茶多酚功能及其调节脂类物质代谢机理研究进展

茶多酚功能及其调节脂类物质代谢机理研究进展
茶多酚功能及其调节脂类物质代谢机理研究进展

食品科学现代农业科技2015年第21期

茶在我国的饮用历史非常悠久,茶叶作药在我国历代书籍典藏中均有记录。不同制作工艺使茶叶所含主要成分和化学元素含量不尽一致,一般公认的可分为七大类,即绿茶、红茶、乌龙茶、白茶、黄茶、黑茶和花茶等。目前,研究人员提取了不同种类的茶叶含量,发现了600余种化合物,主要是有机化合物和无机化合物2类,有机物包括茶多酚(TP)、茶多糖、氨基酸、维生素和皂苷等;无机化合物主要表现形式为矿物质,如磷、钾、硫、镁等。上述化合物具有多方面药理、生理调节以及增进营养功效[1]。茶具有多重价值的主要原因是茶叶中含有茶多酚,具有良好的生物活性,据研究,现代分子生物学和医学已经证明茶多酚具有多重的医疗效用和保健功能[2]。

茶多酚具有良好的生物性、生物功能及商业开发价值。从生物性上来看,茶多酚可有效清除自由基、解毒;从生物功能上来看,茶多酚具有预防心血管疾病、抗氧化、防癌抗癌、防辐射等作用;在商业价值上,茶多酚在医药和食品甚至化妆品领域都具有广阔开发前景和价值。

当前,遗传育种和动物营养研究不断深入,在集约化畜禽养殖生产中,畜禽生产力水平迅速提高,上市日龄逐渐缩短,出栏体重增加,单位体重耗料减少,但同时也伴随品质下降、价格下跌等问题。而茶多酚特殊的化学结构,具有特殊的生理功能,可对畜牧产品的肉质提升起到积极的作用。本文综述茶多酚对动物脂肪代谢的研究进展,现总结如下。

1茶多酚的理化性质

1.1茶多酚的物理性质

茶多酚物理存在形式多样,一般为水溶液、粉状固体或结晶,水溶液正常状态下为淡黄色或茶褐色,带有茶香味,口感为涩味。茶多酚固体形态具有吸湿性特征。茶多酚具有较好的热稳定性,在100℃温度下处理1h,活性可保持为100;用12000lx光强处理30d,光解率为0。茶多酚易溶于温水、乙酸乙酯、乙醇,微溶于油脂,不溶于CHCl3及C6H6等有机溶剂。1.2茶多酚的化学性质

茶多酚的主要成分有黄酮类、酚酸类、缩酚酸类、黄酮醇类、聚合酚类及黄烷醇类等,黄烷醇类(儿茶素)比重最高,占总含量的70%~90%,其中含量最高的是酯型儿茶素类,占黄烷醇类(儿茶素类)总含量的65%~75%。茶多酚具有较强的耐酸性,当pH<4时,茶多酚表现稳定;在pH值为4~7时,稳定性与外源性pH值添加水平呈反比;在pH值为7.42时,茶多酚稳定性明显增加。

2茶多酚功能机理

2.1生物学功能机理

茶多酚具有清除自由基的生物学活性功能。自由基性质不稳定,氧化能力很强,是公认的百病之源,能对人体的生命分子如蛋白质、核酸、脂质及糖类造成不可逆的伤害,是各种癌症、心血管病的病理因子。茶多酚对于自由基有强大的清除作用,甚至高于人工合成抗氧化剂BHA和BHT,是维生素C的9.8倍,是维生素E的18倍,抗氧化能力强,与其他维生素配合使用还具有协同促进作用,如维生素E、维生素C和有机酸等均可配合。

2.1.1直接清除自由基。直接清除有2种方式。茶多酚本身具备特殊分子结构,可结合强金属离子螯合剂,降低游离铁离子和结合铁离子,该2种离子是合成氧自由基所必需的,从而可直接清除自由基。茶多酚可提供相关中子或质子,可以和过量自由基进行反应,同时茶多酚还可以高效率捕获羟基自由基和超氧离子自由基,生成酚氧自由基,从而清除自由基,保护生物体免受侵害。

2.1.2间接清除自由基。茶多酚能增强抗氧化酶的活性,同时抑制氧化酶的活性,间接清除自由基。茶多酚中儿茶素含量最高,化学结构中具有连苯酚基和邻苯酚基,该2种离子抗氧化性活性高,甚至高于人工合成的非自由酚和单酚羟基类抗氧化剂,抗氧化酶如GSH-Px、C AT、GSTs以及酯还原酶等酶的活性可以借助茶多酚的化学结构离子得以提升。

茶多酚还通过氢键结合蛋白质,蛋白质的构象会在茶多酚的作用下发生改变甚至沉淀,氧化酶的活性得到抑制。

收稿日期2015-08-10茶多酚功能及其调节脂类物质代谢机理研究进展

武芳芹

(安徽省利辛县畜牧兽医局,安徽利辛236700)

摘要从茶多酚的理化性质、生理学和病理学功能等方面,综述了该物质的功能及其对脂类物质代谢调节的作用,以期为后期研究提供参考。

关键词茶多酚;功能;理化性质;脂肪代谢;机理

中图分类号R285文献标识码A文章编号1007-5739(2015)21-0286-02

Research Progress of Tea Polyphenols Function and Its Mechanism of Regulating Lipid Metabolism

WU Fang-qin

(Department of Animal Husbandry and Veterinary of Lixin County in Anhui Province,Lixin Anhui236700)Abstract Tea polyphenols function and its mechanism of regulating lipid metabolism were summarized from the physical and chemical properties,physiology and pathology,etc,in order to provide reference for later research.

Key words tea polyphenols;function;physical and chemical properties;fat metabolism;mechanism

286

同时,茶多酚特殊的结构还可促进淋巴细胞的转化和增殖,影响细胞因子的分泌质量和数量,提升抗体水平,最终间接清除自由基。

2.2杀菌抗病毒功能

2.2.1抗病毒功能表现。茶多酚具有抗病毒功能,因此具有良好的药用价值。茶多酚对于自然界中19类100种细菌具有良好的抗菌活性,国际学者公认其为广谱、低毒的抗菌药。杨联松[3]、白传记等[4]研究认为,茶多酚对金黄色葡萄球菌、沙门氏菌、大肠杆菌的繁殖具有强抑制作用,对细菌具有明显抑制作用,抑制霉菌功能稍弱,抑制酵母菌效果较差。同时,茶多酚在动物体内还能够促进有益菌菌群生长繁殖,进一步改善微生物结构比例,从而保护肠道,起到化学益生素的作用。

2.2.2抗病毒功能机理。茶多酚主要是通过3种方式来抗病毒:茶多酚化学结构中在5位和7位上具有二羟基团,在1位上有氧,可与病毒上的6位和8位C产生亲和,从而抑制病毒活性;茶多酚可以刺激动物机体产生大量自由基,直接杀死病毒。同时,茶多酚还可抑制病毒的逆转录酶及脱氧核糖核酸、核糖核酸等聚合酶的活性,在遗传上根除病毒数量,减少扩散。

2.3脂类物质代谢调节功能

茶多酚通过5种途径对脂类物质代谢进行调节:提高肝脂酶活性;对激素敏感性脂肪酶的活性增强;抑制胰脂酶活性,阻碍吸收脂肪;茶多酚具有与维生素B3相同的作用,即参与体内脂质代谢,组织呼吸的氧化过程和糖类无氧分解,促进胃肠道蠕动,加速脂类物质消化代谢;抑制胆固醇氧化,减少酸败物质生成,抑制脂质物质在血管壁上沉淀。曹明富等[5]认为,茶多酚能够明显地降低高血脂症Rat serum cholesterol和TG的含量,并且可以降低HDL-C的含量。2.4茶多酚病理学功能

2.4.1延缓衰老。上文所述,茶多酚可对人体自由基进行直接和间接的清除,具有很强的抗氧化性和生理活性。茶多酚与超氧化物歧化酶(SOD)相比,清除过量自由基的效能比为9∶1,也大幅高于其他抗氧物质效能。同时,茶多酚可清除活性酶,阻断脂质过氧化反应,起到延缓衰老的作用。日本奥田拓勇研究结果表明,茶多酚的抗衰老效果与维生素E比例为18∶1。

2.4.2防治心血管疾病。人体的胆甾醇(Cholesterol)、三酸甘油脂(TG)一旦含量过高,脂肪就会在血管内壁沉积,导致血管平滑肌细胞大幅度增生,形成动脉粥样化斑块,严重的导致心血管疾病。茶多酚的主要成分儿茶素(ECG和EGC)及茶黄素有抑制斑状增生的作用,可降低纤维蛋白原浓度,使凝血变清,抑制动脉粥样硬化,从而预防心血管疾病的发生。

2.4.3防癌抗癌作用。茶多酚由于其特殊的物理结构,可以阻断亚硝酸钾等多种致癌物质的合成,还可直接清除癌细胞,对胃癌、肠癌等多种癌症进行预防和辅助治疗,提高有机体免疫能力。

2.4.4防止辐射伤害。茶多酚内生结构有利于吸收90Sr和60Co,二者均为放射性物质,可以避免毒害。茶多酚呈水溶性,可收敛毛孔,清除油腻,杀菌、消毒、抗皮肤老化,还可降低紫外线对皮肤的辐射损伤。

3茶多酚对脂肪代谢影响机理

3.1组分与分布

Chen等[6]认为,没食子儿茶素没食子酸酯(EGCG)在小肠中的浓度与在肾脏中的比例为5∶1,EGCG和表儿茶素(L-Epicatechin)在小肠中的浓度与肾脏几乎相同,EGCG、表儿茶素没食子酸酯(ECG)和表儿茶素(EpicaJlechin)在小肠和肾脏中的浓度都比肝脏中的高。茶多酚进入动物体消化器官,后经小肠功能单位吸收,最终进入血液的循环。在血液循环中,茶多酚可以结合血清蛋白,转移到动物体的不同组织和器官,从而表现出不同的生物学活性与相异的功能[7-10]。

3.2代谢机理

茶多酚中的EGCG只有部分被动物体器官吸收或代谢,而大部分流失的进入大肠,或在动物体内微生物系统的作用下水解,随废弃物如尿液和胆汁排出体外。据试验研究,在大鼠体内,不同性质的茶多酚组分利用率和分布是不同的,EGC、EC和EGCG的生物利用率分别为13.7%、2.0%和0.1%;EGCG在在肾脏中的浓度是小肠中的浓度的20%,ECG和EC在肾脏中的浓度与小肠相似,EGCG、ECG和EC 在小肠和肾脏中的浓度都高于肝脏中的浓度[11-16]。

4参考文献

[1]陈睿.茶叶功能性成分的化学组成及应用[J].安徽农业科学,2004,32

(5):1031.

[2]毕彩虹,杨坚.茶多酚的保健作用研究进展[J].西南园艺,2006,34

(2):37.

[3]杨联松.茶多酚抑菌作用和防腐效果初探[J].安徽农业科学,1996,24

(4):373-375.

[4]白传记,孔德荣,张淑伟.茶多酚抑菌活性的实验研究[J].肉品卫生,

1997(5):3-5.

[5]曹明富,杨贤强.茶多酚的亚急性毒理研究[J].茶叶,1992(1):17.

[6]CHEN LS,LEE MJ.Absorption,distribution,and elimination of the tea

polyphenols in rats[J].Drug Meta and disp,1997,25(9):1045.

[7]HSU S,LEW IS J B,BORKE J L,et al.Chemo preventive effects of green

tea polyphenols correlate with reversible induct ion of p57expression[J].

Anticancer Research,2001,21(6A):3742-3748.

[8]YANG C S,YANG G Y,LANDAU J M,et al.Tea and tea polyphenols

inhibit cell hyperproliferation.Lung tumor genesis,and tumor progression [J].Experimental Lung Research,1998,24(4):629-639.

[9]YANG G Y,LIAO J,KIM K,et al.Inhibit ion of growth and induct ion of

apoptosis in human cancer cell lines by tea polyphenols[J].

Carcinogenesis,1998,19(4):611-616.

[10]KWANG SIK SUH,SUK CHON,SEUNGJOON OH,et al.Prooxidative

effects of green tea polyphenol(-)-epigallocatethin-3-gallate on the HIT-T15pancreatic beta cell line[J].Cell Biology and Toxicology,2010,26(3):189-199.

[11]裴晨琛,程鹏.茶多酚的功效特性及其在军用食品中的开发应用[J].

中国食物与营养,2011(1):30-32.

[12]王佩华,赵大伟,迟彩霞,等.天然抗氧化剂茶多酚在食品贮藏保鲜

中的应用[J].贵州农业科学,2011(3):218-221.

[13]范红艳,王艳春,顾饶胜,等.茶多酚抗衰老的研究进展[J].中国老年

学杂志,2011(5):168-170.

[14]王聪慧,张星星,孙莉颖,等.茶多酚药理作用研究进展[J].中国药

业,2010(4):65-66.

[15]周向军,高义霞,谢天柱,等.天然抗氧化剂茶多酚的研究进展[J].资

源开发与市场,2010(11):76-78.

[16]应乐,张士康,王岳飞,等.茶多酚改性及其抗氧化性能研究进展[J].

茶叶科学,2010(增刊1):14-18.

武芳芹:茶多酚功能及其调节脂类物质代谢机理研究进展

287

物质代谢的调节

第九章物质代谢的联系与调节 一、A型题 1.变构效应剂与酶结合的部位是 A.活性中心的结合基团 B.活性中心催化基因 C. 酶的-SH基因 D. 酶的调节部位 E.酶的任何部位 2.下列哪一代谢途径不在胞浆中进行 A.糖酵解 B.磷酸戊糖途径 C.糖原合成与分解 D.脂肪酸β氧化 E.脂肪酸合成 3.长期饥饿时,大脑的能源主要是 A.葡萄糖 B.糖原 C.甘油 D. 酮体 E.氨基酸 4.最常见的化学修饰方式是 A.聚合与解聚 B.酶蛋白的合成与降解 C.磷酸化与去磷酸化 D.乙酰化与去乙酰化 E.甲基化与去甲基化 5.机体饥饿时,肝内哪条代谢途径加强 A.糖酵解途径 B.磷酸戊糖途径 C.糖原合成 D.糖异生 E.脂肪合成 6.有关酶的化学修饰,错误的是 A.一般都存在有活性(高活性)和无活性(低活性)两种形式 B.有活性和无活性两种形式在酶的作用下可以互相转变 C.化学修饰的方式主要是磷酸化和去磷酸化 D.一般不需要消耗能量 E.催化化学修饰的酶受激素调节 7.下列哪条途径是在胞液中进行的? A.丙酮酸羧化 B.三羧酸循环 C.氧化磷酸化 D.脂肪酸β-氧化 E.脂肪酸合成 8.糖异生、酮体生成及尿素合成都可发生于 A.心 B.肾 C.脑 D.肝 E.肌肉 9.关于糖、脂类和蛋白质三大代谢之间关系的叙述,正确的是 A.糖、脂肪与蛋白质都是供能物质,通常单纯以脂肪为主要供能物质是无害的 B.三羧酸循环是糖、脂肪和蛋白质的三者互变的枢纽,偏食哪种物质都可以 C.当糖供不足时,体内主要动员蛋白质供能 D.糖可以转变成脂肪,但有些不饱和脂肪酸无法合成 E.蛋白质可在体内完全转变成糖和脂肪

各种物质代谢关键酶及其调节

各种物质代谢关键酶及其调节 代谢途径关键酶抑制剂激活剂 糖酵解 己糖激酶G6P、长链脂酰CoA 胰岛素 磷酸果糖激酶-1ATP、柠檬酸ADP、AMP F-1,6-2P、F-2,6-2P 丙酮酸激酶ATP、丙氨酸、胰高血糖素F-1,6-2P 糖的有氧氧化(除糖酵解) 丙酮酸脱氢酶复合体ATP、乙酰CoA NADH、脂肪酸 AMP、CoA NAD+、Ca2+异柠檬酸脱氢酶ATP ADP、Ca2+α-酮戊二酸脱氢酶ATP、NADPH、琥珀酰CoA Ca2+ 磷酸戊糖途径葡糖-6-磷酸脱氢酶NADPH/NADP+比例↑NADPH/NADP+比例↓糖原合成糖原合酶糖原合酶b(无活性、磷酸化) 糖原合酶a(有活性、去磷酸化) 糖原分解糖原磷酸化酶糖原磷酸化酶b(去磷酸化) 糖原磷酸化酶a(磷酸化) 糖异生 葡糖-6-磷酸酶 果糖二磷酸酶-1 果糖-2,6-二磷酸ATP/AMP 丙酮酸羧化酶乙酰CoA 磷酸烯醇式丙酮酸羧激酶 胆固醇的合成羟甲基戊二单酰CoA还原酶 (HMG CoA还原酶) 甲羟戊酸、胆固醇、7β-羟胆固 醇、25β-羟胆固醇、胰高血糖素、 皮质醇 胰岛素、甲状腺素 甘油三酯的合成脂酰CoA转移酶 脂肪酸的合成乙酰CoA羧化酶脂酰CoA 胰高血糖素、肾上腺素、生长素柠檬酸、异柠檬酸、乙酰CoA 胰岛素 脂肪动员激素敏感性甘油三酯脂肪酶 (HSL) 胰岛素、前列腺素E2 Adr、NA、胰高血糖素、ACTH、 TRH

代谢途径关键酶抑制剂激活剂脂肪酸分解(β-氧化) 肉碱脂酰转移酶I 尿素的合成氨基甲酰磷酸合成酶I N-乙酰谷氨酸 精氨酸代琥珀酸合成酶 嘌呤核苷酸的从头合成磷酸核糖焦磷酸(PRPP)合成酶 PRPP酰胺转移酶 嘧啶核苷酸的从头合成氨基甲酰磷酸合成酶II(人类) 天冬氨酸氨基甲酰转移酶(细菌) 胆汁酸的合成胆固醇7α-羟化酶 DNA的合成DNA-pol(DNA聚合酶) RNA的合成RNA-pol(RNA聚合酶) 蛋白质的合成氨基酰tRNA合成酶 冈崎片段的处理是复制过程中的切除修复,所需的酶——RNA酶、DNA-pol I、DNA连接酶 由糖基化酶起始作用的损伤切除修复所需的酶——内切酶、外切酶、连接酶、聚合酶 紫外线所致损伤修复所需的酶——蛋白质UvrA、B、C,解螺旋酶、DNA-pol I、连接酶

生物化学-考试知识点_物质代谢调节 (2)

物质代谢调节 一级要求 单选题 1 体内物质代谢有几个不同的调节层次 A 1 B 2 C 3 D 4 E 5 C 2 调节物质代谢体内最基础的层次是 A 细胞水平 B 激素水平 器官水平 C 神经调节 D 整体水平 E A 3 4 糖原分解的限速酶是 C A 磷酸二酯酶 B 磷酸酶 C 磷酸化酶 D 葡萄糖激酶 E 丙酮酸激酶 C D 脂肪酸合成的限速酶是 A 甘油三酯脂肪酶 B D 甘油二酯脂肪酶 C E 甘油一酯脂肪酶 脂蛋白脂肪酶 乙酰辅酶 A 羧化酶 5 HMGCoA 合成酶是什么代谢途径的限速酶 A 胆固醇合成 B D 胆固醇分解 酮体分解 C E 胆固醇代谢转变 酮体生成 E B C 6 7 8 甘油三酯脂肪酶是甘油三酯什么代谢途径中的限速酶 A 合成 B E 分解 转变 C 储存 D 动员 磷酸果糖激酶是什么代谢途径中的别构调节酶 A 三羧酸循环 B E 糖异生 C 葡萄糖分解 D 糖原合成 糖原分解 三羧酸循环中的别构调节酶是 A 柠檬酸合成酶 B D α-酮戊二酸脱氢酶 C E 琥珀酸脱氢酶 苹果酸脱氢酶 延胡索酸酶 A 9 (糖原)磷酸化酶化学修饰激活的方式是 A C E -S-S-氧化生成 与 cAMP 结合 脱磷酸化 B D -SH 还原生成 磷酸化 D C 10胆固醇对肝中胆固醇合成代谢酶活性的调节方式是 A 变构 B E 化学修饰 酶的降解 C 阻遏 D 诱导 11激素必需与靶细胞的什么物质结合才能发挥调节作用 A 受体 B 配体 C 核 D 质膜 A B 12激素对代谢调节的机制或方式按其溶解度不同可分为几种 A 1 B 2 C 3 D 4 E 5 13通过第二信使进行调节是那种物质进行调节的主要方式 A 细胞水平 水溶性激素 B 脂溶性激素 C

物质代谢调节

物质代谢调节 一级要求单选题 1 体内物质代谢有几个不同的调节层次 A 1 B 2 C 3 D 4 E 5 C 2 调节物质代谢体内最基础的层次是 A 细胞水平 B 激素水平 C 神经调节 D 整体水平 E 器官水平 A 3 糖原分解的限速酶是 C A 磷酸二酯酶 B 磷酸酶 C 磷酸化酶 D 葡萄糖激酶 E 丙酮酸激酶 C 4 脂肪酸合成的限速酶是 A 甘油三酯脂肪酶 B 甘油二酯脂肪酶 C 甘油一酯脂肪酶 D 乙酰辅酶A羧化酶 E 脂蛋白脂肪酶 D 5 HMGCoA合成酶是什么代谢途径的限速酶 A 胆固醇合成 B 胆固醇分解 C 胆固醇代谢转变 D 酮体分解 E 酮体生成 E 6 甘油三酯脂肪酶是甘油三酯什么代谢途径中的限速酶 A 合成 B 分解 C 储存 D 动员 E 转变 B 7 磷酸果糖激酶是什么代谢途径中的别构调节酶 A 三羧酸循环 B 糖异生 C 葡萄糖分解 D 糖原合成 E 糖原分解 C 8 三羧酸循环中的别构调节酶是 A 柠檬酸合成酶 B α-酮戊二酸脱氢酶 C 琥珀酸脱氢酶 D 延胡索酸酶 E 苹果酸脱氢酶 A 9 (糖原)磷酸化酶化学修饰激活的方式是 A -S-S-氧化生成 B -SH还原生成 C 与cAMP结合 D 磷酸化 E 脱磷酸化 D 10 胆固醇对肝中胆固醇合成代谢酶活性的调节方式是 A 变构 B 化学修饰 C 阻遏 D 诱导 E 酶的降解 C 11 激素必需与靶细胞的什么物质结合才能发挥调节作用 A 受体 B 配体 C 核 D 质膜 A 12 激素对代谢调节的机制或方式按其溶解度不同可分为几种 A 1 B 2 C 3 D 4 E 5 B 13 通过第二信使进行调节是那种物质进行调节的主要方式 A 细胞水平 B 脂溶性激素 C 水溶性激素

LXRs在脂质代谢中的调节机制word资料6页

LXRs在脂质代谢中的调节机制 肝核受体(LXRs)是一种配体激活型转录因子,在脂代谢中是核心调控基因,作为氧化固醇激活的核受体,参与调节脂类代谢的多种基因的表达和促进胆固醇的外流,并通过抑制动脉壁许多炎症介质的产生,从而阻碍动脉粥样硬化(AS)的形成。 1 LXRs概述 LXR在胆固醇的代谢中起到重要的调节作用。胆固醇是机体内必不可少的营养成分,其代谢失衡会造成诸如高胆固醇血症、动脉粥样硬化等严重疾病。因此,胆固醇的代谢平衡受到多种因素的精密调节。胆固醇负荷也能诱导出LXR的靶基因,但是无论是胆固醇酯还是游离胆固醇都不是LXR 的配体,而必须转化为氧化型胆固醇才能发挥对LXR转录活性。非甾体类肝核受体(LXR)就是其重要调节因素之一。LXR是一种氧化固醇激活的核受体,也是多种细胞内胆固醇含量的感受器。LXR与靶基因上游的LXR应答元件(LXRE)结合,调节特定基因的表达。 1.1核受体结构和功能概述核受体是编码转录因子的一个超基因家族,包括48个成员,分为甾体类和非甾体类。前者有12种,包括雌激素和雄激素受体,以同源二聚体的形式与靶基因结合发挥作用。后者有36种,包括肝x受体(LXRs)、过氧化物酶体增殖物激活受体(PPARs)等,主要通过与类视黄醇X受体(RXRs)形成异源二聚体调控靶基因的转录。核受体典型的核受体分子结构由A/B、C、D、E和F(从N末端到C末端)等5个区域组成:N末端结构域(A/B结构域)为转录激活区,包含至少一种本身有活性的配体非依赖性的激活功能区(AF-1),是整个蛋白可变

性最高的部分,其长度从50个到500个氨基酸不等;C结构域为DNA结合区(DBD区),是最保守的区域,DBD区包含二个高度保守的锌指结构,锌指Ⅰ和锌指Ⅱ,锌指Ⅰ柄部三个不连续的氨基酸(p盒)决定了受体作用的特异性;D结构域是铰链区,起连接DBD区和配体结合区(LBD区)的作用;核定位信号NLS位于C和D之间;E结构域,即配体结合区(LBD 区),是最大的结构域,其保守性仅次于DBD区,其保守性可充分保证选择型配体的识别,E区也包含配体依赖型的转录激活域AF-2[1]。DBD和靶基因启动子上的激素反应元件(HRE)结合后发挥核受体对靶基因的转录调节作用。HRE通常由6个单核苷酸二次重复序列组成,中间由1~6个数目不等的单核苷酸间隔,有3种重复形式,分别为直接重复形式(DR)、内翻重复形式(IR)和外翻重复形式(ER)[2]。经典类甾体核受体的反应元件序列为ACAACA,而雌激素和非甾体类核受体反应元件序列为AGGTCA。当配体和LBD结合后核受体结构发生改变,激活蛋白取代抑制蛋白,核受体发挥转录调节作用。 1.2 LXR亚家族及其表达组织 LXR亚家族包括2个亚型:LXRα(NR1H3)和LXRβ(NR1H2),二者在DNA结合域和配体结合域大约有77%的氨基酸同源[3]。LXRα主要在与脂代谢有关的组织表达,如肝脏、小肠、肾脏、脾脏、脂肪组织、巨噬细胞等。LXRα有LXRα1、LXRα2、LX Rα3三种异构体,LXRα2比LXRα1少氨基端的45个氨基酸,表现出对LXRα1转录活性的抑制,LXRα3则是缺失50个氨基酸的配体结合结构域。LXRα2、LXRα3的表达水平均很低,LXRα2主要在睾丸中表达水平比较高。LXRβ则广泛存在于各种组织中,可能与细胞的增殖,炎症细胞的致炎效应等有

物质代谢的联系与调节

第9章物质代谢的联系与调节 一、名词解释 1.关键酶(key enzymes) 2.变构调节(allosteric regulation) 3.酶的共价修饰(enzyme covalent modification) 二、选择题 A1型题 1.关于机体物质代谢特点的叙述,错误的是() A.内源或外源的代谢物共同参与代谢 B.各组织器官有不同的功能及代谢特点 C.各种合成代谢所需还原当量是NADH D.物质代谢不断调节以适应外界环境 E.各种物质代谢间相互联系成整体 2.在肝细胞有充足ATP供应时,下列哪项叙述是错误的()A.三羧酸循环减少 B.呼吸链氧化减弱 C.抑制丙酮酸羧化酶 D.脂酸合成加强 E.丙酮酸激酶活性下降 3.作为糖与脂肪代谢交叉点的物质是() A.α-酮戊二酸 B.3-磷酸甘油醛 C.草酰乙酸 D.磷酸二羟丙酮 E.6-磷酸葡萄糖 4.关于肝脏代谢的特点,错误的是() A.将糖原最终分解成葡萄糖 B.是体内唯一进行糖异生的器官 C.能将氨基酸脱下的氨合成尿素 D.是脂酸氧化的重要部位 E.肝和肌肉可进行糖原的合成 5.关于各器官代谢特点的叙述,错误的是() A.肝脏是糖异生的重要部位 B.饥饿时大脑也只以葡萄糖供能 C.心耗用的能源物质依次为酮体、乳酸、自由脂肪酸及葡萄糖D.红细胞只以糖酵解产生ATP E.肝是机体物质代谢的枢纽 6.不能在胞液进行的代谢途径是() A.脂酸合成 B.尿苷酸的合成 C.肝糖原合成 D.脂酸β-氧化 E.磷酸戊糖途径 7.只能在线粒体进行的代谢途径是()

A.磷酸戊糖途径 B.糖原合成分解 C.酮体合成途径 D.糖酵解途径 E.脂酸合成 8.关键酶调节的特点是() A.关键酶催化途径中的可逆反应 B.酶调节不影响整个体系代谢速度 C.其催化反应活性在酶体系中较高 D.都是催化代谢途径中间反应的酶 E.可受底物及多种代谢物的调节 9.关于酶别构调节的叙述,错误的是() A.别构激活是最常见的别构调节 B.别构酶多为几个亚基的寡聚酶 C.别构效应剂可结合酶的调节部位 D.别构调节属于酶活性快速调节 E.别构调节引起酶蛋白构象改变 10.关于酶的共价修饰调节,错误的是() A.具有放大效应 B.涉及共价键的变化 C.属于酶活性迟缓调节 D.催化效率常较变构调节高 E.以磷酸化与脱磷酸化最为常见 11.关于酶含量调节的叙述,错误的是() A.属于酶活性的迟缓调节 B.属于细胞水平的代谢调节 C.产物常可诱导酶的合成 D.底物常可诱导酶的合成 E.激素或药物可诱导酶的合成 12.下列哪种激素属于胞内受体激素() A.胰岛素 B.促甲状腺素 C.生长激素 D.甲状腺素 E.肾上腺素 13.短期饥饿时机体代谢的改变,描述错误的是()A.肌组织蛋白分解增加 B.肝脏酮体生成增加 C.糖异生途径加强 D.组织利用葡萄糖增多 E.脂肪动员增加 14.在应激状态下血中成分的改变,描述错误的是()A.脂肪动员加强 B.肾上腺素水平增加

脂质代谢在阿尔茨海默病发病机制中的研究进展

[2][3][4][5][6][7][8][9]系统非霍奇金淋巴瘤临床分析[J].重庆医学,2007,36(20):2059. Looney刚,An01ikJH,CampbellD,eta1.Bcelldepletionasanoveltreatmentforsystemiclupuserythematosus:a phaseI/Ⅱdose-escalationtrialofrituximab[J].Arthri—tisRheum,2004.50(8):2580. I,eandroMJ,CambridgeG,EdwardsJC,eta1.Bcellde—plctioninthetreatmentofpatientswithsystemiclupuserythematosus:alongitudinalanalysisof24patients[J].Rheumatology,2005,44(12):1542. TokunagaM,SaitoK,KawabataD,eta1.Efficacyofrit—uximah(anti—CD20)forrefractorysystemiclupuserythe—matosusjnvolvingthecentralnervoussystem[J].AnnRheumDis,2007,66(4):470. SfikakisPP,BoletisJN,LionakiS,eta1.RemissionofproliferativelupusnephritisfollowingBcelldepletiontherapyisprecededbydown—regulationoftheTcellcos—timulatorym01eculeCD40ligand:anopenlabeltrial[J].ArthritisRheum,2005,52:501. I。eandroMJ,EdwardsJC,CambridgeG,etaI.AnopenstudyofBlymphocytedepletioninsystemiclupuserythe—matosus[J].ArthritisRheum,2002,46:2673. I。ooneyRJ。AnolikJH,CampbellD,eta1.BcelIdepletionasanoveltreatmentforsystemiclupuserythematosus:a phaseI/Ⅱdose—escalationtrialofrituximab[J].Arthri—tisRheum,2004,50:2580. BoumDasDT,FurieR,ManziS,eta1.Ashortcourseof BG9588(anti—CD40Iigandantibody)improvesseroJogicactivityanddecreaseshematuriainpatientswithprolifer—ativelupusglomerulonephritis[J].ArthritisRheum,2003,48:719. KalunianKC,DavisJCJr,MerrillJT,eta1.TreatmentofsystemiclupuserythematosusbyinhibitionofTcellcos—timulationwithanti—CDl54:arandomized,double-blind,placebo-controlled trial[J].ArthritisRheum,2002,46 ?综述? 脂质代谢在阿尔茨 (12):3251. [1o]UsmaniN,GoodfieldM.Efalizumabinthetreatmentofdiscoidlupu5erythematosus[J].ArchDermatol,2007, 143(7):873. [11]Alarcon—segoviaD,TumlinJA,FurieRA,eta1.L'IP394forthepreventionofrenalflareinpatientswithsystemic lupuserythematosus:resultsfromarandomized,double- blind,placebo—controlledstudy[J].ArthritisRheum, 2003,48:442. ’ [12]PonticelIic.Newtherapiesforlupusnephritis[J].ClinJAmSocNephrol,2006,1(4):863. [13]AringerM,SmolenJS.TumournecrosisfactorandotherproinflammatorycytokjnesinsystemicJupuserythemato— sus:arationale fortherapeuticintervention[J].Lupus,2004,13:344. [14]AringerM,SteinerG,GraningerwB,eta1.Effectsofshort—terminfliximabtherapyonautoantibodiesinsys— temiclupuserythematosus[J].ArthritisRheum,2007,56 (1):274. [15]De-BandtM,SibiliaJ,Le-LoetX,etaI.Systemiclupuser—ythematosusinducedbyanti—tumournecrosisfactoralpha therapy:aFrenchnationalsurvey[J].ArthritisResTher, 2005。7(3):R545. [16]LuisL,YvonneRP,CarlosGP,eta1.Clinicalandbiologiceffectsofanti—IL一10monoclonalantibodyadministration inSLE[J].Arth“tisRheum,2000,43:1790. [17]stohlw.Blysfulnessdoesnotequalblissfulnessins,s—temiclupuserythematosus:atherapeuticroIefbrBLyS antagonists[J].CurrDirAutoimmun,2005,8:289. [18]DiamantiAP,RosadoMM,CarsettiR,eta1.BcellsinSLE:differentbiologicaldrugsfordifferentpathogenic mechanisms[J].AutoimmunRev,2007,7(2):143. (收稿Fj期:z008一08—18) 海默病发病机制中的研究进展 朱洪山综述,晏勇审校 (重庆医科大学附属第一医院神经内科400016) 关键词:阿尔茨海默病;脂质代谢;口一淀粉样蛋白;载脂蛋白;tau蛋白 中图分类号:R745.1文献标识码:A文章编号:167卜8348(2009)03—0347—04 阿尔茨海默病(Alzheimer7sdisease,AD)是由多种病因引起的神经系统进行性退行性疾病.临床主要表现为记忆和认知功能损害、行为异常和人格改变等。主要病理学特征为老年斑(SP)、神经纤维缠结(NFT)和神经元缺失。目前AD的发病机制仍未十分明确。围绕AD特征性病理改变进行的多种研究发现高龄、基因突变、胆同醇代谢异常、糖代谢异常…、氧化应激、炎症反应、胶质细胞激活、雌激素缺失、谷氨酸、单胺能、神经肽能神经递质功能缺损等多个环节均参与了AD的发病。近年来的研究提示脂质代谢与p淀粉样蛋白(amyloid-ppro—tein,A口)的形成与沉积和tau蛋白异常磷酸化关系密切,本文对其研究进展综述如下。 l脂质代谢 大脑中胆固醇含量约占人体总鼍的25%,是人体内胆固醇含量最高的器官。脑内胆固醇主要以非酯化游离状态存在于髓鞘、星形胶质细胞及神经细胞膜。主要参与髓鞘的构成,具有调节细胞膜的通透性、流动性以及物质转运等功能。由于髓鞘更新率很低,因此这些胆固醇基本上是固定不变的。有少量胆固醇存在于神经元、神经胶质细胞的生物膜和细胞外脂蛋白 万方数据

【自然基金 标书 实例】脂类代谢素乱导致脂肪肝-973项目

项目名称:脂代谢紊乱导致脂肪肝及高脂血症发生 的机制 首席科学家: 起止年限:2012.1-2016.8 依托部门:教育部

一、关键科学问题及研究内容 根据我国高脂血症和 NAFLD 的特点,我们围绕高脂血症和 NAFLD 的诱因、重要发病环节以及生物标记物的发现这几个方面,凝炼出 6 个有特色、有创新性的科学问题: ●NAFLD 和高脂血症发生、发展及转归的易感基因和表观遗传特征? ●我国居民膳食营养和生活方式(运动)与NAFLD 和高脂血症发生、发展的 关系? ●代谢性炎症在NAFLD 和血脂紊乱发生、发展中的作用? ●肝脏营养感应调控及脂代谢稳态失衡与NAFLD 发生和发展的关系? ●外周脂质向肝脏异位以及肝细胞内脂肪重分布在NAFLD 发生、发展中的作 用? ●NAFLD 和高脂血症不同疾病阶段及转归的生物标记物是什么? 主要研究内容包括: 1.脂肪肝和高脂血症的遗传学研究:易感基因及表观遗传 利用我们项目组人群队列及病人活检样本资源、部分中国人群的SNPs数据和国内外脂代谢通路相关基因的研究成果,重点研究:1)NAFLD和高脂血症的易感基因以及表观遗传因素:利用代谢基因数据库(WIT)和本项目组研究获得的SNPs数据,通过外显子深度测序筛查进一步确定中国汉族人群NAFLD和高脂血症的易感基因位点,并在长期大样本人群队列研究和肝组织活检标本的基础上验证其与不同阶段NAFLD(SS和NASH)以及不同预后转归(肝硬化、糖尿病、心脑血管疾病、恶性肿瘤)的相关性;在NAFLD动物模型的不同阶段进行全基因组启动子甲基化位点扫描、microRNA表达谱分析;并利用上述平台进行高脂血症和/或NAFLD患者肝组织活检样本检测,从而识别并明确与高脂血症和NAFLD相关的表观遗传学因素;我们也将特别关注两个极端人群,即“吃水也胖”和高脂饮食而不发生脂肪肝和高脂血症人群,并通过上述手段研究其易感/保护

LXRs在脂质代谢中的调节机制

LXRs在脂质代谢中的调节机制 LXRs是在脂代谢中是核心调控基因,参与调节脂类代谢的多种基因表达和促进胆固醇的外流,與胆固醇的内稳态密切相关;LXRs还有抑制炎症的作用。因此,LXR有抗动脉粥样硬化的作用。 标签:LXRs;动脉粥样硬化 肝核受体(LXRs)是一种配体激活型转录因子,在脂代谢中是核心调控基因,作为氧化固醇激活的核受体,参与调节脂类代谢的多种基因的表达和促进胆固醇的外流,并通过抑制动脉壁许多炎症介质的产生,从而阻碍动脉粥样硬化(AS)的形成。 1 LXRs概述 LXR在胆固醇的代谢中起到重要的调节作用。胆固醇是机体内必不可少的营养成分,其代谢失衡会造成诸如高胆固醇血症、动脉粥样硬化等严重疾病。因此,胆固醇的代谢平衡受到多种因素的精密调节。胆固醇负荷也能诱导出LXR 的靶基因,但是无论是胆固醇酯还是游离胆固醇都不是LXR的配体,而必须转化为氧化型胆固醇才能发挥对LXR转录活性。非甾体类肝核受体(LXR)就是其重要调节因素之一。LXR是一种氧化固醇激活的核受体,也是多种细胞内胆固醇含量的感受器。LXR与靶基因上游的LXR应答元件(LXRE)结合,调节特定基因的表达。 1.1核受体结构和功能概述核受体是编码转录因子的一个超基因家族,包括48个成员,分为甾体类和非甾体类。前者有12种,包括雌激素和雄激素受体,以同源二聚体的形式与靶基因结合发挥作用。后者有36种,包括肝x受体(LXRs)、过氧化物酶体增殖物激活受体(PPARs)等,主要通过与类视黄醇X 受体(RXRs)形成异源二聚体调控靶基因的转录。核受体典型的核受体分子结构由A/B、C、D、E和F(从N末端到C末端)等5个区域组成:N末端结构域(A/B结构域)为转录激活区,包含至少一种本身有活性的配体非依赖性的激活功能区(AF-1),是整个蛋白可变性最高的部分,其长度从50个到500个氨基酸不等;C结构域为DNA结合区(DBD区),是最保守的区域,DBD区包含二个高度保守的锌指结构,锌指Ⅰ和锌指Ⅱ,锌指Ⅰ柄部三个不连续的氨基酸(p 盒)决定了受体作用的特异性;D结构域是铰链区,起连接DBD区和配体结合区(LBD区)的作用;核定位信号NLS位于C和D之间;E结构域,即配体结合区(LBD区),是最大的结构域,其保守性仅次于DBD区,其保守性可充分保证选择型配体的识别,E区也包含配体依赖型的转录激活域AF-2[1]。DBD和靶基因启动子上的激素反应元件(HRE)结合后发挥核受体对靶基因的转录调节作用。HRE通常由6个单核苷酸二次重复序列组成,中间由1~6个数目不等的单核苷酸间隔,有3种重复形式,分别为直接重复形式(DR)、内翻重复形式(IR)和外翻重复形式(ER)[2]。经典类甾体核受体的反应元件序列为ACAACA,而雌激素和非甾体类核受体反应元件序列为AGGTCA。当配体和LBD结合后核受

第十一章 物质代谢的相互联系和代谢调节(推荐文档)

第十一章物质代谢的相互联系和代谢调节 一、选择题 1、糖酵解中,下列()催化的反应不是限速反应。 A、丙酮酸激酶 B、磷酸果糖激酶 C、己糖激酶 D、磷酸丙糖异构酶 2、磷酸化酶通过接受或脱去磷酸基而调节活性,因此它属于()。 A、别(变)构调节酶 B、共价调节酶 C、诱导酶 D、同工酶 3、下列与能量代谢有关的途径不在线粒体内进行的是()。 A、三羧酸循环 B、脂肪酸β氧化 C、氧化磷酸化 D、糖酵解作用 4、关于共价修饰调节酶,下列()说法是错误的。 A、这类酶一般存在活性和无活性两种形式, B、酶的这两种形式通过酶促的共价修饰相互转变 C、伴有级联放大作用 D、是高等生物独有的代谢调节方式 5、阻遏蛋白结合的位点是()。 A、调节基因 B、启动因子 C、操纵基因 D、结构基因 6、下面哪一项代谢是在细胞质内进行的()。 A、脂肪酸的β-氧化 B、氧化磷酸化 C、脂肪酸的合成 D、TCA 7、在乳糖操纵子模型中,操纵基因专门控制()是否转录与翻译。 A、结构基因 B、调节基因 C、起动因子 D、阻遏蛋白 8、有关乳糖操纵子调控系统的论述()是错误的。 A、大肠杆菌乳糖操纵子模型也是真核细胞基因表达调控的形式 B、乳糖操纵子由三个结构基因及其上游的启动子和操纵基因组成 C、乳糖操纵子有负调节系统和正调节系统 D、乳糖操纵子负调控系统的诱导物是乳糖 9、下列有关阻遏物的论述()是正确的。 A、阻遏物是代谢的终产物 B、阻遏物是阻遏基因的产物 C、阻遏物与启动子部分序列结合而阻碍基因转录 D、阻遏物与RNA聚合酶结合而阻碍基因转录 10、脊椎动物肌肉组织中能储存高能磷酸键的是()。 A、ATP B、磷酸肌酸 C、ADP D、磷酸精氨酸 11、下列不属于高能化合物的是()。 A、磷酸肌酸 B、乙酰辅酶A C、磷酸烯醇式丙酮酸 D、3-磷酸甘油酸 12、下面柠檬酸循环中不以NAD+为辅酶的酶是()。 A、异柠檬酸脱氢酶 B、α-酮戊二酸脱氢酶 C、苹果酸脱氢酶 D、琥珀酸脱氢酶

物质代谢的联系与调节

第九章物质代谢的联系与调节单选题 1调节物质代谢体内最基础的层次是 A 细胞水平 B 激素水平 C 神经调节 D 整体水平 E 器官水平 2激素必需与靶细胞的什么物质结合才能发挥调节作用 A 受体 B 配体 C 核小体 D 质膜 E 线粒体 3通过第二信使进行调节是那种物质进行调节的主要方式 A 细胞水平 B 脂溶性激素 C 水溶性激素 D 神经递质 E 整体水平 4饥饿时机体胰岛素的分泌是 A 骤然增加 B 缓慢增加 C 骤然减少 D 缓慢减少 E 分泌量基本不变 5肝脏平时与饥饿时的主要供能物质是 A 血糖 B 脂肪酸 C 酮体 D 氨基酸 E 核苷酸 6应急时需要调动的是机体哪一水平的调节 A 细胞水平 B 激素水平 C 神经水平 D 整体水平 E 局部水平 7代谢调节的基础是通过什么发挥作用 A 神经 B 内分泌腺 C 激素 D 核酸 E 酶 8神经系统通过那一部分联系激素进行机体的整体调节 A 大脑皮层 B 延髓 C 下丘脑 D 交感神经 E 迷走神经 9限速酶的米氏常数在多酶体系的众多酶中 A 最大 B 较大 C 适中 D 最小 E 较小 10快速调节是指酶的 A 变构 B 化学修饰 C 酶合成 D 酶降解 E 酶分布

名词解释 1细胞水平调节 2激素水平调节 3整体水平调节 4关键酶 5限速酶 6整体水平调节 7第二信使 8别构酶 9别构激活剂 10蛋白激酶 问答题 1为什么说细胞水平的调节是机体代谢调节的基础?2机体代谢调节方式有多种,相互之间如何联系?3试描述机体细胞水平的主要调节方式。 4化学修饰调节的主要方式和生理意义是什么? 5试比较酶别构和化学修饰调节的异同点。 6酶含量如何进行细胞水平的调节? 7试分析饥饿时机体进行整体水平调节的情况。 8平时与饥饿时机体内能量主要来源有何不同? 9酶在细胞内的隔离分布有什么重要意义? 10糖尿病时代谢调节紊乱表现在哪里?

物质代谢与调节

第二部分物质代谢与调节(2) 氨基酸、核苷酸代谢与代谢的联系及调节 第七章氨基酸代谢 要求: 掌握必需氨基酸的概念、种类及氮平衡概念;掌握体内氨基酸代谢的转氨基作用、氧化脱氨基作用及联合脱氨基作用;掌握体内氨的来源、转运和去路;掌握尿素的合成部位、主要过程及限速酶;掌握谷氨酰胺的生成与分解。 熟悉一碳单位的概念、来源与功能;熟悉四氢叶酸与一碳单位代谢的关系;蛋氨酸与转甲基作用;苯丙氨酸、酪氨酸代谢概况。 提要: 氨基酸是蛋白质的基本组成单位。 血液氨基酸的来源和去路保持动态平衡,它有三个来源:①食物蛋白质经过消化吸收进入体内的氨基酸;②组织蛋白质分解释放的氨基酸;③体内代谢过程中合成的某些氨基酸。其中以食物蛋白质为主要来源。有三条去路:①主要是合成组织蛋白质;②转变为有特殊生理功能的各种含氮化合物,如核酸、某些激素和神经递质等;③氧化分解,释放能量。 组成蛋白质的氨基酸有廿种,其中八种是人体需要而不能自行合成,必须由食物供给的,称为必需氨基酸。它们为苏氨酸、色氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸、苯丙氨酸及蛋氨酸。其余十二种氨基酸在体内可以合成,称为非必需氨基酸。 蛋白质具有高度种属特异性,进入机体前必须先水解成氨基酸,然后再被吸收入体内,否则会产生过敏。蛋白质的消化作用主要在小肠中进行,由内肽酶的胰蛋白酶、糜蛋白酶及弹性蛋白酶,外肽酶的羧基肽酶及氨基肽酶协同作用,水解成氨基酸,二肽即可被吸收。 未被消化吸收的氨基酸及蛋白质在肠道细菌的作用下,生成许多对人体有害的物质(吲哚、酚类、胺类和氨等),此过程称蛋白质的腐败作用。这些物质进入体内后,经肝脏的生物转化作用转变成易溶于水的无害物质随尿排出。 参加体内代谢的氨基酸,除经食物消化吸收来的以外,还来自组织蛋白质的分解和自身合成。这些氨基酸混为一体,构成氨基酸代谢库,其浓度较恒定,它反映了氨基酸代谢保持动态平衡的情况。 氨基酸的一般分解代谢包括脱氨基作用和脱羧基作用。人与动物体内氨基酸脱氨基的主要方式有:氧化脱氨基作用、转氨基作用和联合脱氨基作用等。 催化氨基酸氧化脱氨基的主要酶为L-谷氨酸脱氢酶(辅酶是NAD+或NADP+)。

生化第七章脂质代谢

第五章脂类代谢本章要点 下图概括了本章的基本内容 部分,希望同学们自己总结归纳。标注部分为重点强调的概念.

一、脂质的构成、功能及分析 (一)、脂质是种类繁多、结构复杂的一类大分子物质 1.甘油三酯是甘油的脂肪酸酯 ①甘油三酯 ②甘油二酯 ③甘油一酯 2.脂肪酸是脂肪烃的羧酸 ①饱和脂肪酸:不含双键的脂肪酸 ②不饱和脂肪酸 a.单不饱和脂肪酸 b.多不饱和脂肪酸 △根据双键的位置,多不饱和脂肪酸分属于w-3、w-6、w-7、w-9四簇。高等动物体内的多不饱和脂肪酸由相应的母体脂肪酸衍生而来,但w-3、w-6、w-7、w-9簇多不饱和脂肪酸不能在体内相互转化。 3.磷脂可分为甘油磷脂和鞘磷脂两类 4.胆固醇以环戊烷多氢菲为基本结构 (二)、脂质具有多种复杂的生物学功能 1.甘油三酯是机体重要的能源物质 ①甘油三酯氧化分解产能最多 ②甘油三酯疏水,储存时不带水分子,占体积小 ③机体有专门的储存组织——脂肪组织。甘油三酯是脂肪酸的重要储存库,甘油二酯是重要的细胞信号分子。 2.脂肪酸具有多种重要生理功能 ①提供必需脂肪酸 a.必需脂肪酸:亚油酸、α-亚麻酸、(花生四烯酸) b.花生四烯酸虽然在人体以亚油酸为原料合成,但消耗必需脂肪酸,一般也归为必需脂肪酸 ②合成不饱和脂肪酸衍生物(如前列腺素、白三烯等) 3.磷脂是重要的结构成分和信号分子 ①磷脂是构成生物膜的重要成分 ②磷脂酰肌醇是第二信使的前体 4.胆固醇是生物膜的重要成分和具有重要生物学功能固醇类物质的前体 ①胆固醇是细胞膜的基本结构成分 ②胆固醇可转化为一些具有重要生理学功能的固醇化合物 (三)、脂质组分的复杂性决定了直至分析技术的复杂性 1.用有机溶剂提取脂质 2.用层析分离脂质 3.根据分析目的和脂质性质选择分析方法 4.复杂的脂质分析还需要特殊的处理 二、脂质的消化和吸收 (一)、胆汁酸盐协助脂质消化酶消化脂质

第十一章 物质代谢的相互联系及其调节(编写)

第十一章物质代谢的相互联系及其调节 第一节物质代谢的相互联系 一、糖、脂、蛋白质在能量代谢上的相互联系 二、糖、脂、蛋白质及核酸代谢之间的相互联系 第二节物质代谢的调节 一、细胞水平的代谢调节 二、激素水平的代谢调节 三、整体水平的代谢调节

第十一章物质代谢的相互联系及其调节 物质代谢、能量代谢与代谢调节是生命存在的三大要素。生命体都是由糖类、脂类、蛋白质、核酸四大类基本物质和一些小分子物质构成的。虽然这些物质化学性质不同,功能各异,但它们在生物体内的代谢过程并不是彼此孤立、互不影响的,而是互相联系、互相制约、彼此交织在一起的。机体代谢之所以能够顺利进行,生命之所以能够健康延续,并能适应千变万化的体内、外环境,除了具备完整的糖、脂类、蛋白质与氨基酸、核苷酸与核酸代谢和与之偶联的能量代谢以外,机体还存在着复杂完善的代谢调节网络,以保证各种代谢井然有序、有条不紊地进行。 第一节物质代谢的相互联系 一、糖、脂、蛋白质在能量代谢上的相互联系 糖类、脂类及蛋白质都是能源物质均可在体内氧化供能。尽管三大营养物质在体内氧化分解的代谢途径各不相同,但乙酰CoA是它们代谢的中间产物,三羧酸循环和氧化磷酸化是它们代谢的共同途径,而且都能生成可利用的化学能ATP。从能量供给的角度来看,三大营养物质的利用可相互替代。一般情况下,机体利用能源物质的次序是糖(或糖原)、脂肪和蛋白质(主要为肌肉蛋白),糖是机体主要供能物质(占总热量50%~70%),脂肪是机体储能的主要形式(肥胖者可多达30%~40%)。机体以糖、脂供能为主,能节约蛋白质的消耗,因为蛋白质是组织细胞的重要结构成分。由于糖、脂、蛋白质分解代谢有共同的代谢途径限制了进入该代谢途径的代谢物的总量,因而各营养物质的氧化分解又相互制约,并根据机体的不同状态来调整各营养物质氧化分解的代谢速度以适应机体的需要。若任一种供能物质的分解代谢增强,通常能代谢调节抑制和节约其它供能物质的降解,如在正常情况下,机体主要依赖葡萄糖氧化供能,而脂肪动员及蛋白质分解往往受到抑制;在饥饿状态时,由于糖供应不足,则需动员脂肪或动用蛋白质而获得能量。 二、糖、脂、蛋白质及核酸代谢之间的相互联系 体内糖、脂、蛋白质及核酸的代谢是相互影响,相互转化的,其中三羧酸循环不仅是三大营养物质代谢的共同途径,也是三大营养物质相互联系、相互转变的枢纽。同时,一种代谢途径的改变必然影响其他代谢途径的相应变化,当糖代谢失调时会立即影响到蛋白质代谢和脂类代谢。 (一)糖代谢与脂代谢的相互联系 糖和脂类都是以碳氢元素为主的化合物,它们在代谢关系上十分密切。一般来说,机体摄入糖增多而超过体内能量的消耗时,除合成糖原储存在肝和肌外,可大量转变为脂肪贮存

09 生物化学习题与解析物质代谢的联系与调节

物质代谢的联系与调节 一、选择题 (一) A 型题 1 .关于三大营养物质代谢相互联系错误的是 : A .乙酰辅酶 A 是共同中间代谢物 B . TCA 是氧化分解成 H 2 O 和 CO 2 的必经之路 C .糖可以转变为脂肪 D .脂肪可以转变为糖 E .蛋白质可以代替糖和脂肪供能 2 .胞浆中不能进行的反应过程是 A .糖原合成和分解 B .磷酸戊糖途径 C .脂肪酸的β - 氧化 D .脂肪酸的合成 E .糖酵解途径 3 .关于机体物质代谢特点的叙述,错误的是 A .内源或外源代谢物共同参与物质代谢 B .物质代谢不断调节以适应外界环境 C .合成代谢与分解代谢相互协调而统一 D .各组织器官有不同的功能及代谢特点 E .各种合成代谢所需还原当量是 NADH 4 .在胞质内进行的代谢途径有 A .三羧酸循环 B .脂肪酸合成 C .丙酮酸羧化 D .氧化磷酸化 E .脂肪酸的β - 氧化 5 .关于糖、脂类代谢中间联系的叙述,错误的是 A .糖、脂肪分解都生成乙酰辅酶 A B .摄入的过多脂肪可转化为糖原储存 C .脂肪氧化增加可减少糖类的氧化消耗 D .糖、脂肪不能转化成蛋白质 E .糖和脂肪是正常体内重要能源物质 6 .关于肝脏代谢的特点的叙述,错误的是 A .能将氨基酸脱下的氨合成尿素 B .将糖原最终分解成葡萄糖 C .糖原合成及储存数量最多 D .是脂肪酸氧化的重要部位 E .是体内唯一进行糖异生的器官 7 .乙酰辅酶 A 羧化酶的变构激活剂是 A .软脂酰辅酶 A 及其他长链脂酰辅酶 A B .乙酰辅酶 A C .柠檬酸及异柠檬酸 D .丙二酰辅酶 A E .酮体 8 .在生理情况下几乎以葡萄糖为唯一能源,但长期饥饿时则主要以酮体供能的组织是 A .脑 B .红细胞 C .肝脏 D .肌肉 E .肾脏 9 .关于变构调节叙述有误的是 A .变构效应剂与酶共价结合 B .变构效应剂与酶活性中心外特定部位结合 C .代谢终产物往往是关键酶的变构抑制剂 D .变构调节属细胞水平快速调节 E .变构调节机制是变构效应剂引起酶分子构象发生改变 10 .关于酶化学修饰调节叙述不正确的是 A .酶一般都有低 ( 无 ) 活性或高 ( 有 ) 活性两种形式 B .就是指磷酸化或脱磷酸 C .酶的这两种活性形式需不同酶催化才能互变 D .一般有级联放大效应 E .催化上述互变反应的酶本身还受激素等因素的调节

第十五章 物质代谢的相互联系和调节控制

第十五章物质代谢的相互联系和调节控制 一:填空题 1.生物体内的代谢调节在三种不同的水平上进行,即________________、________________和________________。 2.代谢途径的终产物浓度可以控制自身形成的速度,这种现象被称为________________。 3.连锁代谢反应中的一个酶被激活后,连续地发生其它酶被激活,导致原始信使的放大。这样的连锁代谢反应系统,称为________________系统。 4.酶对细胞代谢的调节是最基本的代谢调节,主要有二种方式:________________和________________。 5.高等生物体内,除了酶对代谢的调节外,还有________________和________________对代谢的调节。 6.生物合成所需的基本要素是________________、________________和小分子前体。 7.不同生物大分子的分解代谢均可大致分为三个阶段:将大分子降解为较小分子的________________;将不同的小分子转化为共同的降解产物________________;经________________完全氧化。 8.构通糖、脂代谢的关键化合物是________________。 9.不同代谢途径可以通过交叉点代谢中间物进行转化,在糖、脂、蛋白质及核酸的相互转化过程中三个最关键的代谢中间物是________________、________________和________________。 10.真核生物DNA的复制受到三个水平的调控:________________、________________和________________的调控。 11.遗传信息的表达受到严格的调控,包括________________即按一定的时间顺序发生变化,和________________即随细胞内外环境的变化而改变。 12.1961年,法国生物学家Monod和Jacob提出了关于原核生物基因结构及表达调控的________________学说。 13.对一个特定基因而言,其内含子在基因表达过程中需要被切除,除了RNA剪接(拼接)方式外,近年来还发现有________________。 14.谷氨酰胺合成酶的活性可被________________和________________共价修饰调节,这是存在于细菌中的一种共价修饰调节酶活性的方式。 15.真核生物产生的分泌蛋白N端有一段________________氨基酸构成的信号肽,可以引导蛋白质穿过内质网膜,信号肽插入膜并随后被切除是与翻译过程同时进行的,称为________________插入;真核细胞内的大部分线粒体蛋白质、叶绿体蛋白质等,是在合成并释放后再进行跨膜运送的,称为________________插入。 16.在哺乳动物细胞中,一种特殊的蛋白质________________与特定蛋白质的结合可以使后者带上选择性降解的标记。 二:是非题 1.[ ]在动物体内蛋白质可以转变为脂肪,但不能转变为糖。 2.[ ]多数肿瘤细胞糖代谢失调表现为糖酵解升高。 3.[ ]代谢中代谢物浓度对代谢的调节强于酶活性对代谢的调节。 4.[ ]真核生物DNA复制起点的序列专一性要低于细菌和病毒。 5.[ ]基因表达的调控关键在于转录水平的调控。 6.[ ]乳糖可以诱导乳糖操纵子的表达,所以乳糖对乳糖操纵子的调控属于正调控系统。 7.[ ]蛋白质的磷酸化和去磷酸化是可逆反应,该可逆反应是由同一种酶催化完成的。 8.[ ]细胞内许多代谢反应受到能量状态的调节。 9.[ ]真核生物基因表达的调控单位是操纵子。 10.[ ]酶的磷酸化和脱磷酸化作用主要在高等动物细胞中进行;酶的腺苷酰化和脱腺苷酰化作用则是细菌中共价修饰酶活性的一种重要方式。 11.[ ]研究表明,蛋白质的寿命与成熟蛋白质的C末端氨基酸有关。 12.[ ]蛋白质的选择性降解需要A TP提供能量。 三:单选题 1.[ ]人最能耐受下列哪种营养物的缺乏? A.蛋白质 B.糖类 C.脂类 D.碘 E.钙 2.[ ]下图表示一个假设的生物合成途径,该途径中某一种酶缺陷的微生物在含X的介质中生长时,发现有大量的M和L,但没有Z。问哪个酶发生了突变?

相关文档
最新文档