压?1U ,这就是所谓空载线路的电容效应而引起的系统工频电压升高。

(a ) (b )

图1 输电线路集中参数PI 型等值电路及其相量图

(a )等值电路;(b )相量图

若忽略r 的作用,则有

)

221C L C L X X I j U U U -(?

???=+= L U U U +=12

即由于电感与电容上压降反相,且线路的容抗远大于感抗,使L U U >2,而造成线路末端的电压高于首端的电压。

随着输电线路电压等级的提高,输送距离变长。分析长线路的电容效应时,需要采用分布参数电路。(原理同前面相似,由于计算繁琐,此不再赘述)

(2)并联电抗器的补偿作用

为了限制空载长线路的工频电压升高,在超、特高压系统中,通常采用并联电抗器的措施。这是因为其电感能补偿线路的对地电容,减小流经线路的电容电流,削弱了线路的电容效应。

并联电抗器可以接在长线路的末端,也可接在线路的首端和输电线的中部。随着安置地

点不同,沿线电压分布也不同,总的趋势是使线路上电压分布趋于均匀和低于容许值。

并联电抗器的作用不仅是限制工频电压升高,还涉及系统稳定、无功平衡、潜供电流、调相调压、自励磁及非全相状态下的谐振等方面。

(3)Probe Volt的设置和PlotXY的使用方法

①Probe Volt是常用的用来测量节点电压的仪器。在新建文件的空白处单击右键→Probes & 3-phase→Probe V olt,双击Probe Volt,可以进行相关设置。由于电力系统中线路均为三相,所以把节点电压测量仪设置为三相,如图2所示。

图2 电压测量仪的设置对话框

②PlotXY是EMTP-ATP中的一个重要模块。通过在电路中设置不同类型的测量型探针,可以在PlotXY中描绘出随时间变化的节点电压或支路电流的波形。

在运行完ATP文件成功后(run ATP),在工具栏选择ATP→PlotXY,出现如图3所示的数据选择窗口。在左侧的变量选择栏选定要输出的节点电压或支路电流,在右边的表格中将出现要描绘的变量名称,单击表格中的变量名即可取消该变量的波形输出。单击右下角的Plot键,即可输出选定变量的在指定时间内的波形图。

图3 Plot的数据选择窗口

在波形图下方有如图4所示的一系列图标,通过设置它们的参数可以输出更为理想的波形图。

图4 Plot的数据选择窗口

这些图标从左至右依次为,

Show title (显示名称):编辑波形图的名称。

Customise plot (自定义绘制):在General 中定义坐标为线性增长或指数增长,以及是否显示网格;在Font 中定义坐标轴刻度;在Lines 中定义波形图中的线条形式。

Manual scale (手动范围):在该对话框里可以设置X 轴和Y 轴的最大值、最小值和单位。

Show cursor (显示游标):通过左右移动游标来获得波形图上的对应点的坐标。

Mark (标记):与游标配合使用可以标记波形图上的重要点。

Write WMF file (打开WMF 文件):打开已有的WMF 文件

Copy to clipbrd (复制到剪切板):将波形图复制到剪切板。

Print (打印):连接好打印设备后,即可打印出该波形图。

三、实验内容

(1)要求:多段PI 型等效电路模块实现空载长线路末端电压(相对首端)升高的仿真

(2)实例:某500kV 线路,线路长400km ,线路波阻抗Ω=260C Z ,

电源漏抗为Ω=100S X ,并联电抗器Ω=1034L X ,电源电动势为E 。求线路末端接或不接电抗器时,沿线最高电压和末端电压与电源电动势的比值。

(3)实验步骤:

①理论分析。由已知,

°°°=×==2440006.006.0l λ

°===21260

100arctan

arcran Z X C S ? °===1.141034260arctan arctan L C X Z β 当线路空载、末端不接电抗器时,线路末端电压最高,由公式推导可得

)cos(cos 2?λ?+=

?

?E U (1) 则线路末端电压与电源电动势的比值为 32.1)2124cos(21cos )cos(cos 2=+=+=°°°

?λ?E

U 当线路空载、末端接电抗器时,线路上最高电压与线路末端电压可由式(2)和式(3)计算。

)cos(cos β?λ?β?+=

?

?E U (2) )cos(cos cos 2β?λβ??+=

?

?E U (3) 它们与电源电动势的比值为 09.1)

1.142124cos(21cos )cos(cos =?+=?+=°°°°

β?λ?βE U ,06.11.14cos 09.1cos 2=×==°ββE

U E U 从本例的计算数值可知,线路接有并联电抗器后,能有效地限制空载长线路的工频电压

升高。

②按图5和图6搭建仿真电路

图5 线路空载、末端不接电抗器时的仿真电路图

图6 线路空载、末端接电抗器时的仿真电路图

通过比较两个探测仪的电压波形来观察空载线路电压升高的情况以及电抗器的作用。 ③参数设置

PI 形输电线路及各模块的设置如图7所示。交流电压源频率为50Hz;幅值如图7(a)中所示,我们在Amplitude 处选择RMS L-L,可以实现每相电压幅值是kV 3/2500×;初相角为°0。电压源的等效电阻为Ω0.2、电感为100Ω。并联电抗器的电感为1034L =Ω。

在选型方面,注意所有的元件都是三相的。电压源要选择为三相;电压源的内阻选择Branch linear(线性元件)→RLC 3-ph(RLC 三相电路),通过设置电阻和感抗来实现;PI 形电路选择Lines/Cables (架空线路/电缆)→Lumped (集中参数)→RLC Pi-equiv.1…(RLC Pi 形电路)→3 phase(三相电路)来实现,设置参数时,忽略互感现象,只设置各自相单独的电阻、感抗和容抗;线路末端的电抗器选择参考电压源内阻,只需要设置感抗值即可。

打开菜单ATP→Settings,在ATP Settings 窗口将步长“delta T”设置为0.001s,将最大时间“T max ”设置为0.1s。选择了“Power Frequency”之后,把“Xopt”和“Copt”均设置为工频50Hz,这样就能够把电感和电容的单位从毫亨(mH)和微法(μF)分别改为感抗和容抗的单位欧姆(ohm)和毫欧(μmho)。

(a)电压源模块参数设置

(b)Xs模块参数设置

(c)PI型输电线路参数设置

(d)电抗器参数设置

图7 各模块的参数设置

④仿真及结果

在运行ATP文件以后,选择PlotXY输出波形图,空载长线路末端电压升高如图8、9

所示。

图8 不接电抗器的电压升高 图9 接电抗器的电压升高 结果分析:按题意理论计算可得,末端不接电抗器时,32.12=E U ;接电抗器时,06.12=E

U 。由读数可知,不接电抗器时,52 5.47210V U =×,而V 1008.43/21050053×≈××=E ,故5255.47210 1.344.0810U E ×≈≈×,误差为1.34 1.32100% 1.52%1.32

×≈-,在合理范围内。接电抗器时,52 4.346310V U =×,故5254.346310 1.0654.0810

U E ×≈≈×。综上可知,仿真结果与理论分析结果一致。

四、实验报告要求

(1)观察并联电抗器前后,线路末端电压和首端电压比值的变化。

(2)观察随着并联电抗器的位置不同,沿线电压分布的变化。

(3)观察随着线路长度的变化,工频电压升高情况,并计算末端电压相对始端电压抬升百分比,填入表1中。

表1 不同长度线路对应的电压抬升百分比(%)

电压抬升百分比% 电压等级

400km 600km 800km 1000km 500kV

解:我们只需要在Pi 形线路模型中改变线路的长度就可以观察不同长度线路的电压升高情况。当输电线路长度为400~1000km 时,对应的首末端电压波形如图10所示。

(a)线路长度为400km (b)线路长度为600km

(c)线路长度为600km (d)线路长度为1000km

图10 不同长度输电线路的首末端电压波形 五、仿真练习

某500kV 线路的参数如下:10.01876/km R =Ω,00.1637/km R =Ω;10.8489/km L mH =,0 2.5466/km L mH =;10.01312/km C F μ=,00.00866/km C F μ=。已知该线路长400km ,求该线路空载时的末端电压升高的倍数。并尝试在该线路的不同部位添加电抗器,观察电抗器抑制电压的作用。

(提示:由于题中给定了线路的正序和零序阻抗,所以可以选择三相对称的RLC Pi 形线路模型进行仿真。即:Lines/Cables →Lumped →RLC Pi-equiv.1…→3 ph. seq.) 解答:仿真电路图如图5所示,波形如图11。电抗器请同学们下来自己添加。

图11 仿真练习图

高电压技术第章习题答案

高电压技术第5章习题 答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第五章电气绝缘高电压试验 5-1简述直流耐压试验与交流相比有哪些主要特点。 5-2直流耐压试验电压值的选择方法是什么 5-3高压实验室中被用来测量交流高电压的方法常用的有几种 5-4简述高压试验变压器调压时的基本要求。 5-5 35kV电力变压器,在大气条件为时做工频耐压试验,应选用球隙的球极直径为多大球隙距离为多少 5-6工频高压试验需要注意的问题 5-7简述冲击电流发生器的基本原理。 5-8冲击电压发生器的起动方式有哪几种 5-9最常用的测量冲击电压的方法有哪几种

5-1简述直流耐压试验与交流相比有哪些主要特点。 答:(1)直流下没有电容电流,要求电源容量很小,加上可么用串级的方法产生高压直流,所以试验设备可以做得比较轻巧,适合于现场预防性试验的要求。特别对容量较大的试品,如果做交流耐压试验,需要较大容量的试验设备,在一般情况下不容易办到。而做直流耐压试验时,只需供给绝缘泄漏电流(最高只达毫安级),试验设备可以做得体积小而且比较轻便,适合现场预防性试验的要求。 (2)在试验时可以同时测量泄漏电流,由所得的“电压一电流”曲线能有效地显示绝缘内部的集中性缺陷或受潮,提供有关绝缘状态的补充信息。 (3)直流耐压试验比之交流耐压试验更能发现电机端部的绝缘缺陷。其原因是直流下没有电容电流流经线棒绝缘,因而没有电容电流在半导体防晕层上造成的电压降,故端部绝缘上分到的电压较高,有利于发现该处绝缘缺陷。 (4)在直流高压下,局部放电较弱,不会加快有机绝缘材料的分解或老化变质,在某种程度上带有非破坏性试验的性质。 5-2直流耐压试验电压值的选择方法是什么 答:由于直流下绝缘的介质损耗很小,局部放电的发展也远比交流下微弱,所以直流下绝缘的电气强度一般要比交流下的高。在选择试验电压值时必须考虑到这一点,直流耐压试验所用的电压往往更高些,并主要根据运行经验来确定,一般为额定电压的2倍以上,且是逐级升压,一旦发现异常现象,可及时停止试验,进行处理。直流耐压试验的

高电压试验试题

第一章交流高电压试验设备 1.何为高压试验变压器?高压试验变压器的作用。试验变压器相对电力变压器有哪些主要区别? 2.已知试品的电容量和试验电压,如何正确选择工频试验变压器的电压和容量? 3.什么是全绝缘变压器?什么是半绝缘变压器?它们的特点各是什么? 4.串级高压试验变压器的基本原理。 5.自耦式串接试验变压器(单套管)的原理。 6.什么情况下选择串级试验变压器?它的主要特点有哪些? 7.“清华大学编”教材P13,图1-15为2250kV A,2250kV三级串级试验变压器,每台变压器的额 定电压为750kV,试标出各级高压套管的对地电位,以及各均压环的对地电位。 8.为什么串级试验变压器的短路电抗比单台试变的短路电抗大许多? 9.串级试验变压器的优缺点。 10.短路电抗大的危害有哪些?试验变压器的短路电抗及降低短路电抗的方法。 11.目前常用的调压方式有哪几种?它们各有什么特点? 12.移圈式调压器的工作原理。 13.用铜球测量试验变压器的输出电压时为什么要制订校正曲线?如何制定? 14.进行工频高压试验对试验电压的波形有何要求?分析波形畸变的原因?可以采取哪些措施改善 波形? 15.什么叫容升效应?它会给输出电压的测量带来什么后果? 16.阐述工频试验接线图中R1、R2的作用及选择原则。 17.试验变压器试品闪络引起的恢复过电压的形成条件及防止措施。 18.叙述工频高压串联谐振装置的工作原理。 19.试画一完整的工频试验接线图(包括测量和保护),并分析试变保护电阻R对输出电压的影响。 20.试验变压器的工作接线,分析保护电阻的作用。 第二章直流高电压试验设备 1.高压直流设备中半波整流及全波整流的原理。 2.高压直流设备的基本参数及计算方法。 3.高压硅堆的主要技术参数。 4.整流回路的δU,δUa,△U,S的计算。 5.直流高压串级发生器的工作原理(主要计算:δU,△U及S)。 6.直流高压串级发生器减小脉振的方法。 7.半波整流电路,倍压整流电路和直流高压串级发生器的δU与△U如何计算? 8.倍压电路中,C2为什么能充电到2Um(无负荷时)?电路中各点的电位是如何变化的? 9.直流高压装置中的保护电阻R起什么作用?如何选择?它与工频高压试验中的R相比有何异 同?

避雷器试验

避雷器试验 一.实验目的: 了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。 二.实验项目: 1.FS-10型避雷器试验 (1).绝缘电阻检查 (2).工频放电电压测试 2.FZ-15型避雷器试验 (1).绝缘电阻检查 (2).泄漏电流及非线性系数的测试 三.实验说明: 阀型避雷器分普通型和磁吹型两类,普通型又分FS型(配电型)和FZ型(站用型)两种。它们的作用过程都是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙的自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时的通流时间≯10ms(半个工频周期)。FS型避雷器的结构最简单,如图4-1所示,由火花间隙和非线性电阻(阀片)串联组成。FZ型避雷器的结构特点是在火花间隙上并联有均压电阻(也为非线性电阻),如图4-2所示,增设均压电阻是为了提高避雷器的保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压的不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降和不稳定。加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压的分布均匀度,提高避雷器的保护性能。非线性电阻的伏安特性式为:U=CIα,其中C 为材料系数,α即为非线性系数(普通型阀片的α≈0.2、磁吹型阀片的α≈0.24、FZ型避雷器因均压电阻的影响,其整体α≈0.35~0.45),其伏安特性曲线如图4-3所示。可见流过非线性电阻的电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。另外,FS型避雷器的工作电压较低(≤10kv),而FZ型避雷器工作电压可做到220kv。FZ型避雷器中的非线性电阻(均压电阻和阀片)的热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。磁吹型避雷器有FCZ型(电站用)和FCD型(旋转电机用)两种,其结构与FZ型相似,间隙上都有均压电阻,只是磁吹型避雷器采用磁吹间隙,并配有磁场线圈和辅助间隙。由于以上结构上的不同,所以对FS 型和FZ(FCZ、FCD)型避雷器的预防性试验项目和标准都有很大的不同。 根据《电力设备预防性试验规程》,对FS型避雷器主要应做绝缘电阻检查和工频放电电压试验,对FZ(及FCZ、FCD)型避雷器则应做绝缘电阻检查和直流泄漏电流及非线性系数的测试。只有在其解体检修后才要求做工频放电电压试验(需要专门设备)。避雷器其它的预防性试验还包括底座绝缘电阻的检查、放电计数器的检查及瓷套密封性检查等。 避雷器试验应在每年雷雨季节前及大修后或必要时进行。绝缘电阻的检查应采用电压≥2500v及量程≥2500MΩ的兆欧表。要求对于FS型避雷器绝缘电阻应不低于2500MΩ;FZ(FCZ、FCD)型避雷器绝缘电阻与前次或同类型的测试值比较,不应有明显差别。FS型避雷器的工频放电电压试验的合格值如表4-1所列。 表 FZ型避雷器的直流泄漏电流及非线性系数的测试的试验电压及电导电流值如表4-2所列,所测泄漏电流值

高电压技术实验实验报告(二)

----高电压技术实验报告 高电压技术实验报告 学院电气信息学院 专业电气工程及其自动化

实验一.介质损耗角正切值的测量 一.实验目的 学习使用QS1型西林电桥测量介质损耗正切值的方法。 二.实验项目 1.正接线测试 2.反接线测试 三.实验说明 绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值(tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷: 绝缘介质的整体受潮; 绝缘介质中含有气体等杂质; 浸渍物及油等的不均匀或脏污。 测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法 及瓦特表法。目前,我国多采用平衡电桥法,特别是 工业现场广泛采用QS1型西林电桥。这种电桥工作电 压为10Kv,电桥面板如图2-1所示,其工作原理及操 作方法简介如下: ⑴.检流计调谐钮⑵.检流计调零钮 ⑶.C4电容箱(tgδ)⑷.R3电阻箱 ⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮 ⑺.检流计电源开关⑻.检流计标尺框 ⑼.+tgδ/-tgδ及接通Ⅰ/断开/接通Ⅱ切换钮 ⑽.检流计电源插座⑾.接地 ⑿.低压电容测量⒀.分流器选择钮⒁.桥体引出线 1)工作原理: 原理接线图如图2-2所示,桥臂BC接入标准电容C N (一般C N =50pf),桥臂BD由固定的无感电阻R 4 和可调电 容C 4并联组成,桥臂AD接入可调电阻R 3 ,对角线AB上接 QS1西林电桥面板图

入检流计G ,剩下一个桥臂AC 就接被试品C X 。 高压试验电压加在CD 之间,测量时只要调节R 3和C 4就可使G 中的电流为零,此时电桥达到平衡。由电桥平衡原理有: BD CB AD CA U U U U = 即: BD CB AD CA Z Z Z Z = (式2-1) 各桥臂阻抗分别为: X X X X CA R C j R Z Z ?+= =?1 44441R C j R Z Z BD ?+==? 33R Z Z AD == N N CB C j Z Z ?1= = 将各桥臂阻抗代入式2-1,并使等式两边的实部和虚部分别相等,可得: 3 4 R R C C N X ? = 44R C tg ??=?δ (式2-2) 在电桥中,R4的数值取为=10000/π=3184(Ω),电源频率ω=100π,因此: tg δ= C 4(μf ) (式2-3) 即在C 4电容箱的刻度盘上完全可以将C 4的电容值直接刻度成tg δ值(实际上是刻度成tg δ(%)值),便于直读。 2)接线方式: QS1电桥在使用中有多种接线方式,如下图所示的正接线、反接线、对角接线,低压测量接线等。 正接线适用于所测设备两端都对地绝缘的情况,此时电桥的D 点接地,试验高电压在被试品及标准电容上形成压降后,作用于电桥本体的电压很低,测试操作很安全也很方便,而且电桥的三根引出线(C X 、C N 、E )也都是低压,不需要与地绝缘。 反接线适用于所测设备有一端接地的情况,这时是C 点接地,试验高电压通过电桥加在被试品及标准电容上,电桥本体处于高电位,在测试操作时应注意安全,电桥调节手柄应保证具有15kv 以上的交流耐压能力,电桥外壳应保证可靠接地。电桥的三根引出线为高压线,应对地绝缘。 对角接线使用于所测设备有一端接地而电桥耐压又不够,不能使用反接线的情况,但这种接线的测量误差较大,测量结果需进行校正。 低压接线可用来测量低压电容器的电容量及tg δ值,标准电容可选配0.001μf (可测C X 范围为300pf ~10μf )或0.01μf (可测C X 范围为3000pf ~100μf ) 3.分流电阻的选择及tg δ值的修正:

避雷器耐压试验

《避雷器耐压试验》 避雷器直流耐压试验 避雷器直流耐压试验一、试验目的 避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。 二、试验数据其试验数据≦50微安三、实验步骤 1、首先拆除避雷器上与计数器连线。 2然后用计数器检测仪将计数器进行试验。 3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应≥2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。 4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。 6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。 7、用放电棒对高压发生器及避雷器进行充分放电。 8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。 9、恢复所拆避雷器及计数器接线。 四、注意事项 1、试验设备在通电前,务必接上地线。 2、实验前应将避雷器清扫干净,以减少测量误差。 3、接好线应复查无误后方可加压,同时应检查接地是否良好。 4、开机前应检查操作箱“粗调”“细调”旋钮是否良好,是否在零位。 5、实验前,应检查电源电压AC220V。

6、加压速度不能太快,以防止突然高压损坏避雷器。 7、在试验过程中应密切观察避雷器及各表计,如出现异常情况,应立即降压,并切断操作箱电源,停止操作。 五、主接线图 避雷器直流耐压试验.doc 避雷器直流耐压试验一、试验目的 避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。 二、试验数据其试验数据?50微安三、实验步骤 1、首先拆除避雷器上与计数器连线。 2然后用计数器检测仪将计数器进行试验。 3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应?2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。 4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。 6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。 7、用放电棒对高压发生器及避雷器进行充分放电。 8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。 9、恢复所拆避雷器及计数器接线。 四、注意事项 1、试验设备在通电前,务必接上地线。 2、实验前应将避雷器清扫干净,以减少测量误差。

高电压技术实验实验报告(二)

高电压技术实验实验报告(二)

----高电压技术实验报告 高电压技术实验报告 学院电气信息学院

专业电气工程及其自动化

实验一.介质损耗角正切值的测量 一.实验目的 学习使用QS1型西林电桥测量介质损耗正切值的方法。 二.实验项目 1.正接线测试 2.反接线测试 三.实验说明 绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值(tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷: 绝缘介质的整体受潮; 绝缘介质中含有气体等杂质; 浸渍物及油等的不均匀或脏污。 测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法 及瓦特表法。目前,我国多采用平衡电桥法,特别是 工业现场广泛采用QS1型西林电桥。这种电桥工作电 压为10Kv,电桥面板如图2-1所示,其工作原理及操 作方法简介如下: ⑴.检流计调谐钮⑵.检流计调零钮 ⑶.C4电容箱(tgδ)⑷.R3电阻箱 ⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮 ⑺.检流计电源开关⑻.检流计标尺框

⑼.+tg δ/-tg δ及接通Ⅰ/断开/接通Ⅱ切换钮 ⑽.检流计电源插座 ⑾.接地 ⑿.低压电容测量 ⒀.分流器选择钮 ⒁.桥体引出线 1)工作原理: 原理接线图如图2-2所示,桥臂BC 接入标准电容C N (一般C N =50pf ),桥臂BD 由固定的无感电阻R 4和可调电容C 4并联组成,桥臂AD 接入可调电阻R 3,对角线AB 上接入检流计G ,剩下一个桥臂AC 就接被试品C X 。 高压试验电压加在CD 之间,测量时只要调节R 3 和C 4就可使G 中的电流为零,此时电桥达到平衡。由电桥平衡原理有: BD CB AD CA U U U U = 即: BD CB AD CA Z Z Z Z = (式 2-1) 各桥臂阻抗分别为: X X X X CA R C j R Z Z ?+= =?1 4 44 41R C j R Z Z BD ?+= =? 3 3R Z Z AD == N N CB C j Z Z ?1= = 将各桥臂阻抗代入式2-1,并使等式两边的实部和虚部分别相等,可得: 3 4R R C C N X ? = 4 4 R C tg ??=?δ (式 2-2) 在电桥中,R4的数值取为=10000/π=3184(Ω),电源频率ω=100π,因此: QS1西林电桥面板图 QS1西林电桥面板图

电气试验总结

总结 各位领导: 一、电气工作自10月20日开工至今已过去一个多月,为了使10KV、400V 配电能够成功送电,我公司人员按照国家有关规范、规程和制造厂的规定,逐次对10KV母线、10KV电流互感器、10KV电压互感器、10KV电力电缆、干式变压器、真空断路器、过电压保护器、高压电机进行电气交接试验、10KV开关柜进行了二次传动试验。 二、主要做了如下工作: 1.10KVI段II段母线绝缘电阻及交流耐压试验合格,完成共两段。 2.10KV电流互感器变比、极性、励磁特性、绝缘电阻及交流耐压试验合格,完成共66台。 3.10KV电压互感器变比、极性、励磁特性、绝缘电阻及交流耐压试验合格,完成共6台。 4.10KV电力电缆绝缘电阻及交流耐压试验合格,完成共25根。 5.10KV干式变压器极性及接线组别、直流电阻测量、变比测定、绝缘及耐压试验合格,完成共4台。 6.10KV真空断路器绝缘电阻、交流耐压试验、机械特性测试、导电回路接触电阻测试合格,完成共23台。 7.三相组合式过电压保护绝缘电阻及工频放电电压试验合格,完成共66台。 8.10KV电动机绝缘电阻、线圈直流电阻及交流耐压试验合格,完成共13台。

9.继电综合保护按设计院整定值完成整定工作合格,完成共23台。 10.10KV高压柜远方就地传动试验合格,完成共20台。 11.10KVI段II段PT柜电压并列试验合格,完成共2台。 12.400VI段II段进线开关远方就地传动试验合格,完成共2台。 13.400VI段II段备用电源进线开关就地传动试验合格,完成共2台。 14.400VI段II段备自投静态试验合格,完成共2台。 三、试验过程中发现了一系列的问题,并逐次进行了处理 1.10KV母线第一次做耐压试验,放电声音比较响、升压困难,后经过处理,电压升到规定值 2.做继电保护校验时发现控制电缆有接错线及没有接线等问题并进行了处理。 3.原设计电度表屏有4台厂变的电度表,因高压柜没有设计去电度表的电流信号,现设计院把4台厂变的电度表取消。 4.10KV一段二段母线PT柜发现设计N相没有经过击穿保险接地,现击穿保险已安装完毕。 5.10KV一段二段母线电压设计有电压并列装置,但安装单位没有接线,现已解决并调试完毕。 6.10KV 4台厂变开关柜在传动试验时发现合不上闸,经厂家处理,现开关柜都能正常分合闸。 7.400V配电调试过程中, 1号2号400V进线开关二次原理图与设计图纸不

工频耐压试验装置说明书

RTYD-30kVA/50kV工频耐压试验装置RTYD-30kVA/50kV Withstand HV Test Set 使用说明书 User's Manual 武汉锐拓普电力设备有限公司 W uhan Retop Electric Device Co.,LTD

前言 一、衷心感谢您选用本公司的产品,您将获得本公司全面的技术支持和服务保障。 二、本说明书适用于RTYD-30kVA数显工频耐压试验装置。 三、您在使用本产品前,请仔细阅读本说明书,并妥善保存以备查阅。 四、在阅读本说明书或仪器使用过程中如有疑惑,可向我公司咨询。

目录 1、概述 1.1用途----------------------------------------------------------------------1 1.2性能特点------------------------------------------------------------------1 2、特别提示 2.1电源输入------------------------------------------------------------------2 2.2安全注意事项--------------------------------------------------------------2 2.3测试准确度方面------------------------------------------------------------2 2.4操作方面------------------------------------------------------------------2 3、技术特征 3.1名称和分类----------------------------------------------------------------3 3.2主机结构型式与尺寸-------------------------------------------------------3 3.3使用电源------------------------------------------------------------------3 3.4使用环境要求--------------------------------------------------------------3 3.5安全性能------------------------------------------------------------------3 3.6测量精度------------------------------------------------------------------3 3.7测试项目-----------------------------------------------------------------3 4、工作原理 4.1原理框图------------------------------------------------------------------4 4.2工作原理------------------------------------------------------------------4 5、面板布置 5.1面板示意图----------------------------------------------------------------5 5.2各部件说明----------------------------------------------------------------5 6、基本操作 6.1计时触发电流--------------------------------------------------------------6 6.2过流保护------------------------------------------------------------------6 6.3零位保护------------------------------------------------------------------6 7、测试

工频交流耐压试验

工频交流耐压试验工频交流(以下简称交流)耐压试验是考验被试品绝缘承受各种过电压能力最严格有效的方法,对保证设备安全运行具有重要意义。 交流耐压试验的电压、波形、频率和在被试品绝缘内部电压的分布,均符合实际运行情况,因此,能有效地发现绝缘缺陷。交流耐压试验应在被试品的绝缘电阻及吸收比测量、直流泄漏电流测量及介质损失角正切值tg δ测量均合格后进行。如在这些试验中已查明绝缘有缺陷,则应设法消除,并重新试验合格后才能进行交流耐压试验,以免造成不必要的损坏。 交流耐压试验对于固体有机绝缘来说,会使原来存在的绝缘弱点进一步发展(但又不致于在耐压时击穿),使绝缘强度逐渐衰减,形成绝缘内部劣化的积累效应,这是我们所不希望的。因此,必须正确地选择试验电压的标准和耐压时间。试验电压越高,发现绝缘缺陷的有效性越高,但被试品被击穿的可能性越大,积累效应也越严重。反之,试验电压低,又使设备在运行中击穿的可能性增加。实际上,国家根据各种设备的绝缘材质和可能遭受的过电压倍数,规定了相应的出厂试验电压标准。具有夹层绝缘的设备,在长期运行电压的作用下,绝缘具有累积效应,所以现行有关标准规定运行中设备的试验电压,比出厂试验电压有所降低,且按不同设备区别对待(主要由设备的经济性和安全性来决定)。但对纯瓷套管、充油套管及支持绝缘子则例外,因为它们几乎没有累积效应,故对运行中的设备就取出厂试验电压标准。 绝缘的击穿电压值与加压的持续时间有关,尤以有机绝缘特别明显,其击穿电压随加压时间的增加而逐渐下降。有关标准规定耐压时间为一分钟,一方面是为了便于观察被试品情况,使有弱点的绝缘来得及暴露(固体绝缘发生热击穿需要一定的时间);另一方面,又不致时间过长而引起不应有的绝缘击穿。 第一节试验方法 一、原理接线 交流耐压试验的接线,应按被试品的要求(电压、容量)和现有试验设备条件来决定。通常试验变压器是成套设备(包括控制及调压设备),对调压及控制回路加以简化如图一所示。 图1

高电压技术第5章习题答案.doc

第五章电气绝缘高电压试验 5-1简述直流耐压试验与交流相比有哪些主要特点。 5-2直流耐压试验电压值的选择方法是什么? 5-3高压实验室中被用来测量交流高电压的方法常用的有几种? 5-4简述高压试验变压器调压时的基本要求。 5-5 35kV电力变压器,在大气条件为时做工频耐压试验,应选用球隙的球极直径为多大?球隙距离为多少?5-6工频高压试验需要注意的问题? 5-7简述冲击电流发生器的基本原理。 5-8冲击电压发生器的起动方式有哪几种? 5-9最常用的测量冲击电压的方法有哪几种?

5-1简述直流耐压试验与交流相比有哪些主要特点。 答:(1)直流下没有电容电流,要求电源容量很小,加上可么用串级的方法产生高压直流,所以试验设备可以做得比较轻巧,适合于现场预防性试验的要求。特别对容量较大的试品,如果做交流耐压试验,需要较大容量的试验设备,在一般情况下不容易办到。而做直流耐压试验时,只需供给绝缘泄漏电流(最高只达毫安级),试验设备可以做得体积小而且比较轻便,适合现场预防性试验的要求。 (2)在试验时可以同时测量泄漏电流,由所得的“电压一电流”曲线能有效地显示绝缘内部的集中性缺陷或受潮,提供有关绝缘状态的补充信息。 (3)直流耐压试验比之交流耐压试验更能发现电机端部的绝缘缺陷。其原因是直流下没有电容电流流经线棒绝缘,因而没有电容电流在半导体防晕层上造成的电压降,故端部绝缘上分到的电压较高,有利于发现该处绝缘缺陷。 (4)在直流高压下,局部放电较弱,不会加快有机绝缘材料的分解或老化变质,在某种程度上带有非破坏性试验的性质。 5-2直流耐压试验电压值的选择方法是什么? 答:由于直流下绝缘的介质损耗很小,局部放电的发展也远比交流下微弱,所以直流下绝缘的电气强度一般要比交流下的高。在选择试验电压值时必须考虑到这一点,直流耐压试验所用的电压往往更高些,并主要根据运行经验来确定,一般为额定电压的2倍以上,且是逐级升压,一旦发现异常现象,可及时停止试验,进行处理。直流耐压试验的时间可以比交流耐压试验长一些,所以发电机试验时是以每级0.5倍额定电压分阶段升高,每阶段停留1min,读取泄漏电流值。电缆试验时,在试验电压下持续5min,以观察并读取泄漏电流值。 5-3高压实验室中被用来测量交流高电压的方法常用的有几种? 答:用测量球隙或峰值电压表测量交流电压的峰值,用静电电压表测量交流电压的有效值(峰值电压表和静电电压表还常与分压器配合使用以扩大仪表的量程),为了观察被测电压的波形,也可从分压器低压侧将输出的被测信号送至示波器显示波形。 5-4简述高压试验变压器调压时的基本要求。 答:试验变压器的电压必须从零调节到指定值,同时还应注意: (1) 电压应该平滑地调节,在有滑动触头的调压器中,不应该发生火花; (2) 调压器应在试验变压器的输入端提供从零到额定值的电压,电压具有正弦波形且没有畸变; (3) 调压器的容量应不小于试验变压器的容量。 5-5 35kV 电力变压器,在大气条件为5 1.0510Pa,t 27P =?=℃时做工频耐压试验,应选用球隙的球极直径为多大?球隙距离为多少? 解:根据《规程》,35kV 电力变压器的试验电压为 8585%72(kV)s U =?= 因为电力变压器的绝缘性能基本上不受周围大气条件的影响,所以保护球隙的实际放电电压应为 0(1.05~1.15)s U U = 若取0 1.05 1.0572106.9(kV,s U U ==?=最大值),也就是说,球隙的实际放电电压等于106.9kV(最大值)。因为球隙的放电电压与球极直径和球隙距离之间关系是在标准大气状态下得到的,所以应当把实际放电电压换算到标准大气状态下的放电电压U0,即 027327106.9105.7(kV,0.2891050 U +=?=?最大值), 查球隙的工频放电电压表,若选取球极直径为10cm,则球隙距离为4cm 时,在标准大气状态下的放电电压为105kV(最大值)。而在试验大气状态下的放电电压 '00.2891050105106.2(kV 300U ?= ?=,最大值) 5-6工频高压试验需要注意的问题? 答:在电气设备的工频高压试验中,除了按照有关标准规定认真制定试验方案外,还须注意下列问题: (1) 防止工频高压试验中可能出现的过电压; (2) 试验电压的波形畸变与改善措施。 5-7简述冲击电流发生器的基本原理。 答:由一组高压大电容量的电容器,先通过直流高压并联充电,充电时间为几十秒到几分;然后通过触发球隙的击穿,并联地对试品放电,从而在试品上流过冲击大电

高电压技术

1-1、解释下列术语 (1)气体中的自持放电 答:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象。(放电仅仅依靠已经产生出来的电子和正离子就能维持下去) (2)电负性气体 答:电子与某些气体分子碰撞易于产生负离子,这样的气体分子组成的气体称为电气性气体。 (3)放电延时 答:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延。 (4)50%冲击放电电压 答:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压。 (5)爬电比距 答:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV. 1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合? 答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。所逸出的电子能否接替起始电子的作用是自持放电的判据。 流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸变,流注理论认为二次电子的主要来源是空间的光电离。 汤逊理论的适用范围是低气压、短间隙电场气隙的放电; 流注理论适用范围是高电压、长间隙电场气隙放电。 相同点:都有电子崩的产生 不同点:流注的形成过程中有二次崩的形成、二次电离在气体击穿过程中起了重要作用。

1-8、试述50%冲击击穿电压和50%伏秒特性两个术语中的“50%”所指的意义有和不同?这两个术语之间有无关系? 答:(1)50%冲击击穿电压是指在该冲击电压作用下气隙击穿的概率为50%; 50%伏秒特性是指以50%概率放电时间为横坐标(纵坐标仍为电压)连成的曲线,如图,50%概率放电时间含义是:在伏秒特性曲线的上、下包络线间选择某一时间数值,使在每个电压下的多次击穿中放电时间小于该数值的恰占一半。 U是不考虑放电时延情况下表征间隙冲击击(2)两个术语分别应用于不同的场合: 50% 穿特性,而50%伏秒特性是考虑时延情况下的表征。

高电压技术实验参考资料

高电压技术实验参考资料-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高电压技术实验参考资料 一、高电压实验课的目的和任务 1.熟悉和掌握高电压试验的基本技术。 2.通过实验,培养同学分析问题和解决问题的能力,使同学们初步掌握进行实验研究的一些基本方法。 3.树立安全第一的观点,保证人身和设备的安全是进行高压试验特别强调的问题,思想上必须自始至终保持高度的重视。 4.培养同学重视实际、遵守制度、爱护国家财产和严谨踏实的工作作风。 二、高电压试验的基本技术 1.掌握高电压试验的基本安全技术。 通过实验,同学们不仅在思想上要树立安全第一的观点,而且在实际工作中要养成严格的安全习惯。所以,要求同学们正确而熟练的掌握以下的基本安全技术。 a、掌握高压实验中必须的安全措施(防护栏、联锁、接地和安全距离)以及试验前的安全检查内容。 b、按照实验规则的要求,呼叫口令,并按实验程序进行操作。 c、掌握基本安全工具——接地杆的使用和检查。 2.学会安排试验条件和掌握工频试验变压器的正确使用。 3.掌握高电压试验的基本方法和典型仪器的使用。 a、掌握主要电力设备(套管、避雷器、电力变压器、线路绝缘子、电缆、电容器等)绝缘的基本检查和试验方法,包括绝缘电阻、泄漏电流、介质损耗因数、局部放电等的测量。以及击穿试验、耐压试验等。 b、掌握测量球隙、静电电压表、多种分压器、兆欧表、以及数字量的测量和使用方法。

三、对同学们的要求 1.预习:要求掌握实验内容、方法及基本原理,并选择试验所需设备、元件、仪器、仪表(包括使用方法)及试验点。画出试验线路图和原始记录表格。 2.实验:必须认真操作,观察实验中发生的现象,记录每次数据,注意安全,严格遵守实验规则,听从教师指导,实验后清理现场。 3.写出实验报告: 格式如下: a、实验目的 b、实验线路图,线路图要整齐、清楚(不得徒手画),并对图中设备的符号列表说明 c、实验内容及数据整理:数据应列表,对所用符号的含义和单位应加以说明,需计算部分应列出引用的公式和说明计算方法。必要时,应绘曲线。 d、现象描述:主要是放电现象,或在实验中遇到的其它现象(如故障现象),若无此内容,可省略。 e、分析讨论:对整个实验的数据、波形、实验现象用所学的知识进行分析讨论,并加以总结。 f、.严格遵守课堂纪律,不得迟到、早退。按时交报告。 四、高压实验室学生实验规则: (一) 实验前: 1.预习与组织: a、同学必须认真预习实验内容,教师要提问检查,不预习者不得参加实验,实验前应交前次实验报告。 b、每实验组推选组长一人,组内可轮流担任,并兼安全监护人。 2.实验前的检查:

简述过电压保护器试验方法

简述过电压保护器试验方法 摘要:在每年的电气预防性试验中,检修试验人员都误认为过电压保护器是一个整体,无法进行正常的高压电气试验,只能放弃过电压保护器电气试验,从而给电力系统安全运行带来了潜在的隐患。 关键词:过电压保护器电气试验 引言:目前,过电压保护器在我们新密局李堂变、园区变、李湾变等变电站10kV或35kV高压开关柜内部安装,为开关柜、母线提供过电压保护作用,如不能定期进行电气预防性试验,一定影响到开关柜等电气设备正常运行。 一、过电压保护器试验方法 过电压保护器在投入使用前以及使用后每年都应进行预防性试验,试验时保护器的四个端子应从其它电器设备上拆下,不允许和其它设备连接时进行试验,试验的具体内容如下: 1)外观检查:检查外绝缘有无损伤。 2)对于无间隙组合式过电压保护器,应进行以下试验:直流 1mA 参考电压:在保护器两两端子之间施加直流电压,当流过保护器的电流稳定于 1mA 后,读取此时保护器两端子之间的电压数值,该值不得小于技术参数表中的规定值。 泄漏电流:在保护器两两端子间施加 0.75 倍的直流 1mA 参考电压,此时流过保护器的泄漏电流不得大于50μA。 无间隙组合式过电压保护器不允许做工频放电电压试验。 3) 对于串联间隙组合式过电压保护器,应进行工频放电电压试验,

试验接线如图所示。试验时在保护器 A、B、C、D 两两端子之间分别施加工频电压,调节自耦变压器 ZT,缓慢加压,观察安培表 A 的电流变化。当安培表 A 的电流突然增大时,表示间隙电极放电,记录此时电压表 V 的电压值,此值即为工频放电电压在变压器原边的数值,此值乘以升压变压器 ST 的变比,即为该两相的工频放电电压值。由于放电电极允许有一定的分散度,以及测试方法的差异,现场测试值不应超出出厂试验值的 20%。如果超出该范围,应停止运行,及时通知厂家处理。 二、过电压保护器注意事项 1)应根据电压等级和被保护对象正确地选择保护器的型号和技术参数。 2)应提供所需连接电缆的长度L。 3)开关柜进行耐压试验时,应将保护器四个端子从母线上拆下,否则,可能损坏保护器。

工频耐压

湖北普禄克电业发展有限公司 Hubei Puluke Electric IPLKustry Development Co., Ltd PLKNY系列高压试验变压器 一、概述 高压试验装置是根据DL/T848.2-2004行业标准而设计生产的。全套装置由YDJ(TDM、YDG、YDQ)系列高压试验变压器和控制箱(台)组成,其中控制箱(台)由调压器、测量、控制及保护等部分组成的一体化装置。适用于电力系统、工矿企业、科研部门等对各种高压电气设备、电器元件、绝缘材料进行工频高压下的绝缘强度试验。 1.1 产品分类 产品分为一体式装置和分体式装置两类。 1.2 产品型号 产品型号: PLKNY ----- XXX / XXX 装置额定输出电压(kV) 装置额定容量(kVA) 湖北普禄克工频高压试验装置 二、产品结构 高压试验变压器采用单框芯式铁芯结构。初级绕组饶在铁芯上,高压绕组在外,这种同轴布置减少了漏磁通,因而增大了绕组间的耦合。产品的外壳制成与器芯配合较佳的八角形结构,整体外形显得美观大方。其外部结构图见图1,内部结构图见图2。 图1:单台试验变压器图2:单台试验变压器内部结构图 外部结构示意图 1—短路杆D 2—均压球3—高压套管4—变压器提手 5—油阀6、7—次压输入a、x 8、9—测量端子E、F 10—变压器外壳接地端

11—高压尾X 12—高压输出A 13—高压硅堆14—变压器油 15—铁芯16—次低压绕组17—测量绕组18—二次高压绕组 在试验变压器中,a、x为低压输入端子,E、F为仪表测量端子,A、X为高压输出。 三、工作原理 系列工频高压试验装置由高压试验变压器和控制箱(台)组成,其中控制箱(台)是集调压器、测量、控制、保护及信号等部分组成的一体化装置。 高压试验变压器采用单框芯式铁芯,初级绕组绕在铁芯上,测量绕组和高压绕组采用绝缘筒绕制并套在初级绕组外,系同轴布置结构。通过调节控制箱(台)内的调压器输出电压,接入高压试验变压器的初级绕组,根据电磁感应原理,可获得需要的高压电压。 1、 图3. 工频高压试验装置工作原理图

教学目的掌握工频高压试验直流高压试验冲击高压试验方法

天津理工大学中环信息学院教案首页 题目:电气设备绝缘试验(二) 讲授内容提要: 1.工频高压试验 2.直流高压试验 3.冲击高压试验 4.联合电压和合成电压试验 教学目的:掌握工频高压试验、直流高压试验、冲击高压试验方法教学重点:理解工频高压试验、直流高压试验、冲击高压试验原理教学难点:根据试验原理与实际高压设备相结合 采用教具和教学手段:多媒体及板书 授课时间:2014年9月1日授课地点:新教学楼1108 教室注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第六章电气设备绝缘试验(二) 本次课主要内容: 1.工频高压试验 2.直流高压试验 3.冲击高压试验 4.联合电压和合成电压试验 工频高压试验 交流耐压:是交流设备的基本耐压方式。适用于≤220kV以下的电力设备。 串级变压器 工频高压的测量 测量球隙稍不均匀-Ub偏差小于3% 静电电压表0-1MHz,量程小于200kV 分压器配用低压仪表电容分压,注意杂散电容影响,措施-屏蔽高压电容器配用整流装置

直流高压试验 在被试品的电容量很大的场合,用工频交流高电压进行绝缘试验时会出现很大的电容电流,这就要求工频高压试验装置具有很大的容量,这时常用直流高电压试验来代替工频高电压试验。 工频高电压-整流器-直流高压,倍压整流-直流高压串级装置-更高直流电压。 冲击高压试验 雷电冲击高压试验 雷电冲击耐压考验电力设备承受雷电过电压的能力。只在制造厂进行本项试验,因为试验会造成绝缘的积累效应,所以在规定的试验电压下只施加3次冲击。 国家标准规定额定电压≥220kV,容量≥120MVA的变压器出厂时应进行本项试验。 操作冲击高压试验 ≥330kV电力设备的出厂试验应进行本项试验。在电力系统现场进行各个电压等级变压器的耐压试验时,可采用操作冲击感应耐压方式来取代工频耐压试验。由于利用被试变压器自身的电磁感应作用来升高电压,所以冲击电源装置电压较低,装备比较简单。而且试验本身不会在绝缘中产生残留性损伤 冲击高压试验 冲击电压发生器的基本原理 冲击电压发生器概念:冲击电压发生器由一组并联的储能高压电容器,自直流高压源充电几十秒钟后,通过铜球突然经电阻串联放电,在

串联间隙过电压保护器工频放电电压的选择讨论

串联间隙过电压保护器工频放电电压的选择讨论 过电压保护器(以下简称保护器),又称组合式避雷器,是中压系统(6~35kV)限制雷电过电压、真空断路器操作过电压以及电力系统中可能出现的其它一些暂态过电压的典型产品。其大多数采用串联间隙配置和四星型接法,与常规金属氧化物避雷器相比,具有较高的耐受系统持续电压升高的能力,可在系统发生接地故障时保证自身安全;具有较低的雷电冲击放电电压和残压水平,可以为绝缘水平比较弱的设备提供良好的保护;具有较强的相间保护功能。其基本的电气结构如下图: 其中接地极的放电间隙可以省略 保护器通常贴近开关安装于成套柜中,也可以作为独立元件直接户外安装。其核心元件依然是金属氧化物阀片(一般简称氧化锌片),根据金属氧化物阀片的自身特点,以及国外同类产品的相关标准,采用该元件为核心工作元件的产品,电压参数中控制下限为起始工作电压,控制上限为最大工作电流下残压。 以普通10kV配电型无间隙金属氧化物避雷器YH5WS-17/50为例,来简单说明一下这类产品的使用原则。YH5WS-17/50控制下限为工频阻性1mA参考电压不小于17kV,控制上限为8/20波型标称电流下残压峰值不大于50kV,此即为17/50的来历。 金属氧化物阀片是典型的压敏电阻,该产品本身就是过电压保护设备。其有自身安全性和对被保护设备安全性两重的考虑。控制残压上限,是确保对被保护设备提供达到电网绝缘配合的过电压保护;控制起始工作电压的下限,是确保对自身提供长期安全使用的保证。如果残压偏高,对被保护设备不利,要求残压尽量低;如果起始工作电压偏低,对金属氧化物阀片自身不利,要求起始工作电压尽量高。 那么50kV的残压高出系统相电压数倍,是否可以起到保护作用呢?回答是肯定的。这个问题可以分成两部分来讨论。

相关文档
最新文档